

Loving Common Lisp, or the Savvy
Programmer’s Secret Weapon

Mark Watson

This book is for sale at http://leanpub.com/lovinglisp

This version was published on 2021-03-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License

http://leanpub.com/lovinglisp
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en_US

Contents

Cover Material, Copyright, and License . 1

Preface . 2
Notes on the Seventh Edition Published March 2021 . 2
Notes on the Sixth Edition Published June 2020 . 2
Notes on the Fifth Edition Published September 2019 . 2
Why Use Common Lisp? . 3
A Request from the Author . 3
Older Book Editions . 4
Acknowledgments . 4
Setting Up Your Common Lisp Development System and Quicklisp 5
List of Quicklisp Projects and Small Examples in this Book 6

Introduction . 8
Why Did I Write this Book? . 8
Free Software Tools for Common Lisp Programming . 9
How is Lisp Different from Languages like Java and C++? . 9
Advantages of Working in a Lisp Environment . 11

Common Lisp Basics . 12
Getting Started with SBCL . 12
Making the repl Nicer using rlwrap . 14
The Basics of Lisp Programming . 15
Symbols . 21
Operations on Lists . 22
Using Arrays and Vectors . 26
Using Strings . 27
Using Hash Tables . 30
Using Eval to Evaluate Lisp Forms . 34
Using a Text Editor to Edit Lisp Source Files . 34
Recovering from Errors . 35
Garbage Collection . 37
Loading your Working Environment Quickly . 37
Functional Programming Concepts . 38

CONTENTS

Quicklisp . 39
Using Quicklisp to Find Packages . 39
Using Quicklisp to Configure Emacs and Slime . 41

Defining Lisp Functions . 43
Using Lambda Forms . 45
Using Recursion . 47
Closures . 48
Using the Function eval . 49

Defining Common Lisp Macros . 50
Example Macro . 50
Using the Splicing Operator . 51
Using macroexpand-1 . 52

Using Common Lisp Loop Macros . 53
dolist . 53
dotimes . 53
do . 54
Using the loop Special Form to Iterate Over Vectors or Arrays 55

Common Lisp Package System . 56

Input and Output . 59
The Lisp read and read-line Functions . 59
Lisp Printing Functions . 62

Plotting Data . 64
Implementing the Library . 64
Packaging as a Quicklisp Project . 66

Common Lisp Object System - CLOS . 68
Example of Using a CLOS Class . 68
Implementation of the HTMLstream Class . 69
Using Defstruct or CLOS . 72

Heuristically Guided Search . 74

Network Programming . 80
An introduction to Drakma . 80
An introduction to Hunchentoot . 82
Complete REST Client Server Example Using JSON for Data Serialization 84
Network Programming Wrap Up . 87

Using the Microsoft Bing Search APIs . 88
Getting an Access Key for Microsoft Bing Search APIs . 88

CONTENTS

Example Search Script . 89
Wrap-up . 91

Accessing Relational Databases . 92
Database Wrap Up . 96

Using MongoDB, Solr NoSQL Data Stores . 97
MongoDB . 97
A Common Lisp Solr Client . 102
NoSQL Wrapup . 113

Natural Language Processing . 114
Loading and Running the NLP Library . 114
Part of Speech Tagging . 118
Categorizing Text . 120
Detecting People’s Names and Place Names . 123
Summarizing Text . 124
Text Mining . 127

Information Gathering . 128
DBPedia Lookup Service . 128
Web Spiders . 131
Using Apache Nutch . 132
Wrap Up . 133

Using The CL Machine-Learning Library . 134
Using the CLML Data Loading and Access APIs . 135
K-Means Clustering of Cancer Data Set . 137
SVM Classification of Cancer Data Set . 139
CLML Wrap Up . 142

Backpropagation Neural Networks . 143

Hopfield Neural Networks . 155

Using Python Deep Learning Models In Common Lisp With a Web Services Interface . . 162
Setting up the Python Web Services Used in this Chapter . 162
Installing the spaCY NLP Services . 162
Installing the Coreference NLP Services . 163
Common Lisp Client for the spaCy NLP Web Services . 164
Common Lisp Client for the Coreference NLP Web Services 166
Trouble Shooting Possible Problems - Skip if this Example Works on Your System 167
Python Interop Wrap-up . 168

Using the PY4CL Library to Embed Python in Common Lisp 169

CONTENTS

Project Structure, Building the Python Wrapper, and Running an Example 169
Implementation of spacy-py4cl . 172
Trouble Shooting Possible Problems - Skip if this Example Works on Your System 172
Wrap-up for Using Py4CL . 173

Semantic Web and Linked Data . 174
Resource Description Framework (RDF) Data Model . 175
Extending RDF with RDF Schema . 179
The SPARQL Query Language . 181
Case Study: Using SPARQL to Find Information about Board of Directors Members of

Corporations and Organizations . 185
Installing the Apache Jena Fuseki RDF Server . 187
Common Lisp Client Examples for the Apache Jena Fuseki RDF Server 188

Automatically Generating Data for Knowledge Graphs . 191
Implementation Notes . 192
Generating RDF Data . 193
Generating Data for the Neo4j Graph Database . 196
Implementing the Top Level Application APIs . 199
Implementing The Web Interface . 202
Creating a Standalone Application Using SBCL . 204
Augmenting RDF Triples in a Knowledge Graph Using DBPedia 205
KGCreator Wrap Up . 207

Knowledge Graph Sampler for Creating Small Custom Knowledge Graphs 208

Knowledge Graph Navigator . 213
Example Output . 214
Project Configuration and Running the Application . 219
Review of NLP Utilities Used in Application . 222
Developing Low-Level SPARQL Utilities . 223
Implementing the Caching Layer . 225
Utilities to Colorize SPARQL and Generated Output . 226
Text Utilities for Queries and Results . 227
Using LispWorks CAPI UI Toolkit . 235
Writing Utilities for the UI . 236
Writing the UI . 243
Wrap-up . 249

Using Common Lisp With Wolfram/One . 251

Book Wrapup . 256

Cover Material, Copyright, and
License
Copyright 2011-2020 Mark Watson. All rights reserved. This book may be shared using the Creative
Commons “share and share alike, no modifications, no commercial reuse” license.

This eBook will be updated occasionally so please periodically check the leanpub.com web page for
this book¹ for updates.

This is the seventh edition released spring of 2021.

Please visit the author’s website².

If you found a copy of this book on the web and find it of value then please consider buying a copy
at leanpub.com/lovinglisp³ to support the author and fund work for future updates. You can also
download a free copy from my website⁴.

¹https://leanpub.com/lovinglisp
²http://markwatson.com
³https://leanpub.com/lovinglisp
⁴https://markwatson.com/#books

https://leanpub.com/lovinglisp
https://leanpub.com/lovinglisp
http://markwatson.com/
https://leanpub.com/lovinglisp
https://markwatson.com/#books
https://leanpub.com/lovinglisp
http://markwatson.com/
https://leanpub.com/lovinglisp
https://markwatson.com/#books

Preface
Notes on the Seventh Edition Published March 2021

I added two short chapters to the previous edition: Knowledge Graph Sampler for Creating Small
Custom Knowledge Graphs and Using Common Lisp With Wolfram/One.

Notes on the Sixth Edition Published June 2020

Two examples optionally use the CAPI user interface toolkit provided with LispWorks Common
Lisp⁵ and work with the free personal edition. The first CAPI application is Knowledge Graph
Navigator⁶ and the second CAPI example is Knowledge Graph Creator⁷. Both of these examples
build up utilities for working with Knowledge Graphs and the Semantic Web.

I expand the Plot Library chapter to generate either PNG graphics files or if you are using the free
personal edition of LispWorks you can also direct plotting output to a new window in interactive
programs.

I added a new chapter on using the py4cl library to embed Python libraries and application code into
a Common Lisp system. I provide new examples for embedding spaCy and TensorFlow applications
in Common Lisp applications. In earlier editions, I used a web services interface to wrap Python
code using spaCy and TensorFlow. I am leaving that chapter intact, renaming it from “Using Python
Deep Learning Models In Common Lisp” to “Using Python Deep Learning Models In Common Lisp
With a Web Services Interface.” The new chapter for this edition is “Using the PY4CL Library to
Embed Python in Common Lisp.”

Notes on the Fifth Edition Published September 2019

There were two chapters added:

• A complete application for processing text to generate data for Knowledge Graphs (targeting
the open source Neo4J graph database and also support RDF semantic web/linked data)

• A library for accessing the state of the art spaCy natural language processing (NLP) library
and also a state of the art deep learning model. These models are implemented in thin Python
wrappers that use Python libraries like spaCy, PyTorch, and TensorFlow. These examples
replace a simple hybrid Java and Common Lisp example in previous editions.

⁵https://lispworks.com
⁶http://knowledgegraphnavigator.com
⁷http://kgcreator.com

https://lispworks.com/
https://lispworks.com/
http://knowledgegraphnavigator.com/
http://knowledgegraphnavigator.com/
http://kgcreator.com/
https://lispworks.com/
http://knowledgegraphnavigator.com/
http://kgcreator.com/

Preface 3

I have added text and explanations as appropriate throughout the book and I removed the CouchDB
examples.

I have made large changes to how the code for this book is packaged. I have reorganized the example
code on GitHub by providing the examples as multiple Quicklisp libraries or applications. I now do
this with all of my Common Lisp code and it makes it easier to write smaller libraries that can be
composed into larger applications. In my own workflow, I also like to use Makefile targets to build
standalone applications that can be run on other computers without installing Lisp development
environments. Please follow the directions at the end of the Preface for configuring Quicklisp for
easy builds and use of the example software for this book.

Why Use Common Lisp?

Why Common Lisp? Isn’t Common Lisp an old language? Do many people still use Common Lisp?

I believe that using Lisp languages like Common Lisp, Clojure, Racket, and Scheme are all secret
weapons useful in agile software development. An interactive development process and live
production updates feel like a breath of fresh air if you have development on heavy weight like
Java Enterprise Edition (JEE).

Yes, Common Lisp is an old language but with age comes stability and extremely good compiler
technology. There is also a little inconsistency between different Common Lisp systems in such
things as handling threads but with a little up front knowledge you can choose which Common Lisp
systems will support your requirements.

A Request from the Author

I spent time writing this book to help you, dear reader. I release this book under the Creative
Commons “share and share alike, no modifications, no commercial reuse” license and set the
minimum purchase price to $5.00 in order to reach the most readers. Under this license you can
share a PDF version of this book with your friends and coworkers and I encourage you to do so. If
you found this book on the web (or it was given to you) and if it provides value to you then please
consider doing one of the following to support my future writing efforts and also to support future
updates to this book:

• Purchase a copy of this book leanpub.com/lovinglisp/⁸ or any other of my leanpub books at
https://leanpub.com/u/markwatson⁹

• Hire me as a consultant¹⁰

I enjoy writing and your support helps me write new editions and updates for my books and to
develop new book projects. Thank you!

⁸https://leanpub.com/lovinglisp/
⁹https://leanpub.com/u/markwatson
¹⁰https://markwatson.com/

https://leanpub.com/lovinglisp/
https://leanpub.com/u/markwatson
https://markwatson.com/
https://leanpub.com/lovinglisp/
https://leanpub.com/u/markwatson
https://markwatson.com/

Preface 4

Older Book Editions

The fourth edition of this book was released in May 2017 and the major changes were:

• Added an example application KGCreator that processes text data to automatically generate
data for Knowledge Graphs. This example application supports the Neo4J graph database as
well as semantic web/linked data systems. The major changes were:

• Added a backpropagation neural network example
• Added a deep learning example using the Java based Armed Bear Common Lisp with the
popular DeepLearning4j library

• Added a heuristic search example
• Added two machine learning examples (K-Means clustering and SVM classification) using the
CLML library

• A few edits to the previous text

The third edition was released in October 2014. The major changes made in the 2014 edition are:

• I reworked the chapter Common Lisp Basics.
• I added material to the chapter on using QuickLisp.

The second edition was released in 2013 and was derived from the version that I distributed on my
web site and I moved production of the book to leanpub.com¹¹.

Acknowledgments

I would like to thank Jans Aasman¹² for contributing as technical editor for the fourth edition of this
book. Jans is CEO of Franz.com¹³ which sells Allegro Common Lisp¹⁴ as well as tools for semantic
web and linked data applications.

I would like to thank the following people who made suggestions for improving previous editions
of this book:

Sam Steingold, Andrew Philpot, Kenny Tilton, Mathew Villeneuve, Eli Draluk, Erik Winkels, Adam
Shimali, and Paolo Amoroso.

I would like to also thank several people who pointed out typo errors in this book and for specific
suggestions: Martin Lightheart, Tong-Kiat Tan, Rainer Joswig, Gerold Rupprecht, HN member
rurban, David Cortesi. I would like to thanks the following Reddit /r/lisp readers who pointed out

¹¹https://leanpub.com/u/markwatson
¹²https://en.wikipedia.org/wiki/Jans_Aasman
¹³http://franz.com/
¹⁴http://franz.com/products/allegro-common-lisp/

https://leanpub.com/u/markwatson
https://en.wikipedia.org/wiki/Jans_Aasman
http://franz.com/
http://franz.com/products/allegro-common-lisp/
https://leanpub.com/u/markwatson
https://en.wikipedia.org/wiki/Jans_Aasman
http://franz.com/
http://franz.com/products/allegro-common-lisp/

Preface 5

mistakes in the fifth edition of this book: arnulfslayer, rpiirp, and itmuckel. I would like to thank
Ted Briscoe for pointing out a problem with the spacy web client example in the 6th edition.

I would like to thank Paul Graham for coining the phrase “The Secret Weapon” (in his excellent
paper “Beating the Averages”) in discussing the advantages of Lisp and giving me permission to
reuse his phrase.

I would especially like to thank my wife Carol Watson for her fine work in
editing this book.

Setting Up Your Common Lisp Development System
and Quicklisp

These instructions assume the use of SBCL. See comments for LispWorks, Franz Common Lisp,
and Closure Common List at the end of this section. I assume that you have installed SBCL and
Quicklisp by following the instructions at lisp-lang.org/learn/getting-started¹⁵. These instructions
also guide you through installing the Slime extensions for Emacs. I use both Emacs + Slime and
VSCode with Common Lisp plugins for editing Common Lisp. If you like VSCode then I recommend
Yasuhiro Matsumoto’s Lisp plugin for syntax highlighting. For both Emacs and VSCode I usually
run a separate REPL in a terminal window and don’t run an editor-integrated REPL. I think that am
in the minority in using a separate REPL running in a shell.

I have been using Common Lisp since about 1982 and Quicklisp has been the most revolutionary
change in my Common Lisp development (even more so than getting a hardware Lisp Machine and
the availability of Coral Common Lisp on the Macintosh). I am going to ask you, dear reader, to
trust me and adopt the following advice that I have adopted from Zach Beane¹⁶, the creator and
maintainer of Quicklisp:

• Create the file ∼/.config/common-lisp/source-registry.conf.d/projects.conf if it does not exist
on your system

• Assuming that you have cloned the repository for this book (loving-common-lisp) in your
home directory (if you have a special place where you clone git repos, adjust the following),
edit this configuration file to look like this:

1 (:tree

2 (:home "loving-common-lisp/src/")

3)

This will make subdirectories of loving-common-lisp/src/ load-able by using Quicklisp. For example,
the subdirectory loving-common-lisp/src/spacy_client contains a package named spacy that can
now be accessed from any directory on your system using:

¹⁵https://lisp-lang.org/learn/getting-started/
¹⁶https://www.xach.com

https://lisp-lang.org/learn/getting-started/
https://www.xach.com/
https://lisp-lang.org/learn/getting-started/
https://www.xach.com/

Preface 6

1 $ sbcl

2 (ql:quickload "spacy")

3 * (spacy:spacy-client "My sister has a dog Henry. She loves him.")

4 * (defvar x (spacy:spacy-client "President Bill Clinton went to Congress. He gave a \

5 speech on taxes and Mexico."))

6 * (spacy:spacy-data-entities x)

7 * (spacy:spacy-data-tokens x)

This example uses the deep learning NLP models in spaCy.

List of Quicklisp Projects and Small Examples in this
Book

The major example libraries and applications will be in their own packages. The function and
data definitions for all short code snippets in this book are in a package loving-snippets in the
subdirectory loving-common-lisp/src/loving_snippets. Whenever you work through the short
examples in this book I will assume that you have opened a SBCL (or other Common Lisp) REPL
and loaded this package:

1 $ sbcl

2 * (ql:quickload "spacy_web_client")

On one of my Linux laptops, for reasons I haven’t discovered yet, using ∼/.config/common-
lisp/source-registry.conf.d/projects.conf to set a root directory for Quicklisp to look for packages
does not work. If by small chance this does not work for you, you can set symbolic file links from the
example book packages to your ∼/quicklisp/local-projects directory. This is the directory where
Quicklisp stores local copies of libraries that you install. For example:

1 $ cd ~/quicklisp/local-projects

2 $ ln -s loving-common-lisp/src/loving_snippets .

3 $ ln -s loving-common-lisp/src/kgcreator .

4 $ ln -s loving-common-lisp/src/kbnlp .

etc.

Hopefully you won’t have to bother doing this workaround.

While most of the longer examples in this book are Quicklisp projects, there are also many very
short code snippets in the book that are found in the subdirectories src/code_snippets_for_book
and a few short program examples not configured as Quicklisp projects in the src/loving_snippets
subdirectory:

Preface 7

1 $ ls code_snippets_for_book

2 closure1.lisp nested.lisp read-test-1.lisp

3 readline-test.lisp do1.lisp read-from-string-test.lisp

4 read-test-2.lisp recursion1.lisp

5 Marks-MacBook:src $ ls loving_snippets

6 HTMLstream.lisp astar_search.lisp macro1.lisp

7 Hopfield_neural_network.lisp backprop_neural_network.lisp macro2.lisp README.md l\

8 ambda1.lisp mongo_news.lisp

The longer examples packaged as Quicklisp projects in the src directory are:

• fasttag: my part of speech tagger
• solr_examples: client for open source solr search engine
• categorize_summarize: my NLP code for categorizing text and generating summaries
• coref_web_client: client for a spaCy based web service that performs anaphora resolution (i.e.,
replaces pronouns in text with the nouns that the pronouns refer to)

• hunchentoot_examples : examples so web services and web clients
• spacy_web_client: client for a general purpose web service using state of the art deep learning
models for NLP

• clml_examples: examples using the Common List Machine Learning library
• kbnlp: My NLP code
• myutils: miscelanious functions that are used in several other example libraries in this book
• webscrape: demo for how to scrape web sites
• clsql_examples : examples showing how to access relational databases using the CLSQL library
• entities_dbpedia : use the public DbPedia (data from WikiPedia) public web interface to get
information about people, companies, locations, etc.

• kgcreator: my application for processing text, extracting entities, and generating data for
Knowledge Graphs (supports Neo4J and RDF semantic web/linked data applications

• kgn: the application Knowledge Graph Navigator¹⁷
• plotlib: a very simple plotting library that writes plots to PNG graphics files

I have used the SBCL implementation of Common Lisp in this book. There are many fine
Common Lisp implementations from Franz, LispWorks, Clozure Common Lisp, etc. If you have
any great difficulty adopting the examples to your choice of Common Lisp implementations and
performing web search does not suggest a solution then you can reach me through my web site
markwatson.com¹⁸. The examples that may not be portable are creating a standalone executable for
my KGCreator example and the examples using the Common Lisp Machine Learning library.

¹⁷http://knowledgegraphnavigator.com
¹⁸https://markwatson.com

http://knowledgegraphnavigator.com/
https://markwatson.com/
http://knowledgegraphnavigator.com/
https://markwatson.com/

Introduction
This book is intended to get you, the reader, programming quickly in Common Lisp. Although the
Lisp programming language is often associated with artificial intelligence, this introduction is on
general Common Lisp programming techniques. Later we will look at general example applications
and artificial intelligence examples.

The Common Lisp program examples are distributed on the github repo for this book¹⁹.

Why Did I Write this Book?

Why the title “Loving Common Lisp”? Simple! I have been using Lisp for almost 40 years and seldom
do I find a better match between a programming language and the programming job at hand. I am
not a total fanatic on Lisp, however. I often use Python for deep learning. I like Ruby, Java and
Javascript for server side programming, and the few years that I spent working on Nintendo video
games and virtual reality systems for SAIC and Disney, I found C++ to be a good bet because of
stringent runtime performance requirements. For some jobs, I find the logic-programming paradigm
useful: I also enjoy the Prolog language.

In any case, I love programming in Lisp, especially the industry standard Common Lisp. As I
wrote the second edition of this book over a decade ago, I had been using Common Lisp almost
exclusively for an artificial intelligence project for a health care company and for commercial
product development. While working on the third edition of this book, I was not using Common
Lisp professionally but since the release of the Quicklisp Common Lisp package manager I have
found myself enjoying using Common Lisp more for small side projects. I use Quicklisp throughout
in the third edition example code so you can easily install required libraries. For the fourth and fifth
editions of this book I have added more examples using neural networks and deep learning. In this
new sixth edition I have added a complete application that uses CAP for the user interface.

As programmers, we all (hopefully) enjoy applying our experience and brains for tackling interesting
problems. Mywife and I recently watched a two-night 7-hour PBS special “Joseph Campbell, and the
Power of Myths.” Campbell, a college professor for almost 40 years, said that he always advised his
students to “follow their bliss” and not to settle for jobs and avocations that are not what they truly
want to do. That said I always feel that when a job calls for using Java, Python or other languages
besides Lisp, that even though I may get a lot of pleasure from the job I am not following my bliss.

My goal in this book is to introduce you to one of my favorite programming languages, Common
Lisp. I assume that you already know how to program in another language but if you are a complete
beginner you can still master the material in this book with some effort. I challenge you to make
this effort.

¹⁹https://github.com/mark-watson/loving-common-lisp

https://github.com/mark-watson/loving-common-lisp
https://github.com/mark-watson/loving-common-lisp

Introduction 9

Free Software Tools for Common Lisp Programming

There are several Common Lisp compilers and runtime tools available for free on the web:

• CLISP – licensed under the GNU GPL and is available for Windows, Macintosh, and Linux/U-
nix

• Clozure Common Lisp (CCL) – open source with good Mac OS X and Linux support
• CMU Common Lisp – open source implementation
• SBCL – derived from CMU Common Lisp
• ECL – compiles using a separate C/C++ compiler
• ABCL – Armed Bear Common Lisp for the JVM

There are also fine commercial Common Lisp products:

• LispWorks – high quality and reasonably priced system for Windows and Linux. No charge
for distributing compiled applications lispworks.com²⁰

• Allegro Common Lisp - high quality, great support and higher cost. franz.com²¹
• MCL – Macintosh Common Lisp. I used this Lisp environment in the late 1980s. MCL was so
good that I gave away my Xerox 1108 Lisp Machine and switched to a Mac and MCL for my
development work. Now open source but only runs on the old MacOS

I currently (mostly) use SBCL, CCL, and LispWorks. The SBCL compiler produces very fast code
and the compiler warning can be of great value in finding potential problems with your code. Like
CCL because it compiles quickly so is often preferable for development.

For working through this book, I will assume that you are using SBCL or CCL. For the example in
the last chapter you will need LispWorks and the free Personal edition is fine for the purposes of
experimenting with the example application and the CAPI user interface library.

How is Lisp Different from Languages like Java and
C++?

This is a trick question! Lisp is slightly more similar to Java than C++ because of automated memory
management so we will start by comparing Lisp and Java.

In Java, variables are strongly typed while in Common Lisp values are strongly typed. For example,
consider the Java code:

²⁰http://www.lispworks.com
²¹http://franz.com

http://www.lispworks.com/
http://franz.com/
http://www.lispworks.com/
http://franz.com/

Introduction 10

1 Float x = new Float(3.14f);

2 String s = "the cat ran" ;

3 Object any_object = null;

4 any_object = s;

5 x = s; // illegal: generates a

6 // compilation error

Here, in Java, variables are strongly typed so a variable x of type Float can’t legally be assigned a
string value: the code in line 5 would generate a compilation error. Lisp code can assign a value to
a variable and then reassign another value of a different type.

Java and Lisp both provide automatic memory management. In either language, you can create new
data structures and not worry about freeing memory when the data is no longer used, or to be more
precise, is no longer referenced.

Common Lisp is an ANSI standard language. Portability between different Common Lisp implemen-
tations and on different platforms is very good. I have used Clozure Common Lisp, SBCL, Allegro
Lisp (from Franz Inc), LispWorks, and CLISP that all run well on Windows, Mac OS X, and Linux.
As a Common Lisp developer you will have great flexibility in tools and platforms.

ANSI Common Lisp was the first object oriented language to become an ANSI standard language.
The Common Lisp Object System (CLOS) is probably the best platform for object oriented
programming.

In C++ programs, a common bug that affects a program’s efficiency is forgetting to free memory that
is no longer used. In a virtual memory system, the effect of a program’s increasing memory usage
is usually just poorer system performance but can lead to system crashes or failures if all available
virtual memory is exhausted. A worse type of C++ error is to free memory and then try to use it.
Can you say “program crash”? C programs suffer from the same types of memory related errors.

Since computer processing power is usually much less expensive than the costs of software
development, it is almost always worth while to give up a few percent of runtime efficiency and let
the programming environment of runtime libraries manage memory for you. Languages like Lisp,
Ruby, Python, and Java are said to perform automatic garbage collection.

I have written six books on Java, and I have been quoted as saying that for me, programming in Java
is about twice as efficient (in terms of my time) as programming in C++. I base this statement on
approximately ten years of C++ experience on projects for SAIC, PacBell, Angel Studios, Nintendo,
and Disney. I find Common Lisp and other Lisp languages like Clojure and Scheme to be about twice
as efficient (again, in terms of my time) as Java. That is correct: I am claiming a four times increase
in my programming productivity when using Common Lisp vs. C++.

What do I mean by programming productivity? Simple: for a given job, how long does it take me to
design, code, debug, and later maintain the software for a given task.

Introduction 11

Advantages of Working in a Lisp Environment

We will soon see that Lisp is not just a language; it is also a programming environment and runtime
environment.

The beginning of this book introduces the basics of Lisp programming. In later chapters, we will
develop interesting and non-trivial programs in Common Lisp that I argue would be more difficult
to implement in other languages and programming environments.

The big win in programming in a Lisp environment is that you can set up an environment and
interactively write new code and test new code in small pieces. We will cover programming with
large amounts of data in the Chapter on Natural Language Processing, but let me share a a general
use case for work that I do that is far more efficient in Lisp:

Much of my Lisp programming used to be writing commercial natural language processing (NLP)
programs for my company www.knowledgebooks.com. My Lisp NLP code uses a large amount of
memory resident data; for example: hash tables for different types of words, hash tables for text
categorization, 200,000 proper nouns for place names (cities, counties, rivers, etc.), and about 40,000
common first and last names of various nationalities.

If I was writing my NLP products in C++, I would probably use a relational database to store this
data because if I read all of this data into memory for each test run of a C++ program, I would
wait 30 seconds every time that I ran a program test. When I start working in any Common
Lisp environment, I do have to load the linguistic data into memory one time, but then can
code/test/code/test… for hours with no startup overhead for reloading the data that my programs
need to run. Because of the interactive nature of Lisp development, I can test small bits of code when
tracking down errors and when writing new code.

It is a personal preference, but I find the combination of the stable Common Lisp language and an
iterative Lisp programming environment to be much more productive than other languages and
programming environments.

Common Lisp Basics
The material in this chapter will serve as an introduction to Common Lisp. I have attempted to
make this book a self contained resource for learning Common Lisp and to provide code examples
to perform common tasks. If you already know Common Lisp and bought this book for the code
examples later in this book then you can probably skip this chapter.

For working through this chapter we will be using the interactive shell, or repl, built into SBCL and
other Common Lisp systems. For this chapter it is sufficient for you to download and install SBCL²².
Please install SBCL right now, if you have not already done so.

Getting Started with SBCL

When we start SBCL, we see an introductory message and then an input prompt. We will start with
a short tutorial, walking you through a session using SBCL repl (other Common LISP systems are
very similar). A repl is an interactive console where you type expressions and see the results of
evaluating these expressions. An expression can be a large block of code pasted into the repl, using
the load function to load Lisp code into the repl, calling functions to test them, etc. Assuming that
SBCL is installed on your system, start SBCL by running the SBCL program:

1 % sbcl

2 (running SBCL from: /Users/markw/sbcl)

3 This is SBCL 2.0.2, an implementation of ANSI Common Lisp.

4 More information about SBCL is available at <http://www.sbcl.org/>.

5

6 SBCL is free software, provided as is, with absolutely no warranty.

7 It is mostly in the public domain; some portions are provided under

8 BSD-style licenses. See the CREDITS and COPYING files in the

9 distribution for more information.

10

11 * (defvar x 1.0)

12

13 X

14 * x

15

16 1.0

17 * (+ x 1)

²²http://www.sbcl.org/platform-table.html

http://www.sbcl.org/platform-table.html
http://www.sbcl.org/platform-table.html

Common Lisp Basics 13

18

19 2.0

20 * x

21

22 1.0

23 * (setq x (+ x 1))

24

25 2.0

26 * x

27

28 2.0

29 * (setq x "the dog chased the cat")

30

31 "the dog chased the cat"

32 * x

33

34 "the dog chased the cat"

35 * (quit)

We started by defining a new variable x in line 11. Notice how the value of the defvar macro is the
symbol that is defined. The Lisp reader prints X capitalized because symbols are made upper case
(we will look at the exception later).

In Lisp, a variable can reference any data type. We start by assigning a floating point value to the
variable x, using the + function to add 1 to x in line 17, using the setq function to change the value
of x in lines 23 and 29 first to another floating point value and finally setting x to a string value.
One thing that you will have noticed: function names always occur first, then the arguments to a
function. Also, parenthesis is used to separate expressions.

I learned to program Lisp in 1976 and my professor half-jokingly told us that Lisp was an acronym
for “Lots-of Irritating Superfluous Parenthesis.” There may be some truth in this when you are just
starting with Lisp programming, but you will quickly get used to the parenthesis, especially if you
use an editor like Emacs that automatically indents Lisp code for you and highlights the opening
parenthesis for every closing parenthesis that you type. Many other editors support coding in Lisp
but I personally use Emacs or sometimes VScode (with Common Lisp plugins) to edit Lisp code.

Before you proceed to the next chapter, please take the time to install SBCL on your computer and
try typing some expressions into the Lisp listener. If you get errors, or want to quit, try using the
quit function:

Common Lisp Basics 14

1 * (+ 1 2 3 4)

2

3 10

4 * (quit)

5 Bye.

If you get an error you can enter help to get options for handling an error. When I get an error and
have a good idea of what caused the error then I just enter :a: to abort out of the error).

As we discussed in the introduction, there are many different Lisp programming environments that
you can choose from. I recommend a free set of tools: Emacs, Quicklisp, slime, and SBCL. Emacs is
a fine text editor that is extensible to work well with many programming languages and document
types (e.g., HTML and XML). Slime is an Emacs extension package that greatly facilitates Lisp
development. SBCL is a robust Common Lisp compiler and runtime system that is often used in
production.

We will cover the Quicklisp package manager and using Quicklisp to setup Slime and Emacs in a
later chapter.

I will not spend much time covering the use of Emacs as a text editor in this book since you can try
most of the example code snippets in the book text by copying and then pasting them into a SBCL
repl and by loading the book example source files directly into a repl. If you already use Emacs then
I recommend that you do set up Slime sooner rather than later and start using it for development. If
you are not already an Emacs user and do not mind spending the effort to learn Emacs, then search
the web first for an Emacs tutorial. That said, you will easily be able to use the example code from
this book using any text editor you like with a SBCL repl. I don’t use the vi or vim editors but if vi
is your weapon of choice for editing text then a web search for “common lisp vi vim repl” should
get you going for developing Common Lisp code with vi or vim. If you are not already an Emacs or
vi user then using VSCode with a Common Lisp plugin is recommended.

Here, we will assume that under Windows, Unix, Linux, or Mac OS X you will use one command
window to run SBCL and a separate editor that can edit plain text files.

Making the repl Nicer using rlwrap

While reading the last section you (hopefully!) played with the SBCL interactive repl. If you haven’t
played with the repl, I won’t get too judgmental except to say that if you do not play with the
examples as you read you will not get the full benefit from this book.

Did you notice that the backspace key does not work in the SBCL repl? The way to fix this is to install
the GNU rlwrap utility. On OS X, assuming that you have homebrew²³ installed, install rlwrap with:

²³http://mxcl.github.io/homebrew/

http://mxcl.github.io/homebrew/
http://mxcl.github.io/homebrew/

Common Lisp Basics 15

1 brew install rlwrap

If you are running Ubuntu Linux, install rlwrap using:

1 sudo apt-get install rlwrap

You can then create an alias for bash or zsh using something like the following to define a command
rsbcl:

1 alias rsbcl='rlwrap sbcl'

This is fine, just remember to run sbcl if you don’t need rlwrap command line editing or run rsbcl
when you do need command line editing. That said, I find that I always want to run SBCL with
command line editing, so I redefine sbcl on my computers using:

1 -> ~ which sbcl

2 /Users/markw/sbcl/sbcl

3 -> ~ alias sbcl='rlwrap /Users/markw/sbcl/sbcl'

This alias is different on my laptops and servers, since I don’t usually install SBCL in the default
installation directory. For each of my computers, I add an appropriate alias in my .zshrc file (if I am
running zsh) or my .bashrc file (if I am running bash).

The Basics of Lisp Programming

Although we will use SBCL in this book, any Common Lisp environment will do fine. In previous
sections, we saw the top-level Lisp prompt and how we could type any expression that would be
evaluated:

1 * 1

2 1

3 * 3.14159

4 3.14159

5 * "the dog bit the cat"

6 "the dog bit the cat"

7 * (defun my-add-one (x)

8 (+ x 1))

9 MY-ADD-ONE

10 * (my-add-one -10)

11 -9

Common Lisp Basics 16

Notice that when we defined the function my-add-one in lines 7 and 8, we split the definition over
two lines and on line 8 you don’t see the “*” prompt from SBCL – this lets you know that you have
not yet entered a complete expression. The top level Lisp evaluator counts parentheses and considers
a form to be complete when the number of closing parentheses equals the number of opening
parentheses and an expression is complete when the parentheses match. I tend to count in my head,
adding one for every opening parentheses and subtracting one for every closing parentheses – when
I get back down to zero then the expression is complete. When we evaluate a number (or a variable),
there are no parentheses, so evaluation proceeds when we hit a new line (or carriage return).

The Lisp reader by default tries to evaluate any form that you enter. There is a reader macro ‘ that
prevents the evaluation of an expression. You can either use the ‘ character or quote:

1 * (+ 1 2)

2 3

3 * '(+ 1 2)

4 (+ 1 2)

5 * (quote (+ 1 2))

6 (+ 1 2)

7 *

Lisp supports both global and local variables. Global variables can be declared using defvar:

1 * (defvar *x* "cat")

2 *X*

3 * *x*

4 "cat"

5 * (setq *x* "dog")

6 "dog"

7 * *x*

8 "dog"

9 * (setq *x* 3.14159)

10 3.14159

11 * *x*

12 3.14159

One thing to be careful of when defining global variables with defvar: the declared global variable
is dynamically scoped. We will discuss dynamic versus lexical scoping later, but for now a warning:
if you define a global variable avoid redefining the same variable name inside functions. Lisp
programmers usually use a global variable naming convention of beginning and ending dynamically
scoped global variables with the * character. If you follow this naming convention and also do not
use the * character in local variable names, you will stay out of trouble. For convenience, I do not
always follow this convention in short examples in this book.

Common Lisp Basics 17

Lisp variables have no type. Rather, values assigned to variables have a type. In this last example, the
variable x was set to a string, then to a floating-point number. Lisp types support inheritance and
can be thought of as a hierarchical tree with the type t at the top. (Actually, the type hierarchy is a
DAG, but we can ignore that for now.) Common Lisp also has powerful object oriented programming
facilities in the Common Lisp Object System (CLOS) that we will discuss in a later chapter.

Here is a partial list of types (note that indentation denotes being a subtype of the preceding type):

1 t [top level type (all other types are a sub-type)]

2 sequence

3 list

4 array

5 vector

6 string

7 number

8 float

9 rational

10 integer

11 ratio

12 complex

13 character

14 symbol

15 structure

16 function

17 hash-table

We can use the typep function to test the type of value of any variable or expression or use type-of
to get type information of any value):

1 * (setq x '(1 2 3))

2 (1 2 3)

3 * (typep x 'list)

4 T

5 * (typep x 'sequence)

6 T

7 * (typep x 'number)

8 NIL

9 * (typep (+ 1 2 3) 'number)

10 T

11 * (type-of 3.14159)

12 single-float

13 * (type-of "the dog ran quickly")

14 (simple-array character (19))

Common Lisp Basics 18

15 * (type-of 100193)

16 (integer 0 4611686018427387903)

A useful feature of all ANSI standard Common Lisp implementations’ top-level listener is that it sets
* to the value of the last expression evaluated. For example:

1 * (+ 1 2 3 4 5)

2 15

3 * *

4 15

5 * (setq x *)

6 15

7 * x

8 15

All Common Lisp environments set * to the value of the last expression evaluated. This example
may be slightly confusing because * is also the prompt character in the SBCL repl that indicates that
you can enter a new expression for evaluation. For example in line 3, the first * character is the repl
prompt and the second * we type in to see that value of the previous expression that we typed into
the repl.

Frequently, when you are interactively testing new code, you will call a function that you just wrote
with test arguments; it is useful to save intermediate results for later testing. It is the ability to create
complex data structures and then experiment with code that uses or changes these data structures
that makes Lisp programming environments so effective.

Common Lisp is a lexically scoped language that means that variable declarations and function
definitions can be nested and that the same variable names can be used in nested let forms; when
a variable is used, the current let form is searched for a definition of that variable and if it is not
found, then the next outer let form is searched. Of course, this search for the correct declaration
of a variable is done at compile time so there need not be extra runtime overhead. We can nest
defun special form inside each other and inside let expressions but this defines the nested functions
globally. We use the special forms flet and labels to define functions inside a scoped environment.
Functions defined inside a labels special form can be recursive while functions defined inside a flet
special form cannot be recursive. Consider the following example in the file nested.lisp (all example
files are in the src directory):

Common Lisp Basics 19

1 (flet ((add-one (x)

2 (+ x 1))

3 (add-two (x)

4 (+ x 2)))

5 (format t "redefined variables: ~A ~A~%" (add-one 100) (add-two 100)))

6

7 (let ((a 3.14))

8 (defun test2 (x)

9 (print x))

10 (test2 a))

11

12 (test2 50)

13

14 (let ((x 1)

15 (y 2))

16 ;; define a test function nested inside a let statement:

17 (flet ((test (a b)

18 (let ((z (+ a b)))

19 ;; define a helper function nested inside a let/function/let:

20 (flet ((nested-function (a)

21 (+ a a)))

22 (nested-function z)))))

23 ;; call nested function 'test':

24 (format t "test result is ~A~%" (test x y))))

25

26 (let ((z 10))

27 (labels ((test-recursion (a)

28 (format t "test-recursion ~A~%" (+ a z))

29 (if (> a 0)

30 (test-recursion (- a 1)))))

31 (test-recursion 5)))

We define a top level flet special form in lines 1-5 that defines two nested functions add-one and
add-two and then calls each nested function in the body of the flet special form. For many years I
have used nested defun special forms inside let expressions for defining local functions and you will
notice this use in a few later examples. However, functions defined inside defun special forms have
global visibility so they are not hidden in the local context where they are defined. The example
of a nested defun in lines 7-12 shows that the function test2 has global visibility inside the current
package.

Functions defined inside of a flet special form have access to variables defined in the outer scope
containing the flet (also applies to labels). We see this in lines 14-24 where the local variables x and
y defined in the let expression are visible inside the function nested-function defined inside the
flet.

Common Lisp Basics 20

The final example in lines 26-31 shows a recursive function defined inside a labels special form.

Assuming that we started SBCL in the src directory we can then use the Lisp load function to
evaluate the contents of the file nested.lisp in the sub-directory code_snippets_for_book using
the load function:

* (load "./code_snippets_for_book/nested.lisp")

redefined variables: 101 102

3.14

50 test result is 6

test-recursion 15

test-recursion 14

test-recursion 13

test-recursion 12

test-recursion 11

test-recursion 10

T

*

The function load returned a value of t (prints in upper case as T) after successfully loading the file.

We will use Common Lisp vectors and arrays frequently in later chapters, but will also briefly
introduce them here. A singly dimensioned array is also called a vector. Although there are often
more efficient functions for handling vectors, we will just look at generic functions that handle any
type of array, including vectors. Common Lisp provides support for functions with the same name
that take different argument types; we will discuss this in some detail when we cover this in the
later chapter on CLOS. We will start by defining three vectors v1, v2, and v3:

1 * (setq v1 (make-array '(3)))

2 #(NIL NIL NIL)

3 * (setq v2 (make-array '(4) :initial-element "lisp is good"))

4 #("lisp is good" "lisp is good" "lisp is good" "lisp is good")

5 * (setq v3 #(1 2 3 4 "cat" '(99 100)))

6 #(1 2 3 4 "cat" '(99 100))

In line 1, we are defining a one-dimensional array, or vector, with three elements. In line 3 we specify
the default value assigned to each element of the array v2. In line 5 I use the form for specifying
array literals using the special character #. The function aref can be used to access any element in
an array:

Common Lisp Basics 21

* (aref v3 3)

4

* (aref v3 5)

'(99 100)

*

Notice how indexing of arrays is zero-based; that is, indices start at zero for the first element of a
sequence. Also notice that array elements can be any Lisp data type. So far, we have used the special
operator setq to set the value of a variable. Common Lisp has a generalized version of setq called
setf that can set any value in a list, array, hash table, etc. You can use setf instead of setq in all
cases, but not vice-versa. Here is a simple example:

* v1

#(NIL NIL NIL)

* (setf (aref v1 1) "this is a test")

"this is a test"

* v1

#(NIL "this is a test" NIL)

*

When writing new code or doing quick programming experiments, it is often easiest (i.e., quickest to
program) to use lists to build interesting data structures. However, as programs mature, it is common
to modify them to use more efficient (at runtime) data structures like arrays and hash tables.

Symbols

Wewill discuss symbols in more detail the Chapter on Common Lisp Packages. For now, it is enough
for you to understand that symbols can be names that refer to variables. For example:

> (defvar *cat* "bowser")

CAT

* *cat*

"bowser"

* (defvar *l* (list *cat*))

L

* *l*

("bowser")

*

Note that the first defvar returns the defined symbol as its value. Symbols are almost always
converted to upper case. An exception to this “upper case rule” is when we define symbols that
may contain white space using vertical bar characters:

Common Lisp Basics 22

* (defvar |a symbol with Space Characters| 3.14159)

|a symbol with Space Characters|

* |a symbol with Space Characters|

3.14159

*

Operations on Lists

Lists are a fundamental data structure of Common Lisp. In this section, we will look at some of the
more commonly used functions that operate on lists. All of the functions described in this section
have something in common: they do not modify their arguments.

In Lisp, a cons cell is a data structure containing two pointers. Usually, the first pointer in a cons cell
will point to the first element in a list and the second pointer will point to another cons representing
the start of the rest of the original list.

The function cons takes two arguments that it stores in the two pointers of a new cons data structure.
For example:

* (cons 1 2)

(1 . 2)

* (cons 1 '(2 3 4))

(1 2 3 4)

*

The first form evaluates to a cons data structure while the second evaluates to a cons data structure
that is also a proper list. The difference is that in the second case the second pointer of the freshly
created cons data structure points to another cons cell.

First, we will declare two global variables l1 and l2 that we will use in our examples. The list l1
contains five elements and the list l2 contains four elements:

* (defvar l1 '(1 2 (3) 4 (5 6)))

L1

* (length l1)

5

* (defvar l2 '(the "dog" calculated 3.14159))

L2

* l1

(1 2 (3) 4 (5 6))

* l2

(THE "dog" CALCULATED 3.14159)

>

Common Lisp Basics 23

You can also use the function list to create a new list; the arguments passed to function list are the
elements of the created list:

* (list 1 2 3 'cat "dog")

(1 2 3 CAT "dog")

*

The function car returns the first element of a list and the function cdr returns a list with its first
element removed (but does not modify its argument):

* (car l1)

1

* (cdr l1)

(2 (3) 4 (5 6))

*

Using combinations of car and cdr calls can be used to extract any element of a list:

* (car (cdr l1))

2

* (cadr l1)

2

*

Notice that we can combine calls to car and cdr into a single function call, in this case the function
cadr. Common Lisp defines all functions of the form cXXr, cXXXr, and cXXXXr where X can be
either a or d.

Suppose that we want to extract the value 5 from the nested list l1. Some experimentation with using
combinations of car and cdr gets the job done:

* l1

(1 2 (3) 4 (5 6))

* (cadr l1)

2

* (caddr l1)

(3)

(car (caddr l1))

3

* (caar (last l1))

5

* (caar (cddddr l1))

5

*

Common Lisp Basics 24

The function last returns the last cdr of a list (i.e., the last element, in a list):

* (last l1)

((5 6))

*

Common list supplies alternative functions to car and cdr that you might find more readable: first,
second, third, fourth, and rest. Here are some examples:

* (defvar *x* '(1 2 3 4 5))

X

* (first *x*)

1

* (rest *x*)

(2 3 4 5)

* (second *x*)

2

* (third *x*)

3

* (fourth *x*)

4

The function nth takes two arguments: an index of a top-level list element and a list. The first index
argument is zero based:

* l1

(1 2 (3) 4 (5 6))

* (nth 0 l1)

1

* (nth 1 l1)

2

* (nth 2 l1)

(3)

*

The function cons adds an element to the beginning of a list and returns as its value a new list (it
does not modify its arguments). An element added to the beginning of a list can be any Lisp data
type, including another list:

Common Lisp Basics 25

* (cons 'first l1)

(FIRST 1 2 (3) 4 (5 6))

* (cons '(1 2 3) '(11 22 33))

((1 2 3) 11 22 33)

*

The function append takes two lists as arguments and returns as its value the two lists appended
together:

* l1

(1 2 (3) 4 (5 6))

* l2

('THE "dog" 'CALCULATED 3.14159)

* (append l1 l2)

(1 2 (3) 4 (5 6) THE "dog" CALCULATED 3.14159)

* (append '(first) l1)

(FIRST 1 2 (3) 4 (5 6))

*

A frequent error that beginning Lisp programmers make is not understanding shared structures in
lists. Consider the following example where we generate a list y by reusing three copies of the list x:

* (setq x '(0 0 0 0))

(0 0 0 0)

* (setq y (list x x x))

((0 0 0 0) (0 0 0 0) (0 0 0 0))

* (setf (nth 2 (nth 1 y)) 'x)

X

* x

(0 0 X 0)

* y

((0 0 X 0) (0 0 X 0) (0 0 X 0))

* (setq z '((0 0 0 0) (0 0 0 0) (0 0 0 0)))

((0 0 0 0) (0 0 0 0) (0 0 0 0))

* (setf (nth 2 (nth 1 z)) 'x)

X

* z

((0 0 0 0) (0 0 X 0) (0 0 0 0))

*

Whenwe change the shared structure referenced by the variablex that change is reflected three times
in the list y. When we create the list stored in the variable z we are not using a shared structure.

Common Lisp Basics 26

Using Arrays and Vectors

Using lists is easy but the time spent accessing a list element is proportional to the length of the list.
Arrays and vectors are more efficient at runtime than long lists because list elements are kept on
a linked-list that must be searched. Accessing any element of a short list is fast, but for sequences
with thousands of elements, it is faster to use vectors and arrays.

By default, elements of arrays and vectors can be any Lisp data type. There are options when creating
arrays to tell the Common Lisp compiler that a given array or vector will only contain a single data
type (e.g., floating point numbers) but we will not use these options in this book.

Vectors are a specialization of arrays; vectors are arrays that only have one dimension. For efficiency,
there are functions that only operate on vectors, but since array functions also work on vectors,
we will concentrate on arrays. In the next section, we will look at character strings that are a
specialization of vectors.

We could use the generalizedmake-sequence function to make a singularly dimensioned array (i.e.,
a vector). Restart sbcl and try:

* (defvar x (make-sequence 'vector 5 :initial-element 0))

X

* x

#(0 0 0 0 0)

*

In this example, notice the print format for vectors that looks like a list with a proceeding # character.
As seen in the last section, we use the function make-array to create arrays:

* (defvar y (make-array '(2 3) :initial-element 1))

Y

* y

#2A((1 1 1) (1 1 1))

>

Notice the print format of an array: it looks like a list proceeded by a # character and the integer
number of dimensions.

Instead of using make-sequence to create vectors, we can pass an integer as the first argument of
make-array instead of a list of dimension values. We can also create a vector by using the function
vector and providing the vector contents as arguments:

Common Lisp Basics 27

* (make-array 10)

#(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

* (vector 1 2 3 'cat)

#(1 2 3 CAT)

*

The function aref is used to access sequence elements. The first argument is an array and the
remaining argument(s) are array indices. For example:

* x

#(0 0 0 0 0)

* (aref x 2)

0

* (setf (aref x 2) "parrot")

"parrot"

* x

#(0 0 "parrot" 0 0)

* (aref x 2)

"parrot"

* y

#2A((1 1 1) (1 1 1))

* (setf (aref y 1 2) 3.14159)

3.14159

* y

#2A((1 1 1) (1 1 3.14159))

*

Using Strings

It is likely that even your first Lisp programs will involve the use of character strings. In this section,
we will cover the basics: creating strings, concatenating strings to create new strings, for substrings
in a string, and extracting substrings from longer strings. The string functions that we will look
at here do not modify their arguments; rather, they return new strings as values. For efficiency,
Common Lisp does include destructive string functions that do modify their arguments but we will
not discuss these destructive functions here.

We saw earlier that a string is a type of vector, which in turn is a type of array (which in turn is a type
of sequence). A full coverage of the Common Lisp type system is outside the scope of this tutorial
introduction to Common Lisp; a very good treatment of Common Lisp types is in Guy Steele’s
“Common Lisp, The Language” which is available both in print and for free on the web. Many of
the built in functions for handling strings are actually more general because they are defined for the

Common Lisp Basics 28

type sequence. The Common Lisp Hyperspec is another great free resource that you can find on the
web. I suggest that you download an HTML version of Guy Steele’s excellent reference book and
the Common Lisp Hyperspec and keep both on your computer. If you continue using Common Lisp,
eventually you will want to read all of Steele’s book and use the Hyperspec for reference.

The following text was captured from input and output from a Common Lisp repl. First, we will
declare two global variables s1 and space that contain string values:

* (defvar s1 "the cat ran up the tree")

S1

* (defvar space " ")

SPACE

*

One of the most common operations on strings is to concatenate two or more strings into a new
string:

* (concatenate 'string s1 space "up the tree")

"the cat ran up the tree up the tree"

*

Notice that the first argument of the function concatenate is the type of the sequence that the
function should return; in this case, we want a string. Another common string operation is search
for a substring:

* (search "ran" s1)

8

* (search "zzzz" s1)

NIL

*

If the search string (first argument to function search) is not found, function search returns nil,
otherwise search returns an index into the second argument string. Function search takes several
optional keyword arguments (see the next chapter for a discussion of keyword arguments):

(search search-string a-longer-string :from-end :test

:test-not :key

:start1 :start2

:end1 :end2)

For our discussion, we will just use the keyword argument :start2 for specifying the starting search
index in the second argument string and the :from-end flag to specify that search should start at
the end of the second argument string and proceed backwards to the beginning of the string:

Common Lisp Basics 29

* (search " " s1)

3

* (search " " s1 :start2 5)

7

* (search " " s1 :from-end t)

18

*

The sequence function subseq can be used for strings to extract a substring from a longer string:

* (subseq s1 8)

"ran up the tree"

>

Here, the second argument specifies the starting index; the substring from the starting index to the
end of the string is returned. An optional third index argument specifies one greater than the last
character index that you want to extract:

* (subseq s1 8 11)

"ran"

*

It is frequently useful to remove white space (or other) characters from the beginning or end of a
string:

* (string-trim '(#\space #\z #\a) " a boy said pez")

"boy said pe"

*

The character #\space is the space character. Other common characters that are trimmed are #\tab
and #\newline. There are also utility functions for making strings upper or lower case:

* (string-upcase "The dog bit the cat.")

"THE DOG BIT THE CAT."

* (string-downcase "The boy said WOW!")

"the boy said wow!"

>

We have not yet discussed equality of variables. The function eq returns true if two variables refer
to the same data in memory. The function eql returns true if the arguments refer to the same data
in memory or if they are equal numbers or characters. The function equal is more lenient: it returns
true if two variables print the same when evaluated. More formally, function equal returns true if
the car and cdr recursively equal to each other. An example will make this clearer:

Common Lisp Basics 30

* (defvar x '(1 2 3))

X

* (defvar y '(1 2 3))

Y

* (eql x y)

NIL

* (equal x y)

T

* x

(1 2 3)

* y

(1 2 3)

*

For strings, the function string= is slightly more efficient than using the function equal:

* (eql "cat" "cat")

NIL

* (equal "cat" "cat")

T

* (string= "cat" "cat")

T

*

Common Lisp strings are sequences of characters. The function char is used to extract individual
characters from a string:

* s1

"the cat ran up the tree"

* (char s1 0)

#\t

* (char s1 1)

#\h

*

Using Hash Tables

Hash tables are an extremely useful data type. While it is true that you can get the same effect by
using lists and the assoc function, hash tables are much more efficient than lists if the lists contain
many elements. For example:

Common Lisp Basics 31

* (defvar x '((1 2) ("animal" "dog")))

X

* (assoc 1 x)

(1 2)

* (assoc "animal" x)

NIL

* (assoc "animal" x :test #'equal)

("animal" "dog")

*

The second argument to function assoc is a list of cons cells. Function assoc searches for a sub-list
(in the second argument) that has its car (i.e., first element) equal to the first argument to function
assoc. The perhaps surprising thing about this example is that assoc seems to work with an integer
as the first argument but not with a string. The reason for this is that by default the test for equality
is done with eql that tests two variables to see if they refer to the same memory location or if they
are identical if they are numbers. In the last call to assoc we used “:test #’equal” to make assoc use
the function equal to test for equality.

The problem with using lists and assoc is that they are very inefficient for large lists. We will see
that it is no more difficult to code with hash tables.

A hash table stores associations between key and value pairs, much like our last example using the
assoc function. By default, hash tables use eql to test for equality when looking for a key match. We
will duplicate the previous example using hash tables:

* (defvar h (make-hash-table))

H

* (setf (gethash 1 h) 2)

2

* (setf (gethash "animal" h) "dog")

"dog"

* (gethash 1 h)

2 ;

T

* (gethash "animal" h)

NIL ;

NIL

*

Notice that gethash returns multiple values: the first value is the value matching the key passed as
the first argument to function gethash and the second returned value is true if the key was found
and nil otherwise. The second returned value could be useful if hash values are nil.

Common Lisp Basics 32

Since we have not yet seen how to handle multiple returned values from a function, we will digress
and do so here (there are many ways to handle multiple return values and we are just covering one
of them):

* (multiple-value-setq (a b) (gethash 1 h))

2

* a

2

* b

T

*

Assuming that variables a and b are already declared, the variable a will be set to the first returned
value from gethash and the variable b will be set to the second returned value.

If we use symbols as hash table keys, then using eql for testing for equality with hash table keys is
fine:

* (setf (gethash 'bb h) 'aa)

AA

* (gethash 'bb h)

AA ;

T

*

However, we saw that eql will not match keys with character string values. The function make-
hash-table has optional key arguments and one of them will allow us to use strings as hash key
values:

(make-hash-table &key :test :size :rehash-size :rehash-threshold)

Here, we are only interested in the first optional key argument :test that allows us to use the function
equal to test for equality when matching hash table keys. For example:

Common Lisp Basics 33

* (defvar h2 (make-hash-table :test #'equal))

H2

* (setf (gethash "animal" h2) "dog")

"dog"

* (setf (gethash "parrot" h2) "Brady")

"Brady"

* (gethash "parrot" h2)

"Brady" ;

T

*

It is often useful to be able to enumerate all the key and value pairs in a hash table. Here is a simple
example of doing this by first defining a function my-print that takes two arguments, a key and a
value. We can then use the maphash function to call our new function my-print with every key
and value pair in a hash table:

* (defun my-print (a-key a-value)

(format t "key: ~A value: ~A~\%" a-key a-value))

MY-PRINT

* (maphash #'my-print h2)

key: parrot value: Brady

key: animal value: dog

NIL

*

The function my-print is applied to each key/value pair in the hash table. There are a few other
useful hash table functions that we demonstrate here:

* (hash-table-count h2)

2

* (remhash "animal" h2)

T

* (hash-table-count h2)

1

* (clrhash h2)

#S(HASH-TABLE EQUAL)

* (hash-table-count h2)

0

*

The function hash-table-count returns the number of key and value pairs in a hash table. The
function remhash can be used to remove a single key and value pair from a hash table. The function
clrhash clears out a hash table by removing all key and value pairs in a hash table.

Common Lisp Basics 34

It is interesting to note that clrhash and remhash are the first Common Lisp functions that we
have seen so far that modify any of its arguments, except for setq and setf that are macros and not
functions.

Using Eval to Evaluate Lisp Forms

We have seen how we can type arbitrary Lisp expressions in the Lisp repl listener and then they are
evaluated. We will see in the Chapter on Input and Output that the Lisp function read evaluates
lists (or forms) and indeed the Lisp repl uses function read.

In this section, we will use the function eval to evaluate arbitrary Lisp expressions inside a program.
As a simple example:

* (defvar x '(+ 1 2 3 4 5))

X

* x

(+ 1 2 3 4 5)

* (eval x)

15

*

Using the function eval, we can build lists containing Lisp code and evaluate generated code inside
our own programs. We get the effect of “data is code”. A classic Lisp program, the OPS5 expert
system tool, stored snippets of Lisp code in a network data structure and used the function eval to
execute Lisp code stored in the network. A warning: the use of eval is likely to be inefficient in
non-compiled code. For efficiency, the OPS5 program contained its own version of eval that only
interpreted a subset of Lisp used in the network.

Using a Text Editor to Edit Lisp Source Files

I usually use Emacs, but we will briefly discuss the editor vi also. If you use vi (e.g., enter “vi
nested.lisp”) the first thing that you should do is to configure vi to indicate matching opening
parentheses whenever a closing parentheses is typed; you do this by typing “:set sm” after vi is
running.

If you choose to learn Emacs, enter the following in your .emacs file (or your _emacs file in your
home directory if you are running Windows):

Common Lisp Basics 35

1 (set-default 'auto-mode-alist

2 (append '(("\\.lisp$" . lisp-mode)

3 ("\\.lsp$" . lisp-mode)

4 ("\\.cl$" . lisp-mode))

5 auto-mode-alist))

Now, whenever you open a file with the extension of “lisp”, “lsp”, or “cl” (for “Common Lisp”) then
Emacs will automatically use a Lisp editing mode. I recommend searching the web using keywords
“Emacs tutorial” to learn how to use the basic Emacs editing commands - we will not repeat this
information here.

I do my professional Lisp programming using free software tools: Emacs, SBCL, Clozure Common
Lisp, and Clojure. I will show you how to configure Emacs and Slime in the last section of the
Chapter on Quicklisp.

Recovering from Errors

When you enter forms (or expressions) in a Lisp repl listener, you will occasionally make a mistake
and an error will be thrown. Here is an example where I am not showing all of the output when
entering help when an error is thrown:

* (defun my-add-one (x) (+ x 1))

MY-ADD-ONE

* (my-add-one 10)

11

* (my-add-one 3.14159)

4.14159

* (my-add-one "cat")

debugger invoked on a SIMPLE-TYPE-ERROR: Argument X is not a NUMBER: "cat"

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):

0: [ABORT] Exit debugger, returning to top level.

(SB-KERNEL:TWO-ARG-+ "cat" 1)

0] help

Common Lisp Basics 36

The debug prompt is square brackets, with number(s) indicating the current

control stack level and, if you've entered the debugger recursively, how

deeply recursed you are.

...

Getting in and out of the debugger:

TOPLEVEL, TOP exits debugger and returns to top level REPL

RESTART invokes restart numbered as shown (prompt if not given).

ERROR prints the error condition and restart cases.

...

Inspecting frames:

BACKTRACE [n] shows n frames going down the stack.

LIST-LOCALS, L lists locals in current frame.

PRINT, P displays function call for current frame.

SOURCE [n] displays frame's source form with n levels of enclosing forms.

Stepping:

START Selects the CONTINUE restart if one exists and starts

single-stepping. Single stepping affects only code compiled with

under high DEBUG optimization quality. See User Manual for details.

STEP Steps into the current form.

NEXT Steps over the current form.

OUT Stops stepping temporarily, but resumes it when the topmost frame that

was stepped into returns.

STOP Stops single-stepping.

...

0] list-locals

SB-DEBUG::ARG-0 = "cat"

SB-DEBUG::ARG-1 = 1

0] backtrace 2

Backtrace for: #<SB-THREAD:THREAD "main thread" RUNNING {1002AC32F3}>

0: (SB-KERNEL:TWO-ARG-+ "cat" 1)

1: (MY-ADD-ONE "cat")

0] :0

*

Common Lisp Basics 37

Here, I first used the backtrace command :bt to print the sequence of function calls that caused the
error. If it is obvious where the error is in the code that I am working on then I do not bother using
the backtrace command. I then used the abort command :a to recover back to the top level Lisp
listener (i.e., back to the greater than prompt). Sometimes, you must type :amore than once to fully
recover to the top level greater than prompt.

Garbage Collection

Like other languages like Java and Python, Common Lisp provides garbage collection (GC) or
automatic memory management.

In simple terms, GC occurs to free memory in a Lisp environment that is no longer accessible by any
global variable (or function closure, which we will cover in the next chapter). If a global variable
variable-1 is first set to a list and then if we later then set *variable-1* to, for example nil, and if
the data referenced in the original list is not referenced by any other accessible data, then this now
unused data is subject to GC.

In practice, memory for Lisp data is allocated in time ordered batches and ephemeral or generational
garbage collectors garbage collect recent memory allocations far more often than memory that has
been allocated for a longer period of time.

Loading your Working Environment Quickly

When you start using Common Lisp for large projects, you will likely have many files to load
into your Lisp environment when you start working. Most Common Lisp implementations have
a function called defsystem that works somewhat like the Unix make utility. While I strongly
recommend defsystem for largemulti-person projects, I usually use a simpler schemewhenworking
onmy own: I place a file loadit.lisp in the top directory of each project that I work on. For any project,
its loadit.lisp file loads all source files and initializes any global data for the project.

The last two chapters of this book provide example applications that are configured to work with
Quicklisp, which we will study in the next chapter.

Another good technique is to create a Lisp image containing all the code and data for all your projects.
There is an example of this in the first section of the Chapter on NLP. In this example, it takes a few
minutes to load the code and data for my NLP (natural language processing) library so when I am
working with it I like to be able to quickly load a SBCL Lisp image.

All Common Lisp implementations have a mechanism for dumping a working image containing
code and data.

Common Lisp Basics 38

Functional Programming Concepts

There are two main styles for doing Common Lisp development. Object oriented programming is
well supported (see the Chapter on CLOS) as is functional programming. In a nut shell, functional
programming means that we should write functions with no side effects. First let me give you a
non-functional example with side effects:

(defun non-functional-example (car)

(set-color car "red"))

This example using CLOS is non-functional because we modify the value of an argument to
the function. Some functional languages like the Lisp Clojure language and the Haskell language
dissuade you from modifying arguments to functions. With Common Lisp you should make a
decision on which approach you like to use.

Functional programming means that we avoid maintaining state inside of functions and treat data
as immutable (i.e., once an object is created, it is never modified). We could modify the last example
to be function by creating a new car object inside the function, copy the attributes of the car passed
as an object, change the color to “red” of the new car object, and return the new car instance as the
value of the function.

Functional programming prevents many types of programming errors, makes unit testing simpler,
and makes programming for modern multi-core CPUs easier because read-only objects are inher-
ently thread safe. Modern best practices for the Java language also prefer immutable data objects
and a functional approach.

Quicklisp
For several decades managing packages and libraries was a manual process when developing Lisp
systems. I used to package the source code for specific versions of libraries as part of my Common
Lisp projects. Early package management systems mk-defsystem and ASDF were very useful, but I
did not totally give up my practice keeping third party library source code with my projects until
Zach Beane created the Quicklisp package system²⁴. You will need to have Quicklisp installed for
many of the examples later in this book so please take the time to install it now as per the instructions
on the Quicklisp web site.

Using Quicklisp to Find Packages

We will need the Common Lisp Hunchentoot library later in the Chapter on Network Programming
so we will install it now using Quicklisp as an example for getting started with Quicklisp.

We already know the package name we want, but as an example of discovering packages let’s start
by using Quicklisp to search for all packages with “hunchentoot” in the package name:

1 * (ql:system-apropos "hunchentoot")

2 #<SYSTEM clack-handler-hunchentoot / clack-20131111-git / quicklisp 2013-11-11>

3 #<SYSTEM hunchentoot / hunchentoot-1.2.21 / quicklisp 2013-11-11>

4 #<SYSTEM hunchentoot-auth / hunchentoot-auth-20101107-git / quicklisp 2013-11-11>

5 #<SYSTEM hunchentoot-cgi / hunchentoot-cgi-20121125-git / quicklisp 2013-11-11>

6 #<SYSTEM hunchentoot-dev / hunchentoot-1.2.21 / quicklisp 2013-11-11>

7 #<SYSTEM hunchentoot-single-signon / hunchentoot-single-signon-20131111-git / quickl\

8 isp 2013-11-11>

9 #<SYSTEM hunchentoot-test / hunchentoot-1.2.21 / quicklisp 2013-11-11>

10 #<SYSTEM hunchentoot-vhost / hunchentoot-vhost-20110418-git / quicklisp 2013-11-11>

We want the base package seen in line 3 and we can install the base package as seen in the following
example:

²⁴http://www.quicklisp.org/

http://www.quicklisp.org/
http://www.quicklisp.org/

Quicklisp 40

1 * (ql:quickload :hunchentoot)

2 To load "hunchentoot":

3 Load 1 ASDF system:

4 hunchentoot

5 ; Loading "hunchentoot"

6

7 (:HUNCHENTOOT)

In line 1, I refer to the package name using a symbol :hunchentoot but using the string “hunchentoot”
would have worked the same. The first time you ql:quickload a library you may see additional
printout and it takes longer to load because the source code is downloaded from the web and cached
locally in the directory ∼/quicklisp/local-projects. In most of the rest of this book, when I install
or use a package by calling the ql:quickload function I do not show the output from this function
in the repl listings.

Now, we can use the fantastically useful Common Lisp function apropos to see what was just
installed:

1 * (apropos "hunchentoot")

2

3 HUNCHENTOOT::*CLOSE-HUNCHENTOOT-STREAM* (bound)

4 HUNCHENTOOT:*HUNCHENTOOT-DEFAULT-EXTERNAL-FORMAT* (bound)

5 HUNCHENTOOT::*HUNCHENTOOT-STREAM*

6 HUNCHENTOOT:*HUNCHENTOOT-VERSION* (bound)

7 HUNCHENTOOT:HUNCHENTOOT-CONDITION

8 HUNCHENTOOT:HUNCHENTOOT-ERROR (fbound)

9 HUNCHENTOOT::HUNCHENTOOT-OPERATION-NOT-IMPLEMENTED-OPERATION (fbound)

10 HUNCHENTOOT::HUNCHENTOOT-SIMPLE-ERROR

11 HUNCHENTOOT::HUNCHENTOOT-SIMPLE-WARNING

12 HUNCHENTOOT::HUNCHENTOOT-WARN (fbound)

13 HUNCHENTOOT:HUNCHENTOOT-WARNING

14 HUNCHENTOOT-ASD:*HUNCHENTOOT-VERSION* (bound)

15 HUNCHENTOOT-ASD::HUNCHENTOOT

16 :HUNCHENTOOT (bound)

17 :HUNCHENTOOT-ASD (bound)

18 :HUNCHENTOOT-DEV (bound)

19 :HUNCHENTOOT-NO-SSL (bound)

20 :HUNCHENTOOT-TEST (bound)

21 :HUNCHENTOOT-VERSION (bound)

22 *

As long as you are thinking about the new tool Quicklisp that is now in your tool chest, you should
install most of the packages and libraries that you will need for working through the rest of this

Quicklisp 41

book. I will show the statements needed to load more libraries without showing the output printed
in the repl as each package is loaded:

1 (ql:quickload "clsql")

2 (ql:quickload "clsql-postgresql")

3 (ql:quickload "clsql-mysql")

4 (ql:quickload "clsql-sqlite3")

5 (ql:quickload :drakma)

6 (ql:quickload :hunchentoot)

7 (ql:quickload :cl-json)

8 (ql:quickload "clouchdb") ;; for CouchDB access

9 (ql:quickload "sqlite")

You need to have the Postgres and MySQL client developer libraries installed on your system for
the clsql-postgresql and clsql-mysql installations to work. If you are unlikely to use relational
databases with Common Lisp then you might skip the effort of installing Postgres and MySQL. The
example in the Chapter on the Knowledge Graph Navigator uses the SQLite database for caching.
You don’t need any extra dependencies for the sqlite package.

Using Quicklisp to Configure Emacs and Slime

I assume that you have Emacs installed on your system. In a repl you can setup the Slime package
that allows Emacs to connect to a running Lisp environment:

(ql:quickload "quicklisp-slime-helper")

Pay attention to the output in the repl. On my system the output contained the following:

1 [package quicklisp-slime-helper]

2 slime-helper.el installed in "/Users/markw/quicklisp/slime-helper.el"

3

4 To use, add this to your ~/.emacs:

5

6 (load (expand-file-name "~/quicklisp/slime-helper.el"))

7 ;; Replace "sbcl" with the path to your implementation

8 (setq inferior-lisp-program "sbcl")

If you installed rlwrap and defined an alias for running SBCL, make sure you set the inferior lisp
program to the absolute path of the SBCL executable; on my system I set the following in my .emacs
file:

Quicklisp 42

1 (setq inferior-lisp-program "/Users/markw/sbcl/sbcl")

I am not going to cover using Emacs and Slime, there are many good tutorials on the web you can
read.

In later chapters we will write libraries and applications as Quicklisp projects so that you will be
able to load your own libraries, making it easier to write small libraries that you can compose into
larger applications.

Defining Lisp Functions
In the previous chapter, we defined a few simple functions. In this chapter, we will discuss how
to write functions that take a variable number of arguments, optional arguments, and keyword
arguments.

The special form defun is used to define new functions either in Lisp source files or at the top level
Lisp listener prompt. Usually, it is most convenient to place function definitions in a source file and
use the function load to load them into our Lisp working environment.

In general, it is bad form to use global variables inside Lisp functions. Rather, we prefer to pass all
required data into a function via its argument list and to get the results of the function as the value
(or values) returned from a function. Note that if we do require global variables, it is customary to
name them with beginning and ending * characters; for example:

1 (defvar *lexical-hash-table*

2 (make-hash-table :test #'equal :size 5000))

Then in this example, if you see the variable *lexical-hash-table* inside a function definition, you
will know that at least by naming convention, that this is a global variable.

In Chapter 1, we saw an example of using lexically scoped local variables inside a function definition
(in the example file nested.lisp).

There are several options for defining the arguments that a function can take. The fastest way to
introduce the various options is with a few examples.

First, we can use the &aux keyword to declare local variables for use in a function definition:

1 * (defun test (x &aux y)

2 (setq y (list x x))

3 y)

4 TEST

5 * (test 'cat)

6 (CAT CAT)

7 * (test 3.14159)

8 (3.14159 3.14159)

It is considered better coding style to use the let special operator for defining auxiliary local variables;
for example:

Defining Lisp Functions 44

1 * (defun test (x)

2 (let ((y (list x x)))

3 y))

4 TEST

5 * (test "the dog bit the cat")

6 ("the dog bit the cat" "the dog bit the cat")

7 *

You will probably not use &aux very often, but there are two other options for specifying function
arguments: &optional and &key.

The following code example shows how to use optional function arguments. Note that optional
arguments must occur after required arguments.

1 * (defun test (a &optional b (c 123))

2 (format t "a=~A b=~A c=~A~%" a b c))

3 TEST

4 * (test 1)

5 a=1 b=NIL c=123

6 NIL

7 * (test 1 2)

8 a=1 b=2 c=123

9 NIL

10 * (test 1 2 3)

11 a=1 b=2 c=3

12 NIL

13 * (test 1 2 "Italian Greyhound")

14 a=1 b=2 c=Italian Greyhound

15 NIL

16 *

In this example, the optional argument bwas not given a default value so if unspecified it will default
to nil. The optional argument c is given a default value of 123.

We have already seen the use of keyword arguments in built-in Lisp functions. Here is an example
of how to specify key word arguments in your functions:

Defining Lisp Functions 45

1 * (defun test (a &key b c)

2 (format t "a=~A b=~A c=~A~%" a b c))

3 TEST

4 * (test 1)

5 a=1 b=NIL c=NIL

6 NIL

7 * (test 1 :c 3.14159)

8 a=1 b=NIL c=3.14159

9 NIL

10 * (test "cat" :b "dog")

11 a=cat b=dog c=NIL

12 NIL

13 *

Using Lambda Forms

It is often useful to define unnamed functions. We can define an unnamed function using lambda;
for example, let’s look at the example file src/lambda1.lisp. But first, we will introduce the Common
Lisp function funcall that takes one or more arguments; the first argument is a function and any
remaining arguments are passed to the function bound to the first argument. For example:

1 * (funcall 'print 'cat)

2 CAT

3 CAT

4 * (funcall '+ 1 2)

5 3

6 * (funcall #'- 2 3)

7 -1

8 *

In the first two calls to funcall here, we simply quote the function name that we want to call. In
the third example, we use a better notation by quoting with #’. We use the #’ characters to quote a
function name.

Consider the following repl listing where we will look at a primary difference between quoting a
symbol using ‘ and with #’:

Defining Lisp Functions 46

1 $ ccl

2 Clozure Common Lisp Version 1.12 DarwinX8664

3 ? 'barfoo531

4 BARFOO531

5 ? (apropos "barfoo")

6 BARFOO531

7 ? #'bar987

8 > Error: Undefined function: BAR987

On line three we create a new symbol BARFOO531 that is interned as you can see from looking
at all interned symbols containing the string “barfoo”. Line 7 throws an error because #’ does not
intern a new symbol.

Here is the example file src/lambda1.lisp:

1 (defun test ()

2 (let ((my-func

3 (lambda (x) (+ x 1))))

4 (funcall my-func 1)))

Here, we define a function using lambda and set the value of the local variable my-func to the
unnamed function’s value. Here is output from the function test:

1 * (test)

2 2

3

4 *

The ability to use functions as data is surprisingly useful. For now, we will look at a simple example:

1 * (defvar f1 #'(lambda (x) (+ x 1)))

2

3 F1

4 * (funcall f1 100)

5

6 101

7 * (funcall #'print 100)

8

9 100

10 100

Notice that the second call to function testfn prints “100” twice: the first time as a side effect of
calling the function print and the second time as the returned value of testfn (the function print
returns what it is printing as its value).

Defining Lisp Functions 47

Using Recursion

Later, we will see how to use special Common Lisp macros for programming repetitive loops. In this
section, we will use recursion for both coding simple loops and as an effective way to solve a variety
of problems that can be expressed naturally using recursion.

As usual, the example programs for this section are found in the src directory. In the file
src/recursion1.lisp, we see our first example of recursion:

1 ;; a simple loop using recursion

2

3 (defun recursion1 (value)

4 (format t "entering recursion1(~A)~\%" value)

5 (if (< value 5)

6 (recursion1 (1+ value))))

This example is simple, but it is useful for discussing a few points. First, notice how the function
recursion1 calls itself with an argument value of one greater than its own input argument only if
the input argument “value” is less than 5. This test keeps the function from getting in an infinite
loop. Here is some sample output:

1 * (load "recursion1.lisp")

2 ;; Loading file recursion1.lisp ...

3 ;; Loading of file recursion1.lisp is finished.

4 T

5 * (recursion1 0)

6 entering recursion1(0)

7 entering recursion1(1)

8 entering recursion1(2)

9 entering recursion1(3)

10 entering recursion1(4)

11 entering recursion1(5)

12 NIL

13 * (recursion1 -3)

14 entering recursion1(-3)

15 entering recursion1(-2)

16 entering recursion1(-1)

17 entering recursion1(0)

18 entering recursion1(1)

19 entering recursion1(2)

20 entering recursion1(3)

21 entering recursion1(4)

Defining Lisp Functions 48

22 entering recursion1(5)

23 NIL

24 * (recursion1 20)

25 entering recursion1(20)

26 NIL

27 *

Why did the call on line 24 not loop via recursion? Because the input argument is not less than 5, no
recursion occurs.

Closures

We have seen that functions can take other functions as arguments and return new functions as
values. A function that references an outer lexically scoped variable is called a closure. The example
file src/closure1.lisp contains a simple example:

1 (let* ((fortunes

2 '("You will become a great Lisp Programmer"

3 "The force will not be with you"

4 "Take time for meditation"))

5 (len (length fortunes))

6 (index 0))

7 (defun fortune ()

8 (let ((new-fortune (nth index fortunes)))

9 (setq index (1+ index))

10 (if (>= index len) (setq index 0))

11 new-fortune)))

Here the function fortune is defined inside a let form. Because the local variable fortunes is
referenced inside the function fortune, the variable fortunes exists after the let form is evaluated. It
is important to understand that usually a local variable defined inside a let form “goes out of scope”
and can no longer be referenced after the let form is evaluated.

However, in this example, there is no way to access the contents of the variable fortunes except by
calling the function fortune. At a minimum, closures are a great way to hide variables. Here is some
output from loading the src/closure1.lisp file and calling the function fortune several times:

Defining Lisp Functions 49

1 * (load "closure1.lisp")

2 ;; Loading file closure1.lisp ...

3 ;; Loading of file closure1.lisp is finished.

4 T

5 * (fortune)

6 "You will become a great Lisp Programmer"

7 * (fortune)

8 "The force will not be with you"

9 * (fortune)

10 "Take time for meditation"

11 * (fortune)

12 "You will become a great Lisp Programmer"

13 *

Using the Function eval

In Lisp languages we often say that code is data. The function eval can be used to execute code that
is stored as Lisp data. Let’s look at an example:

1 $ ccl

2 Clozure Common Lisp Version 1.12 DarwinX8664

3 ? '(+ 1 2.2)

4 (+ 1 2.2)

5 ? (eval '(+ 1 2.2))

6 3.2

7 ? (eval '(defun foo2 (x) (+ x x)))

8 FOO2

9 ? (foo2 4)

10 8

I leave it up to you, dear reader, how often you are motivated to use eval. In forty years of using
Lisp languages my principle use of eval has been in modifying the standard version of the Ops5
programming language for production systems²⁵ to support things like multiple data worlds and
new actions to spawn off new data worlds and to remove them. Ops5 works by finding common
expressions in a set of production rules (also referred to as “expert systems”) and factoring them into
a network (a Rete network if you want to look it up) with common expressions in rules stored in
just a single place. eval is used a lot in Ops5 and I used it for my extensions to Ops5.

²⁵https://github.com/sharplispers/ops5

https://github.com/sharplispers/ops5
https://github.com/sharplispers/ops5
https://github.com/sharplispers/ops5

Defining Common Lisp Macros
We saw in the last chapter how the Lisp function eval could be used to evaluate arbitrary Lisp code
stored in lists. Because eval is inefficient, a better way to generate Lisp code automatically is to define
macro expressions that are expanded inline when they are used. In most Common Lisp systems,
using eval requires the Lisp compiler to compile a form on-the-fly which is not very efficient. Some
Lisp implementations use an interpreter for eval which is likely to be faster but might lead to obscure
bugs if the interpreter and compiled code do not function identically.

The ability to add functionality and syntax to the Common Lisp language, to in effect extend the
language as needed, is truly a super power of languages like Common Lisp and Scheme.

Example Macro

The file src/macro1.lisp contains both a simple macro and a function that uses the macro. This
macro example is a bit contrived since it could be just a function definition, but it does show the
process of creating and using a macro. We are using the gensym function to define a new unique
symbol to reference a temporary variable:

1 ;; first simple macro example:

2

3 (defmacro double-list (a-list)

4 (let ((ret (gensym)))

5 `(let ((,ret nil))

6 (dolist (x ,a-list)

7 (setq ,ret (append ,ret (list x x))))

8 ,ret)))

9

10 ;; use the macro:

11

12 (defun test (x)

13 (double-list x))

The backquote character seen at the beginning of line 5 is used to quote a list in a special way:
nothing in the list is evaluated during macro expansion unless it is immediately preceded by a
comma character. In this case, we specify ,a-list because we want the value of the macro’s argument
a-list to be substituted into the specially quoted list. We will look at dolist in some detail in the next
chapter but for now it is sufficient to understand that dolist is used to iterate through the top-level
elements of a list, for example:

Defining Common Lisp Macros 51

1 * (dolist (x '("the" "cat" "bit" "the" "rat"))

2 (print x))

3 "the"

4 "cat"

5 "bit"

6 "the"

7 "rat"

8 NIL

9 *

Notice that the example macro double-list itself uses the macro dolist. It is common to nest macros
in the same way functions can be nested.

Returning to our macro example in the file src/macro1.lisp, we will try the function test that uses
the macro double-list:

1 * (load "macro1.lisp")

2 ;; Loading file macro1.lisp ...

3 ;; Loading of file macro1.lisp is finished.

4 T

5 * (test '(1 2 3))

6 (1 1 2 2 3 3)

7 *

Using the Splicing Operator

Another similar example is in the file src/macro2.lisp:

1 ;; another macro example that uses ,@:

2

3 (defmacro double-args (&rest args)

4 `(let ((ret nil))

5 (dolist (x ,@args)

6 (setq ret (append ret (list x x))))

7 ret))

8

9 ;; use the macro:

10

11 (defun test (&rest x)

12 (double-args x))

Here, the splicing operator ,@ is used to substitute in the list args in the macro double-args.

Defining Common Lisp Macros 52

Using macroexpand-1

The functionmacroexpand-1 is used to transformmacros with arguments into new Lisp expressions.
For example:

1 * (defmacro double (a-number)

2 (list '+ a-number a-number))

3 DOUBLE

4 * (macroexpand-1 '(double n))

5 (+ N N) ;

6 T

7 *

Writing macros is an effective way to extend the Lisp language because you can control the code
passed to the Common Lisp compiler. In both macro example files, when the function test was
defined, the macro expansion is done before the compiler processes the code. We will see in the next
chapter several useful macros included in Common Lisp.

We have only “scratched the surface” looking at macros; the interested reader is encouraged to
search the web using, for example, “Common Lisp macros.” There are two books in particular that
I recommend that take a deep dive into Common Lisp macros: Paul Graham’s “On Lisp” and Doug
Hoyte’s “Let Over Lambda.” Both are deep books and will change the way you experience software
development. A good plan of study is spending a year absorbing “On Lisp” before tackling “Let Over
Lambda.”

Using Common Lisp Loop Macros
In this chapter, we will discuss several useful macros for performing iteration (we saw how to use
recursion for iteration in Chapter 2):

• dolist – a simple way to process the elements of a list
• dotimes – a simple way to iterate with an integer valued loop variable
• do – the most general looping macro
• loop – a complex looping macro that I almost never use in my own code because it does not
look “Lisp like.” I don’t use the loop macro in this book. Many programmers do like the loop
macro so you are likely to see it when reading other people’s code.

dolist

We saw a quick example of dolist in the last chapter. The arguments of the dolist macro are:

(dolist (a-variable a-list [optional-result-value]) ...body...)

Usually, the dolist macro returns nil as its value, but we can add a third optional argument which
will be returned as the generated expression’s value; for example:

1 * (dolist (a '(1 2) 'done) (print a))

2 1

3 2

4 DONE

5 * (dolist (a '(1 2)) (print a))

6 1

7 2

8 NIL

9 *

The first argument to the dolist macro is a local lexically scoped variable. Once the code generated
by the dolist macro finishes executing, this variable is undefined.

dotimes

The dotimesmacro is used when you need a loop with an integer loop index. The arguments of the
dotimes macro are:

Using Common Lisp Loop Macros 54

(dotimes (an-index-variable max-index-plus-one [optional-result-value])

...body...)

Usually, the dotimes macro returns nil as its value, but we can add a third optional argument that
will be returned as the generated expression’s value; for example:

1 * (dotimes (i 3 "all-done-with-test-dotimes-loop") (print i))

2

3 0

4 1

5 2

6 "all-done-with-test-dotimes-loop"

7 *

As with the dolistmacro, you will often use a let form inside a dotimesmacro to declare additional
temporary (lexical) variables.

do

The do macro is more general purpose than either dotimes or dolist but it is more complicated to
use. Here is the general form for using the do looping macro:

(do ((variable-1 variable-1-init-value variable-1-update-expression)

(variable-2 variable-2-init-value variable-2-update-expression)

.

.

(variable-N variable-N-init-value variable-N-update-expression))

(loop-termination-test loop-return-value)

optional-variable-declarations

expressions-to-be-executed-inside-the-loop)

There is a similar macro do* that is analogous to let* in that loop variable values can depend on the
values or previously declared loop variable values.

As a simple example, here is a loop to print out the integers from 0 to 3. This example is in the file
src/do1.lisp:

;; example do macro use

Using Common Lisp Loop Macros 55

(do ((i 0 (1+ i)))

((> i 3) "value-of-do-loop")

(print i))

In this example, we only declare one loop variable so we might as well as used the simpler dotimes
macro.

Here we load the file src/do1.lisp:

1 * (load "do1.lisp")

2 ;; Loading file do1.lisp ...

3 0

4 1

5 2

6 3

7 ;; Loading of file do1.lisp is finished.

8 T

9 *

You will notice that we do not see the return value of the do loop (i.e., the string “value-of-do-loop”)
because the top-level form that we are evaluating is a call to the function load; we do see the return
value of load printed. If we had manually typed this example loop in the Lisp listener, then you
would see the final value value-of-do-loop printed.

Using the loop Special Form to Iterate Over Vectors or
Arrays

We previousely used dolist to iterate over elements in lists. For efficiency we will often use vectors
(one dimensional arrays) and we can use loop to similarly handle vectors:

(loop for td across testdata

do

(print td))))

where testdata is a one dimensional array (a vector) and inside the do block the local variable td is
assigned to each element in the vector.

Common Lisp Package System
In later chapters we will see two complete applications that are defined as Quicklisp projects: the
chapter on the Knowledge Graph Creator and the chapter on the Knowledge Graph Navigator.
Another example for setting up a Quicklib project can be seen in the chapter Plotting Data.

While these later chapters provide practical examples for bundling up your own projects in packages,
the material here will give you general background information that you should know.

In the simple examples that we have seen so far, all newly created Lisp symbols have been placed in
the default package. You can always check the current package by evaluating the expression package:

> *package*

#<PACKAGE COMMON-LISP-USER>

>

As we will use in the following example, the package :cl is an alias for :common-lisp-user.

We will define a new package :my-new-package and two functions foo1 and foo2 inside the
package. Externally to this package, assuming that it is loaded, we can access foo2 using my-new-
package:foo2. foo1 is not exported so it cannot be accessed this way. However, we can always start
a symbol name with a package name and two colon characters if we want to use a symbol defined
in another package so we can use my-new-package::foo1. Using :: allows us access to symbols not
explicitly exported.

When I leave package :my-new-package in line 22 and return to package :cl, and try to access
my-new-package:foo1 notice that an error is thrown.

On line 3 we define the alias :p1 for the package :my-new-package and we use this alias in line
44. The main point of the following example is that we define two functions in a package but only
export one of these functions. By default the other function is not visible outside of the new package.

1 * (defpackage "MY-NEW-PACKAGE"

2 (:use :cl)

3 (:nicknames "P1")

4 (:export :FOO2))

5

6 #<PACKAGE "MY-NEW-PACKAGE">

7 * (in-package my-new-package)

8

9 #<PACKAGE "MY-NEW-PACKAGE">

10 * (defun foo1 () "foo1")

Common Lisp Package System 57

11

12 FOO1

13 * (defun foo2 () "foo2")

14

15 FOO2

16 * (foo1)

17

18 "foo1"

19 * (foo2)

20

21 "foo2"

22 * (in-package :cl)

23

24 #<PACKAGE "COMMON-LISP">

25 * (my-new-package:foo2)

26

27 "foo2"

28 * (my-new-package:foo1)

29

30 debugger invoked on a SB-INT:SIMPLE-READER-PACKAGE-ERROR in thread

31 #<THREAD "main thread" RUNNING {1001F1ECE3}>:

32 The symbol "FOO1" is not external in the MY-NEW-PACKAGE package.

33

34 Stream: #<SYNONYM-STREAM :SYMBOL SB-SYS:*STDIN* {100001C343}>

35

36 Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

37

38 restarts (invokable by number or by possibly-abbreviated name):

39 0: [CONTINUE] Use symbol anyway.

40 1: [ABORT] Exit debugger, returning to top level.

41

42 * 1

43

44 * (p1:foo2)

45

46 "foo2"

Since we specified a nickname in the defpackage expression, Common Lisp allows the use of the
nickname (in this case P1) in calling function foo2 that is exported from package :my-new-package.

Near the end of the last example, we switched back to the default package COMMON-LISP-USER
so we had to specify the package name for the function foo2 on line 42.

What about the error on line 28 where my-new-package:foo1 is undefined because the function

Common Lisp Package System 58

foo1 is not exported (see line 4)? It turns out that you can easily use symbols not exported from a
package by using :: instead of a single :. Here, this would be defined: (my-new-package::foo1).

When you are writing very large Common Lisp programs, it is useful to be able to break up
the program into different modules and place each module and all its required data in different
name spaces by creating new packages. Remember that all symbols, including variables, generated
symbols, CLOS methods, functions, and macros are in some package.

For small packages I sometimes put a defpackage expression at the top of the file immediately
followed by an in-package expression to switch to the new package. In the general case, please
properly use separate project and asdf files as I do in the later chapters Knowledge Graph Creator
and Knowledge Graph Navigator.

Input and Output
We will see that the input and output of Lisp data is handled using streams. Streams are powerful
abstractions that support common libraries of functions for writing to the terminal, files, sockets,
and to strings.

In all cases, if an input or output function is called without specifying a stream, the default for
input stream is *standard-input* and the default for output stream is *standard-output*. These
default streams are connected to the Lisp listener that we discussed in Chapter 2. In the later chapter
Knowledge Graph Navigator that supports a user interface, we will again use output streams bound
to different scrolling output areas of the application window to write color-hilighted text. The stream
formalism is general purpose, covering many common I/O use cases.

The Lisp read and read-line Functions

The function read is used to read one Lisp expression. Function read stops reading after reading
one expression and ignores new line characters. We will look at a simple example of reading a file
test.dat using the example Lisp program in the file read-test-1.lisp. Both of these files can be found
in the directory src/code_snippets_for_book that came bundled with this web book. Start your
Lisp program in the src directory. The contents of the file test.dat is:

1 1 2 3

2 4 "the cat bit the rat"

3 read with-open-file

In the function read-test-1, we use the macro with-open-file to read from a file. To write to a file
(which we will do later), we can use the keyword arguments :direction :output. The first argument
to the macrowith-open-file is a symbol that is bound to a newly created input stream (or an output
stream if we are writing a file); this symbol can then be used in calling any function that expects a
stream argument.

Notice that we call the function read with three arguments: an input stream, a flag to indicate if
an error should be thrown if there is an I/O error (e.g., reaching the end of a file), and the third
argument is the value that function read should return if the end of the file (or stream) is reached.
When calling read with these three arguments, either the next expression from the file test.dat will
be returned, or the value nil will be returned when the end of the file is reached. If we do reach the
end of the file, the local variable x will be assigned the value nil and the function return will break
out of the dotimes loop. One big advantage of using the macrowith-open-file over using the open
function (which we will not cover) is that the file stream is automatically closed when leaving the
code generated by the with-open-file macro. The contents of file read-test-1.lisp is:

Input and Output 60

(defun read-test-1 ()

"read a maximum of 1000 expressions from the file 'test.dat'"

(with-open-file

(input-stream "test.dat" :direction :input)

(dotimes (i 1000)

(let ((x (read input-stream nil nil)))

(if (null x) (return)) ;; break out of the 'dotimes' loop

(format t "next expression in file: ~S~%" x)))))

Here is the output that you will see if you load the file read-test-1.lisp and execute the expression
(read-test-1):

1 * (load "read-test-1.lisp")

2 ;; Loading file read-test-1.lisp ...

3 ;; Loading of file read-test-1.lisp is finished.

4 T

5 * (read-test-1)

6 next expression in file: 1

7 next expression in file: 2

8 next expression in file: 3

9 next expression in file: 4

10 next expression in file: "the cat bit the rat"

11 NIL

Note: the string “the cat bit the rat” prints as a string (with quotes) because we used a ∼S instead of
a ∼A in the format string in the call to function format.

In this last example, we passed the file name as a string to the macro with-open-file. This is not
generally portable across all operating systems. Instead, we could have created a pathname object
and passed that instead. The pathname function can take eight different keyword arguments, but
we will use only the twomost common in the example in the file read-test-2.lisp in the src directory.
The following listing shows just the differences between this example and the last:

(let ((a-path-name

(make-pathname :directory "testdata"

:name "test.dat")))

(with-open-file

(input-stream a-path-name :direction :input)

Here, we are specifying that we want to use the file test.dat in the subdirectory testdata. Note: I
almost never use pathnames. Instead, I specify files using a string and the character / as a directory
delimiter. I find this to be portable for the Macintosh, Windows, and Linux operating systems using
all Common Lisp implementations.

Input and Output 61

The file readline-test.lisp is identical to the file read-test-1.lisp except that we call function
readline instead of the function read and we change the output format message to indicate that
an entire line of text has been read

(defun readline-test ()

"read a maximum of 1000 expressions from the file 'test.dat'"

(with-open-file

(input-stream "test.dat" :direction :input)

(dotimes (i 1000)

(let ((x (read-line input-stream nil nil)))

(if (null x) (return)) ;; break out of the 'dotimes' loop

(format t "next line in file: ~S~%" x)))))

When we execute the expression (readline-test), notice that the string contained in the second line
of the input file has the quote characters escaped:

1 * (load "readline-test.lisp")

2 ;; Loading file readline-test.lisp ...

3 ;; Loading of file readline-test.lisp is finished.

4 T

5 * (readline-test)

6 next line in file: "1 2 3"

7 next line in file: "4 \"the cat bit the rat\""

8 NIL

9 *

We can also create an input stream from the contents of a string. The file read-from-string-test.lisp
is very similar to the example file read-test-1.lisp except that we use the macro with-input-from-
string (notice how I escaped the quote characters used inside the test string):

(defun read-from-string-test ()

"read a maximum of 1000 expressions from a string"

(let ((str "1 2 \"My parrot is named Brady.\" (11 22)"))

(with-input-from-string

(input-stream str)

(dotimes (i 1000)

(let ((x (read input-stream nil nil)))

(if (null x) (return)) ;; break out of the 'dotimes' loop

(format t "next expression in string: ~S~%" x))))))

We see the following output when we load the file read-from-string-test.lisp:

Input and Output 62

1 * (load "read-from-string-test.lisp")

2 ;; Loading file read-from-string-test.lisp ...

3 ;; Loading of file read-from-string-test.lisp is finished.

4 T

5 * (read-from-string-test)

6 next expression in string: 1

7 next expression in string: 2

8 next expression in string: "My parrot is named Brady."

9 next expression in string: (11 22)

10 NIL

11 *

We have seen how the stream abstraction is useful for allowing the same operations on a variety
of stream data. In the next section, we will see that this generality also applies to the Lisp printing
functions.

Lisp Printing Functions

All of the printing functions that we will look at in this section take an optional last argument that
is an output stream. The exception is the format function that can take a stream value as its first
argument (or t to indicate *standard-output*, or a nil value to indicate that format should return
a string value).

Here is an example of specifying the optional stream argument:

1 * (print "testing")

2

3 "testing"

4 "testing"

5 * (print "testing" *standard-output*)

6

7 "testing"

8 "testing"

9 *

The function print prints Lisp objects so that they can be read back using function read. The
corresponding function princ is used to print for “human consumption”. For example:

Input and Output 63

1 * (print "testing")

2

3 "testing"

4 "testing"

5 * (princ "testing")

6 testing

7 "testing"

8 *

Both print and princ return their first argument as their return value, which you see in the previous
output. Notice that princ also does not print a new line character, so princ is often used with terpri
(which also takes an optional stream argument).

We have also seen many examples in this book of using the format function. Here is a different use
of format, building a string by specifying the value nil for the first argument:

1 * (let ((l1 '(1 2))

2 (x 3.14159))

3 (format nil "~A~A" l1 x))

4 "(1 2)3.14159"

5 *

We have not yet seen an example of writing to a file. Here, we will use the with-open-file macro
with options to write a file and to delete any existing file with the same name:

(with-open-file (out-stream "test1.dat"

:direction :output

:if-exists :supersede)

(print "the cat ran down the road" out-stream)

(format out-stream "1 + 2 is: ~A~%" (+ 1 2))

(princ "Stoking!!" out-stream)

(terpri out-stream))

Here is the result of evaluating this expression (i.e., the contents of the newly created file test1.dat
in the src directory):

1 % cat test1.dat

2

3 "the cat ran down the road" 1 + 2 is: 3

4 Stoking!!

Notice that print generates a new line character before printing its argument.

Plotting Data
Wewill use Zach Beane’s vecto library²⁶ for plotting data with the results written to files. Ideally we
would like to have interactive plotting capability but for the purposes of this book I need to support
the combinations of all Common Lisp implementations on multiple operating systems. Interactive
plotting libraries are usually implementation and OS dependent. We will use the plotlib example
we develop in the later chapter Backpropagation Neural Networks.

Implementing the Library

The examples here are all contained in the directory src/plotlib and is packaged as a Quicklisp
loadable library. This library will be used in later chapters.

When I work on my macOS laptop, I leave the output graphics file open in the Preview App and
whenever I rerun a program producing graphics in the REPL, making the preview App window
active refreshes the graphics display.

PNG file generated by running plotlib test

The following listing shows the file plotlib.lisp that is a simple wrapper for the vecto Common Lisp
plotting library. Please note that I only implemented wrappers for vecto functionality that I need
for later examples in this book, so the following code is not particularly general but should be easy
enough for you to extend for the specific needs of your projects.

²⁶http://xach.com/lisp/vecto/

http://xach.com/lisp/vecto/
http://xach.com/lisp/vecto/

Plotting Data 65

1 ;; Misc. plotting examples using the vecto library

2

3 (ql:quickload :vecto) ;; Zach Beane's plotting library

4 (defpackage #:plotlib

5 (:use #:cl #:vecto))

6

7 (in-package #:plotlib)

8

9 ;; the coordinate (0,0) is the lower left corner of the plotting area.

10 ;; Increasing the y coordinate is "up page" and increasing x is "to the right"

11

12 ;; fills a rectangle with a gray-scale value

13 (defun plot-fill-rect (x y width height gscale) ; 0 < gscale < 1

14 (set-rgb-fill gscale gscale gscale)

15 (rectangle x y width height)

16 (fill-path))

17

18 ;; plots a frame rectangle

19 (defun plot-frame-rect (x y width height)

20 (set-line-width 1)

21 (set-rgb-fill 1 1 1)

22 (rectangle x y width height)

23 (stroke))

24

25 (defun plot-line(x1 y1 x2 y2)

26 (set-line-width 1)

27 (set-rgb-fill 0 0 0)

28 (move-to x1 y1)

29 (line-to x2 y2)

30 (stroke))

31

32 (defun plot-string(x y str)

33 (let ((font (get-font "OpenSans-Regular.ttf")))

34 (set-font font 15)

35 (set-rgb-fill 0 0 0)

36 (draw-string x y str)))

37

38 (defun plot-string-bold(x y str)

39 (let ((font (get-font "OpenSans-Bold.ttf")))

40 (set-font font 15)

41 (set-rgb-fill 0 0 0)

42 (draw-string x y str)))

43

Plotting Data 66

44

45 (defun test-plotlib (file)

46 (with-canvas (:width 90 :height 90)

47 (plot-fill-rect 5 10 15 30 0.2) ; black

48 (plot-fill-rect 25 30 30 7 0.7) ; medium gray

49 (plot-frame-rect 10 50 30 7)

50 (plot-line 90 5 10 5)

51 (plot-string 10 65 "test 1 2 3")

52 (plot-string-bold 10 78 "Hello")

53 (save-png file)))

54

55 ;;(test-plotlib "test-plotlib.png")

This plot library is used in later examples in the chapters on search, backpropagation neural networks
and Hopfield neural networks. I prefer using implementation and operating specific plotting libraires
for generating interactive plots, but the advantage of writing plot data to a file using the vecto library
is that the code is portable across operating systems and Common Lisp implementations.

Packaging as a Quicklisp Project

The two files src/plotlib/plotlib.asd src/plotlib/package.lisp configure the library. The file pack-
age.lisp defines the required library vecto and lists the functions that are publicly exported from
the library:

(defpackage #:plotlib

(:use #:cl #:vecto)

(:export save-png plot-fill-rect plot-frame-rect

plot-size-rect plot-line plot-string plot-string-bold

pen-width))

To run the test function provided with this library you load the library and preface exported function
names with the package name plotlib: as in this example:

(ql:quickload "plotlib")

(plotlib::test-plotlib "test-plotlib.png")

In addition to a package.lisp file we also use a file with the extension .asd

Plotting Data 67

(asdf:defsystem #:plotlib

:description "Describe plotlib here"

:author "mark.watson@gmail.com"

:license "Apache 2"

:depends-on (#:vecto)

:components ((:file "package")

(:file "plotlib")))

If you have specified a dependency that is not already downloaded to your computer, Quicklisp will
install the dependency for you.

Common Lisp Object System - CLOS
CLOS was the first ANSI standardized object oriented programming facility. While I do not use
classes and objects as often in my Common Lisp programs as I do when using Java and Smalltalk,
it is difficult to imagine a Common Lisp program of any size that did not define and use at least a
few CLOS classes.

The example program for this chapter in the file src/loving_snippets/HTMLstream.lisp. I used this
CLOS class about ten years ago in a demo for my commercial natural language processing product
to automatically generate demo web pages.

We are going to start our discussion of CLOS somewhat backwards by first looking at a short test
function that uses the HTMLstream class. Once we see how to use this example CLOS class, we
will introduce a small subset of CLOS by discussing in some detail the implementation of the
HTMLstream class and finally, at the end of the chapter, see a few more CLOS programming
techniques. This book only provides a brief introduction to CLOS; the interested reader is encouraged
to do a web search for “CLOS tutorial”.

Themacros and functions defined to implement CLOS are a standard part of Common Lisp. Common
Lisp supports generic functions, that is, different functionswith the same name that are distinguished
by different argument types.

Example of Using a CLOS Class

The file src/loving_snippets/HTMLstream.lisp contains a short test program at the end of the file:

1 (defun test (&aux x)

2 (setq x (make-instance 'HTMLstream))

3 (set-header x "test page")

4 (add-element x "test text - this could be any element")

5 (add-table

6 x

7 '(("Key phrase" "Ranking value")

8 ("this is a test" 3.3)))

9 (get-html-string x))

The generic function make-instance takes the following arguments:

Common Lisp Object System - CLOS 69

1 make-instance class-name &rest initial-arguments &key ...

There are four generic functions used in the function test:

• set-header - required to initialize class and also defines the page title
• add-element - used to insert a string that defines any type of HTML element
• add-table - takes a list of lists and uses the list data to construct an HTML table
• get-html-string - closes the stream and returns all generated HTML data as a string

The first thing to notice in the function test is that the first argument for calling each of these generic
functions is an instance of the classHTMLstream. You are free to also define a function, for example,
add-element that does not take an instance of the classHTMLstream as the first function argument
and calls to add-element will be routed correctly to the correct function definition.

We will see that the macro defmethod acts similarly to defun except that it also allows us to define
many methods (i.e., functions for a class) with the same function name that are differentiated by
different argument types and possibly different numbers of arguments.

Implementation of the HTMLstream Class

The class HTMLstream is very simple and will serve as a reasonable introduction to CLOS
programming. Later we will see more complicated class examples that use multiple inheritance.
Still, this is a good example because the code is simple and the author uses this class frequently
(some proof that it is useful!). The code fragments listed in this section are all contained in the file
src/loving_snippets/HTMLstream.lisp. We start defining a new class using the macro defclass
that takes the following arguments:

1 defclass class-name list-of-super-classes

2 list-of-slot-specifications class-specifications

The class definition for HTMLstream is fairly simple:

1 (defclass HTMLstream ()

2 ((out :accessor out))

3 (:documentation "Provide HTML generation services"))

Here, the class name is HTMLstream, the list of super classes is an empty list (), the list of slot
specifications contains only one slot specification for the slot named out and there is only one class
specification: a documentation string. Slots are like instance variables in languages like Java and
Smalltalk. Most CLOS classes inherit from at least one super class but we will wait until the next
section to see examples of inheritance. There is only one slot (or instance variable) and we define

Common Lisp Object System - CLOS 70

an accessor variable with the same name as the slot name. This is a personal preference of mine to
name read/write accessor variables with the same name as the slot.

The method set-header initializes the string output stream used internally by an instance of this
class. This method uses convenience macro with-accessors that binds a local set of local variable
to one or more class slot accessors. We will list the entire method then discuss it:

1 (defmethod set-header ((ho HTMLstream) title)

2 (with-accessors

3 ((out out))

4 ho

5 (setf out (make-string-output-stream))

6 (princ "<HTML><head><title>" out)

7 (princ title out)

8 (princ "</title></head><BODY>" out)

9 (terpri out)))

The first interesting thing to notice about the defmethod is the argument list: there are two
arguments ho and title but we are constraining the argument ho to be either a member of the
class HTMLstream or a subclass of HTMLstream. Now, it makes sense that since we are passing
an instance of the class HTMLstream to this generic function (or method – I use the terms “generic
function” and “method” interchangeably) that we would want access to the slot defined for this class.
The convenience macrowith-accessors is exactly what we need to get read and write access to the
slot inside a generic function (or method) for this class. In the term ((out out)), the first out is local
variable bound to the value of the slot named out for this instance ho of class HTMLstream. Inside
the with-accessors macro, we can now use setf to set the slot value to a new string output stream.
Note: we have not covered the Common Lisp type string-output-stream yet in this book, but we
will explain its use on the next page.

By the time a call to the method set-header (with arguments of an HTMLstream instance and a
string title) finishes, the instance has its slot set to a new string-output-stream and HTML header
information is written to the newly created string output stream. Note: this string output stream is
now available for use by any class methods called after set-header.

There are several methods defined in the file src/loving_snippets/HTMLstream.lisp, but we will
look at just four of them: add-H1, add-element, add-table, and get-html-string. The remaining
methods are very similar to add-H1 and the reader can read the code in the source file.

As in the method set-header, the method add-H1 uses the macro with-accessors to access the stream
output stream slot as a local variable out. In add-H1 we use the function princ that we discussed in
Chapter on Input and Output to write HTML text to the string output stream:

Common Lisp Object System - CLOS 71

1 (defmethod add-H1 ((ho HTMLstream) some-text)

2 (with-accessors

3 ((out out))

4 ho

5 (princ "<H1>" out)

6 (princ some-text out)

7 (princ "</H1>" out)

8 (terpri out)))

The method add-element is very similar to add-H1 except the string passed as the second argument
element is written directly to the stream output stream slot:

1 (defmethod add-element ((ho HTMLstream) element)

2 (with-accessors

3 ((out out))

4 ho

5 (princ element out)

6 (terpri out)))

The method add-table converts a list of lists into an HTML table. The Common Lisp function princ-
to-string is a useful utility function for writing the value of any variable to a string. The functions
string-left-trim and string-right-trim are string utility functions that take two arguments: a list of
characters and a string and respectively remove these characters from either the left or right side of
a string. Note: another similar function that takes the same arguments is string-trim that removes
characters from both the front (left) and end (right) of a string. All three of these functions do not
modify the second string argument; they return a new string value. Here is the definition of the
add-table method:

1 (defmethod add-table ((ho HTMLstream) table-data)

2 (with-accessors

3 ((out out))

4 ho

5 (princ "<TABLE BORDER=\"1\" WIDTH=\"100\%\">" out)

6 (dolist (d table-data)

7 (terpri out)

8 (princ " <TR>" out)

9 (terpri out)

10 (dolist (w d)

11 (princ " <TD>" out)

12 (let ((str (princ-to-string w)))

13 (setq str (string-left-trim '(#\() str))

14 (setq str (string-right-trim '(#\)) str))

Common Lisp Object System - CLOS 72

15 (princ str out))

16 (princ "</TD>" out)

17 (terpri out))

18 (princ " </TR>" out)

19 (terpri out))

20 (princ "</TABLE>" out)

21 (terpri out)))

The method get-html-string gets the string stored in the string output stream slot by using the
function get-output-stream-string:

1 (defmethod get-html-string ((ho HTMLstream))

2 (with-accessors

3 ((out out))

4 ho

5 (princ "</BODY></HTML>" out)

6 (terpri out)

7 (get-output-stream-string out)))

CLOS is a rich framework for object oriented programming, providing a superset of features found
in languages like Java, Ruby, and Smalltalk. I have barely scratched the surface in this short CLOS
example for generating HTML. Later in the book, whenever you see calls to make-instance, that
lets you know we are using CLOS even if I don’t specifically mention CLOS in the examples.

Using Defstruct or CLOS

You might notice from my own code that I use Common Lisp defstruct macros to define data
structures more often than I use CLOS. The defclass macro used to create CLOS classes are much
more flexible but for simple data structures I find that using defstruct is much more concise. In the
simplest case, a defstruct can just be a name of the new type followed by slot names. For each slot
like my-slot-1 accessor functions are generated automatically. Here is a simple example:

1 $ ccl

2 Clozure Common Lisp Version 1.12 DarwinX8664

3 ? (defstruct struct1 s1 s2)

4 STRUCT1

5 ? (make-struct1 :s1 1 :s2 2)

6 #S(STRUCT1 :S1 1 :S2 2)

7 ? (struct1-s1 (make-struct1 :s1 1 :s2 2))

8 1

Common Lisp Object System - CLOS 73

We defined a struct struct1 on line3with two slots names s1 and s2, show the use of the automatically
generated constructormake-struct1 on line 5, and one of the two automatically generated accessor
functions struct1-s1 on line 7. The names of accessor functions are formed with the structure name
and the slot name.

Heuristically Guided Search
We represent search space as a graph: nodes and links between the nodes. The following figure
shows the simple graph that we use as an example, finding a route from node n1 to node n11:

Plot of best route using the plotlib utilities

The following example code uses a heuristic for determiningwhich node to try first from any specific
location: move to the node that is closest spatially to the goal node. We see that this heuristic will
not always work to produce the most efficient search but we will still get to the goal node. As an
example in which the heuristic does not work, consider when we start at node n1 in the lower left
corner of the figure. The search algorithm can add nodes n2 and n4 to the nodes to search list and
will search using node n4 first since n4 is closer to the goal node n11 than node n2. In this case,
the search will eventually need to back up trying the path n1 to n2. Despite this example of the
heuristic not working to decrease search time, in general, for large search spaces (i.e., graphs with
many nodes and edges) it can dramatically decrease search time.

The main functionA*search starting in line 5 extends to line 151 because all search utility functions
are nested (lexically scoped) inside the mani function. The actual code for the main function
A*search is in lines 150 and 151.

Heuristically Guided Search 75

The data representing nodes in this implementation is globally scoped (see the definitions on lines
155-165 in the “throw away test code” near the bottom of the file) and we set the property path-list
to store the nodes directy connected to each node (set in function init-path-list in lines 36-52). I
originally wrote this code in 1990 which explains it non-functional style using globally scoped node
variables.

1 ;; Perform a heuristic A* search between the start and goal nodes:

2 ;;

3 ;; Copyright 1990, 2017 by Mark Watson

4

5 (defun A*search (nodes paths start goal &aux possible-paths best)

6

7 (defun Y-coord (x) (truncate (cadr x)))

8 (defun X-coord (x) (truncate (car x)))

9

10 (defun dist-between-points (point1 point2)

11 (let ((x-dif (- (X-coord point2) (X-coord point1)))

12 (y-dif (- (Y-coord point2) (Y-coord point1))))

13 (sqrt (+ (* x-dif x-dif) (* y-dif y-dif)))))

14

15 (setq possible-paths

16 (list

17 (list

18 (dist-between-points

19 (eval start)

20 (eval goal))

21 0

22 (list start))))

23

24 (defun init-network ()

25 (setq paths (init-lengths paths))

26 (init-path-list nodes paths))

27

28 (defun init-lengths (pathlist)

29 (let (new-path-list pathlength path-with-length)

30 (dolist (path pathlist)

31 (setq pathlength (slow-path-length path))

32 (setq path-with-length (append path (list pathlength)))

33 (setq new-path-list (cons path-with-length new-path-list)))

34 new-path-list))

35

36 (defun init-path-list (nodes paths)

37 (dolist (node nodes)

Heuristically Guided Search 76

38 (setf

39 (get node 'path-list)

40 ;; let returns all paths connected to node:

41 (let (path-list)

42 (dolist (path paths)

43 (if (equal node (start-node-name path))

44 (setq path-list

45 (cons (list (end-node-name path)

46 (path-length path))

47 path-list))

48 (if (equal node (end-node-name path))

49 (setq path-list (cons (list (start-node-name path)

50 (path-length path))

51 path-list)))))

52 path-list))))

53

54 (defun slow-path-length (path)

55 (dist-between-points (start-node path) (end-node path)))

56

57 (defun path-length (x) (caddr x))

58

59 (defun start-node (path) (eval (car path)))

60 (defun end-node (path) (eval (cadr path)))

61 (defun start-node-name (x) (car x))

62 (defun end-node-name (x) (cadr x))

63 (defun first-on-path (x) (caddr x))

64 (defun goal-node (x) (car x))

65 (defun distance-to-that-node (x) (cadr x))

66

67 (defun enumerate-children (node goal)

68 (let* ((start-to-lead-node-dist (cadr node)) ;; distance already calculated

69 (path (caddr node))

70 (lead-node (car path)))

71 (if (get-stored-path lead-node goal)

72 (consider-best-path lead-node goal path start-to-lead-node-dist)

73 (consider-all-nodes lead-node goal path start-to-lead-node-dist))))

74

75 (defun consider-best-path (lead-node goal path distance-to-here)

76 (let* (

77 (first-node (get-first-node-in-path lead-node goal))

78 (dist-to-first (+ distance-to-here

79 (get-stored-dist lead-node first-node)))

80 (total-estimate (+ distance-to-here

Heuristically Guided Search 77

81 (get-stored-dist lead-node goal)))

82 (new-path (cons first-node path)))

83 (list (list total-estimate dist-to-first new-path))))

84

85 (defun get-stored-path (start goal)

86 (if (equal start goal)

87 (list start 0)

88 (assoc goal (get start 'path-list))))

89

90 (defun node-not-in-path (node path)

91 (if (null path)

92 t

93 (if (equal node (car path))

94 nil

95 (node-not-in-path node (cdr path)))))

96

97 (defun consider-all-nodes (lead-node goal path start-to-lead-node-dist)

98 (let (dist-to-first total-estimate new-path new-nodes)

99 (dolist (node (collect-linked-nodes lead-node))

100 (if (node-not-in-path node path)

101 (let ()

102 (setq dist-to-first (+ start-to-lead-node-dist

103 (get-stored-dist lead-node node)))

104 (setq total-estimate (+ dist-to-first

105 (dist-between-points

106 (eval node)

107 (eval goal))))

108 (setq new-path (cons node path))

109 (setq new-nodes (cons (list total-estimate

110 dist-to-first

111 new-path)

112 new-nodes)))))

113 new-nodes))

114

115 (defun collect-linked-nodes (node)

116 (let (links)

117 (dolist (link (get node 'path-list))

118 (if (null (first-on-path link))

119 (setq links (cons (goal-node link) links))))

120 links))

121

122 (defun get-stored-dist (node1 node2)

123 (distance-to-that-node (get-stored-path node1 node2)))

Heuristically Guided Search 78

124

125 (defun collect-ascending-search-list-order (a l)

126 (if (null l)

127 (list a)

128 (if (< (car a) (caar l))

129 (cons a l)

130 (cons (car l) (Collect-ascending-search-list-order a (cdr l))))))

131

132 (defun get-first-node-in-path (start goal)

133 (let (first-node)

134 (setq first-node (first-on-path (get-stored-path start goal)))

135 (if first-node first-node goal)))

136

137 (defun a*-helper ()

138 (if possible-paths

139 (let ()

140 (setq best (car possible-paths))

141 (setq possible-paths (cdr possible-paths))

142 (if (equal (first (caddr best)) goal)

143 best

144 (let ()

145 (dolist (child (enumerate-children best goal))

146 (setq possible-paths

147 (collect-ascending-search-list-order

148 child possible-paths)))

149 (a*-helper))))))

150 (init-network)

151 (reverse (caddr (a*-helper))))

152

153 ;; Throw away test code:

154

155 (defvar n1 '(30 201))

156 (defvar n2 '(25 140))

157 (defvar n3 '(55 30))

158 (defvar n4 '(105 190))

159 (defvar n5 '(95 110))

160 (defvar n6 '(140 22))

161 (defvar n7 '(160 150))

162 (defvar n8 '(170 202))

163 (defvar n9 '(189 130))

164 (defvar n10 '(200 55))

165 (defvar n11 '(205 201))

166

Heuristically Guided Search 79

167 (print (A*search

168 '(n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11) ;; nodes

169 '((n1 n2) (n2 n3) (n3 n5) (n3 n6) (n6 n10) ;; paths

170 (n9 n10) (n7 n9) (n1 n4) (n4 n2) (n5 n8)

171 (n8 n4) (n7 n11))

172 'n1 'n11)) ;; starting and goal nodes

The following example in the repl shows the calculation of the path that we saw in the figure of the
graph search space.

1 $ sbcl

2 * (load "astar_search.lisp")

3

4 (N1 N2 N3 N6 N10 N9 N7 N11)

5 T

6 *

There are many types of search: breadth first as we used here, depth first, with heuristics to optimize
search dependent on the type of search space.

Network Programming
Distributed computing is pervasive: you need to look no further than the World Wide Web,
Internet chat, etc. Of course, as a Lisp programmer, you will want to do at least some of your
network programming in Lisp! The previous editions of this book provided low level socket network
programming examples. I decided that for this new edition, I would remove those examples and
instead encourage you to “move further up the food chain” and work at a higher level of abstraction
that makes sense for the projects you will likely be developing. Starting in the 1980s, a lot of my
work entailed low level socket programming for distributed networked applications. As I write this,
it is 2013, and there are better ways to structure distributed applications.

Specifically, since many of the examples later in this book fetch information from the web and linked
data sources, we will start be learning how to use EdiWeitz’s Drakma HTTP client library²⁷. In order
to have a complete client server example we will also look briefly at Edi Weitz’s Hunchentoot web
server²⁸ that uses JSON as a data serialization format. I used to use XML for data serialization but
JSON has many advantages: easier for a human to read and it plays nicely with Javascript code and
some data stores like Postgres (new in versions 9.x), MongoDB, and CouchDB that support JSON as
a native data format.

The code snippets in the first two sections of this chapter are derived from examples in the Drackma
and Hunchentoot documentation.

An introduction to Drakma

Edi Weitz’s Drakma library²⁹ supports fetching data via HTTP requests. As you can see in the
Drakma documentation, you can use this library for authenticated HTTP requests (i.e., allow you
to access web sites that require a login), support HTTP GET and PUT operations, and deal with
cookies. The top level API that we will use is drakma:http-request that returns multiple values. In
the following example, I want only the first three values, and ignore the others like the original URI
that was fetched and an IO stream object. We use the built-in Common Lisp macromultiple-value-
setq:

²⁷http://weitz.de/drakma/
²⁸http://weitz.de/hunchentoot/
²⁹http://weitz.de/drakma/

http://weitz.de/drakma/
http://weitz.de/hunchentoot/
http://weitz.de/hunchentoot/
http://weitz.de/drakma/
http://weitz.de/drakma/
http://weitz.de/hunchentoot/
http://weitz.de/drakma/

Network Programming 81

1 * (ql:quickload :drakma)

2 * (multiple-value-setq

3 (data http-response-code headers)

4 (drakma:http-request "http://markwatson.com"))

I manually formatted the last statement I entered in the last repl listing and I will continue to
manually edit the repl listings in the rest of this book to make them more easily readable.

The following shows some of the data bound to the variables data, http-response-code, and
headers:

1 * data

2

3 "<!DOCTYPE html>

4 <html>

5 <head>

6 <title>Mark Watson: Consultant and Author</title>

The value of http-response-code is 200 which means that there were no errors:

1 * http-response-code

2

3 200

The HTTP response headers will be useful in many applications; for fetching the home page of my
web site the headers are:

1 * headers

2

3 ((:SERVER . "nginx/1.1.19")

4 (:DATE . "Fri, 05 Jul 2013 15:18:27 GMT")

5 (:CONTENT-TYPE . "text/html; charset=utf-8")

6 (:TRANSFER-ENCODING . "chunked")

7 (:CONNECTION . "close")

8 (:SET-COOKIE

9 .

10 "ring-session=cec5d7ba-e4da-4bf4-b05e-aff670e0dd10;Path=/"))

We will use Drakma later in this book for several examples. In the next section we will write a web
app using Hunchentoot and test it with a Drakma client.

Network Programming 82

An introduction to Hunchentoot

Edi Weitz’s Hunchentoot project³⁰ is a flexible library for writing web applications and web services.
We will also use Edi’s CL-WHO library in this section for generating HTML from Lisp code.
Hunchentoot will be installed the first time you quick load it in the example code for this section:

1 (ql:quickload "hunchentoot")

I will use only easy handler framework³¹ in the Hunchentoot examples in this section. I leave it to
you to read the documentation on using custom acceptors³² after you experiment with the examples
in this section.

The following code will work for both multi-threading installations of SBCL and single thread
installations (e.g., some default installations of SBCL on OS X):

1 (ql:quickload :hunchentoot)

2 (ql:quickload :cl-who)

3

4 (in-package :cl-user)

5 (defpackage hdemo

6 (:use :cl

7 :cl-who

8 :hunchentoot))

9 (in-package :hdemo)

10

11 (defvar *h* (make-instance 'easy-acceptor :port 3000))

12

13 ;; define a handler with the arbitrary name my-greetings:

14

15 (define-easy-handler (my-greetings :uri "/hello") (name)

16 (setf (hunchentoot:content-type*) "text/html")

17 (with-html-output-to-string (*standard-output* nil :prologue t)

18 (:html

19 (:head (:title "hunchentoot test"))

20 (:body

21 (:h1 "hunchentoot form demo")

22 (:form

23 :method :post

24 (:input :type :text

25 :name "name"

³⁰http://weitz.de/hunchentoot/
³¹http://weitz.de/hunchentoot/#easy-handlers
³²http://weitz.de/hunchentoot/#acceptors

http://weitz.de/hunchentoot/
http://weitz.de/hunchentoot/#easy-handlers
http://weitz.de/hunchentoot/#acceptors
http://weitz.de/hunchentoot/
http://weitz.de/hunchentoot/#easy-handlers
http://weitz.de/hunchentoot/#acceptors

Network Programming 83

26 :value name)

27 (:input :type :submit :value "Submit your name"))

28 (:p "Hello " (str name))))))

29

30 (hunchentoot:start *h*)

In lines 5 through 9 we create an use a new package that includes support for generating HTML
in Lisp code (CL-WHO) and the Hunchentoot library). On line 11 we create an instance of an easy
acceptor on port 3000 that provides useful default behaviors for providing HTTP services.

The Hunchentoot macro define-easy-handler is used in lines 15 through 28 to define an HTTP
request handler and add it to the easy acceptor instance. The first argument, my-greetings in this
example, is an arbitrary name and the keyword :uri argument provides a URL pattern that the easy
acceptor server object uses to route requests to this handler. For example, when you run this example
on your computer, this URL routing pattern would handle requests like:

1 http://localhost:3000/hello

In lines 17 through 28 we are using the CL-WHO library to generate HTML for a web page. As you
might guess, :html generates the outer <html></html> tags for a web page. Line 19 would generate
HTML like:

1 <head>

2 <title>hunchentoot test</title>

3 </head>

Lines 22 through 27 generate an HTML input form and line 28 displays any value generated when
the user entered text in the input filed and clicked the submit button. Notice the definition of the
argument name in line 1 in the definition of the easy handler. If the argument name is not defined,
the nil value will be displayed in line 28 as an empty string.

You should run this example and access the generated web page in a web browser, and enter text,
submit, etc. You can also fetch the generated page HTML using the Drakma library that we saw in
the last section. Here is a code snippet using the Drakma client library to access this last example:

Network Programming 84

1 * (drakma:http-request "http://127.0.0.1:3000/hello?name=Mark")

2

3 "Hello Mark"

4 200

5 ((:CONTENT-LENGTH . "10")

6 (:DATE . "Fri, 05 Jul 2013 15:57:22 GMT")

7 (:SERVER . "Hunchentoot 1.2.18")

8 (:CONNECTION . "Close")

9 (:CONTENT-TYPE . "text/plain; charset=utf-8"))

10 #<PURI:URI http://127.0.0.1:3000/hello?name=Mark>

11 #<FLEXI-STREAMS:FLEXI-IO-STREAM {10095654A3}>

12 T

13 "OK"

We will use both Drackma and Hunchentoot in the next section.

Complete REST Client Server Example Using JSON for
Data Serialization

A reasonable way to build modern distributed systems is to write RESTweb services that serve JSON
data to client applications. These client applications might be rich web apps written in Javascript,
other web services, and applications running on smartphones that fetch and save data to a remote
web service.

We will use the cl-json Quicklisp package to encode Lisp data into a string representing JSON
encoded data. Here is a quick example:

1 * (ql:quickload :cl-json)

2 * (defvar y (list (list '(cat . "the cat ran") '(dog . 101)) 1 2 3 4 5))

3

4 Y

5 * y

6

7 (((CAT . "the cat ran") (DOG . 101)) 1 2 3 4 5)

8 * (json:encode-json-to-string y)

9 "[{\"cat\":\"the cat ran\",\"dog\":101},1,2,3,4,5]"

The following list shows the contents of the file src/web-hunchentoot-json.lisp:

Network Programming 85

1 (ql:quickload :hunchentoot)

2 (ql:quickload :cl-json)

3

4 (defvar *h* (make-instance 'hunchentoot:easy-acceptor :port 3000))

5

6 ;; define a handler with the name animal:

7

8 (hunchentoot:define-easy-handler (animal :uri "/animal") (name)

9 (print name)

10 (setf (hunchentoot:content-type*) "text/plain")

11 (cond

12 ((string-equal name "cat")

13 (json:encode-json-to-string

14 (list

15 (list

16 '(average_weight . 10)

17 '(friendly . nil))

18 "A cat can live indoors or outdoors.")))

19 ((string-equal name "dog")

20 (json:encode-json-to-string

21 (list

22 (list

23 '(average_weight . 40)

24 '(friendly . t))

25 "A dog is a loyal creature, much valued by humans.")))

26 (t

27 (json:encode-json-to-string

28 (list

29 ()

30 "unknown type of animal")))))

31

32 (hunchentoot:start *h*)

This example is very similar to the web application example in the last section. The difference is
that this application is not intended to be viewed on a web page because it returns JSON data as
HTTP responses. The easy handler definition on line 8 specifies a handler argument name. In lines
12 and 19 we check to see if the value of the argument name is “cat” or “dog” and if it is, we return
the appropriate JSON example data for those animals. If there is no match, the default cond clause
starting on line 26 returns a warning string as a JSON encoded string.

While running this test service, in one repl, you can ue the Drakma library in another repl to test it
(not all output is shown in the next listing):

Network Programming 86

1 * (ql:quickload :drakma)

2 * (drakma:http-request "http://127.0.0.1:3000/animal?name=dog")

3

4 "[{\"average_weight\":40,

5 \"friendly\":true},

6 \"A dog is a loyal creature, much valued by humans.\"]"

7 200

8 * (drakma:http-request "http://127.0.0.1:3000/animal?name=cat")

9

10 "[{\"average_weight\":10,

11 \"friendly\":null},

12 \"A cat can live indoors or outdoors.\"]"

13 200

You can use the cl-json library to decode a string containing JSON data to Lisp data:

1 * (ql:quickload :cl-json)

2 To load "cl-json":

3 Load 1 ASDF system:

4 cl-json

5 ; Loading "cl-json"

6 .

7 (:CL-JSON)

8 * (cl-json:decode-json-from-string

9 (drakma:http-request "http://127.0.0.1:3000/animal?name=dog"))

10

11 (((:AVERAGE--WEIGHT . 40) (:FRIENDLY . T))

12 "A dog is a loyal creature, much valued by humans.")

For most of my work, REST web services are “read-only” in the sense that clients don’t modify state
on the server. However, there are use cases where a client application might want to; for example,
letting clients add new animals to the last example.

1 (defparameter *animal-hash* (make-hash-table))

2

3 ;; handle HTTP POST requests:

4 (hunchentoot:define-easy-handler (some-handler :uri "/add") (json-data)

5 (setf (hunchentoot:content-type*) "text/plain")

6 (let* ((data-string (hunchentoot:raw-post-data :force-text t))

7 (data (cl-json:decode-json-from-string json-data))

8 ;; assume that the name of the animal is a hashed value:

9 (animal-name (gethash "name" data)))

Network Programming 87

10 (setf (gethash animal-name *animal-hash*) data))

11 "OK")

In line 4 we are defining an additional easy handler with a handler argument json-data. This data
is assumed to be a string encoding of JSON data which is decoded into Lisp data in lines 6 and 7. We
save the data to the global variable animal-hash.

In this example, we are storing data sent from a client in an in-memory hash table. In a real
application new data might be stored in a database.

Network Programming Wrap Up

You have learned the basics for writing web services and writing clients to use web services. Later,
we will use web services written in Python by writing Common Lisp clients: we will wrap retrained
deep learning models and access them from Common Lisp.

Using the Microsoft Bing Search APIs
I have used the Bing search APIs for many years. Microsoft Bing supports several commercial search
engine services, including my favorite search engine Duck Duck Go. Bing is now part of the Azure
infrastructure that is branded as “Cognitive Services.” You should find the example code for this
chapter relatively easy to extend to other Azure Cognitive Services that you might need to use.

You will need to register with Microsoft’s Azure search service to use the material in this chapter. It
is likely that you view search as a manual human-centered activity. I hope to expand your thinking
to considering applications that automate search, finding information on the web, and automatically
organizing information.

While the example code uses only the search APIs, with some modification it can be extended to
work with all REST APIs provided by Azure Cognitive Services³³ that include: analyzing text to
get user intent, general language understanding, detecting key phrases and entity names, translate
between languages, converting between speech and text, and various computer vision services.
These services are generally free or very low cost for a few thousand API calls a month, with
increased cost for production deployments. Microsoft spends about $1 billion a year in research
and development for Azure Cognitive Services.

Getting an Access Key for Microsoft Bing Search APIs

You will need to set up an Azure account if you don’t already have one. I use the Bing search APIs
fairly often for research but I have never spent more than about a dollar a month and usually I get
no bill at all. For personal use it is a very inexpensive service.

You start by going to the web page https://azure.microsoft.com/en-us/try/cognitive-services/³⁴ and
sign up for an access key. The Search APIs sign up is currently in the fourth tab in this web form.
When you navigate to the Search APIs tab, select the option Bing Search APIs v7. You will get an
API key that you need to store in an environment variable that you will soon need:

export BING_SEARCH_V7_SUBSCRIPTION_KEY=1e97834341d2291191c772b7371ad5b7

That is not my real subscription key!

You also set the Bing search API as an environment variable:

³³https://azure.microsoft.com/en-us/services/cognitive-services/
³⁴https://azure.microsoft.com/en-us/try/cognitive-services/

https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/try/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/try/cognitive-services/

Using the Microsoft Bing Search APIs 89

export BING_SEARCH_V7_ENDPOINT=https://api.cognitive.microsoft.com/bing/v7.0/search

Example Search Script

Instead of using a pure Common Lisp HTTP client library I often prefer using the curl command run
in a separate process. The curl utility handles all possible authentication modes, handles headers,
response data in several formats, etc. We capture the output from curl in a string that in turn gets
processed by a JSON library.

It takes very little Common Lisp code to access the Bing search APIs. The functionwebsearchmakes
a generic web search query. The function get-wikidata-uri uses thewebsearch function by adding
“site:wikidata.org” to the query and returning only the WikiData URI for the original search term.
We will later see several examples. I will list the entire library with comments to follow:

1 (in-package #:bing)

2

3 (defun get-wikidata-uri (query)

4 (let ((sr (websearch (concatenate 'string "site:wikidata.org " query))))

5 (cadar sr)))

6

7 (defun websearch (query)

8 (let* ((key (uiop:getenv "BING_SEARCH_V7_SUBSCRIPTION_KEY"))

9 (endpoint (uiop:getenv "BING_SEARCH_V7_ENDPOINT"))

10 (command

11 (concatenate

12 'string

13 "curl -v -X GET \"" endpoint "?q="

14 (drakma:url-encode query :utf-8)

15 "&mkt=en-US&limit=4\""

16 " -H \"Ocp-Apim-Subscription-Key: " key "\""))

17 (response

18 (uiop:run-program command :output :string)))

19 (with-input-from-string

20 (s response)

21 (let* ((json-as-list (json:decode-json s))

22 (values (cdadr (cddr (nth 2 json-as-list)))))

23 (mapcar #'(lambda (x)

24 (let ((name (assoc :name x))

25 (display-uri (assoc :display-url x))

26 (snippet (assoc :snippet x)))

27 (list (cdr name) (cdr display-uri) (cdr snippet))))

28 values)))))

Using the Microsoft Bing Search APIs 90

We get the Bing access key and the search API endpoint in lines 8-9. Lines 10-16 create a complete
call to the curl* command line utility. We spawn a process to run **curl and capture the string
output in the variable response in lines 17-18. You might want to add a few print statements to see
typical values for the variables command and response. The response data is JSON data encoded
in a string, with straightforward code in lines 19-28 to parse out the values we want.

The following repl listing shows this library in use:

$ sbcl

This is SBCL 2.0.2, an implementation of ANSI Common Lisp.

* (ql:quickload "bing")

To load "bing":

Load 1 ASDF system:

bing

; Loading "bing"

..............

("bing")

* (bing:get-wikidata-uri "Sedona Arizona")

"https://www.wikidata.org/wiki/Q80041"

* (bing:websearch "Berlin")

(("Berlin - Wikipedia" "https://en.wikipedia.org/wiki/Berlin"

"Berlin (/ b��r�l�n /; German: [b���li�n] (listen)) is the capital and largest cit\

y of Germany by both area and population. Its 3,769,495 (2019) inhabitants make it t\

he most populous city proper of the European Union. The city is one of Germany's 16 \

federal states.")

("THE 15 BEST Things to Do in Berlin - 2020 (with Photos ..."

"https://www.tripadvisor.com/Attractions-g187323-Activities-Berlin.html"

"Book your tickets online for the top things to do in Berlin, Germany on Tripadvis\

or: See 571,599 traveler reviews and photos of Berlin tourist attractions. Find what\

to do today, this weekend, or in August. We have reviews of the best places to see \

in Berlin. Visit top-rated & must-see attractions.")

("Berlin - Official Website of the City of Berlin, Capital ..."

"https://www.berlin.de/en"

"Official Website of Berlin: Information about the Administration, Events, Culture\

, Tourism, Hotels and Hotel Booking, Entertainment, Tickets, Public Transport, Polit\

ical System, Local Authorities and Business in Berlin.")

("Berlin | History, Map, Population, Attractions, & Facts ..."

"https://www.britannica.com/place/Berlin"

"Berlin is situated about 112 miles (180 km) south of the Baltic Sea, 118 miles (1\

90 km) north of the Czech-German border, 110 miles (177 km) east of the former inner\

-German border, and 55 miles (89 km) west of Poland. It lies in the wide glacial val\

ley of the Spree River, which runs through the centre of the city.")

("Berlin travel | Germany - Lonely Planet"

Using the Microsoft Bing Search APIs 91

"https://www.lonelyplanet.com/germany/berlin"

"Welcome to Berlin Berlin's combo of glamour and grit is bound to mesmerise all th\

ose keen to explore its vibrant culture, cutting-edge architecture, fabulous food, i\

ntense parties and tangible history.")

("Berlin 2020: Best of Berlin, Germany Tourism - Tripadvisor"

"https://www.tripadvisor.com/Tourism-g187323"

"Berlin is an edgy city, from its fashion to its architecture to its charged polit\

ical history. The Berlin Wall is a sobering reminder of the hyper-charged postwar at\

mosphere, and yet the graffiti art that now covers its remnants has become symbolic \

of social progress.")

("Berlin 2020: Best of Berlin, OH Tourism - Tripadvisor"

"https://www.tripadvisor.com/Tourism-g50087-Berlin_Ohio-Vacations.html"

"Berlin Tourism: Tripadvisor has 11,137 reviews of Berlin Hotels, Attractions, and\

Restaurants making it your best Berlin resource.")

("Berlin (band) - Wikipedia" "https://en.wikipedia.org/wiki/Berlin_(band)"

"Berlin is the alias for vocalist Terri Nunn, as well as the American new wave ban\

d she fronts, having been originally formed in Orange County, California. The band g\

ained mainstream-commercial success with singles including \" Sex (I'm A...) \", \" \

No More Words \" and the chart-topping \" Take My Breath Away \" from the 1986 film \

Top Gun.")

("Berlin's official travel website - visitBerlin.de"

"https://www.visitberlin.de/en"

"Berlin's way to a metropolis 100 Years of Greater Berlin In 1920, modern Berlin w\

as born at one fell swoop. 8 cities, 59 rural communities and 27 manor districts uni\

te to form \"Greater Berlin\""))

*

I have been using the Bing search APIs for many years. They are a standard part of my application
building toolkit.

Wrap-up

You can check out the wide range of Congitive Services³⁵ on the Azure site. Available APIs include:
language detection, speech recognition, vision libraries for object recognition, web search, and
anomaly detection in data.

In addition to using automated web scraping to get data for my personal research, I often use
automated web search. I find the Microsoft’s Azure Bing search APIs are the most convenient to use
and I like paying for services that I use.

³⁵https://azure.microsoft.com/en-us/try/cognitive-services/

https://azure.microsoft.com/en-us/try/cognitive-services/
https://azure.microsoft.com/en-us/try/cognitive-services/

Accessing Relational Databases
There are good options for accessing relational databases from Common Lisp. Personally I almost
always use Postgres and in the past I used either native foreign client libraries or the socket interface
to Postgres. Recently, I decided to switch to CLSQL³⁶ which provides a common interface for
accessing Postgres, MySQL, SQLite, and Oracle databases. There are also several recent forks of
CLSQL on github.Wewill use CLSQL in examples in this book. Hopefully while reading the Chapter
on Quicklisp you installed CLSQL and the back end for one or more databases that you use for your
projects.

For some database applications when I know that I will always use the embedded SQLite database
(i.e., that I will never want to switch to Postgres of another database) I will just use the sqlite library
as I do in chapter Knowledge Graph Navigator.

If you have not installed CLSQL yet, then please install it now:

(ql:quickload "clsql")

You also need to install one or more CLSQL backends, depending on which relational databases you
use:

(ql:quickload "clsql-postgresql")

(ql:quickload "clsql-mysql")

(ql:quickload "clsql-sqlite3")

The directory src/clsql_examples contains the standalone example files for this chapter.

While I often prefer hand crafting SQL queries, there seems to be a general movement in software
development towards the data mapper or active record design patterns. CLSQL provides Object
Relational Mapping (ORM) functionality to CLOS.

You will need to create a new database news in order to follow along with the examples in this
chapter and later in this book. I will use Postgres for examples in this chapter and use the following
to create a new database (my account is “markw” and the following assumes that I have Postgres
configured to not require a password for this account when accessing the database from “localhost”):

³⁶http://clsql.b9.com/

http://clsql.b9.com/
http://clsql.b9.com/

Accessing Relational Databases 93

1 -> ~ psql

2 psql (9.1.4)

3 Type "help" for help.

4 markw=# create database news;

5 CREATE DATABASE

We will use three example programs that you can find in the src/clsql_examples directory in the
book repository on github:

• clsql_create_news_schema.lisp to create table “articles” in database “news”
• clsql_write_to_news.lisp to write test data to table “articles”
• clsql_read_from_news.lisp to read from the table “articles”

The following listing shows the file src/clsql_examples/clsql_create_news_schema.lisp:

1 (ql:quickload :clsql)

2 (ql:quickload :clsql-postgresql)

3

4 ;; Postgres connection specification:

5 ;; (host db user password &optional port options tty).

6 ;; The first argument to **clsql:connect** is a connection

7 ;; specification list:

8

9 (clsql:connect '("localhost" "news" "markw" nil)

10 :database-type :postgresql)

11

12 (clsql:def-view-class articles ()

13 ((id

14 :db-kind :key

15 :db-constraints :not-null

16 :type integer

17 :initarg :id)

18 (uri

19 :accessor uri

20 :type (string 60)

21 :initarg :uri)

22 (title

23 :accessor title

24 :type (string 90)

25 :initarg :title)

26 (text

27 :accessor text

Accessing Relational Databases 94

28 :type (string 500)

29 :nulls-ok t

30 :initarg :text)))

31

32 (defun create-articles-table ()

33 (clsql:create-view-from-class 'articles))

In this repl listing, we create the database table “articles” using the function create-articles-table
that we just defined:

1 -> src git:(master) sbcl

2 (running SBCL from: /Users/markw/sbcl)

3 * (load "clsql_create_news_schema.lisp")

4 * (create-articles-table)

5 NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index

6 "article_pk" for table "articles"

7 T

8 *

The following listing shows the file src/clsql_examples/clsql_write_to_news.lisp:

1 (ql:quickload :clsql)

2 (ql:quickload :clsql-postgresql)

3

4 ;; Open connection to database and create CLOS class and database view

5 ;; for table 'articles':

6 (load "clsql_create_news_schema.lisp")

7

8 (defvar *a1*

9 (make-instance

10 'article

11 :uri "http://test.com"

12 :title "Trout Season is Open on Oak Creek"

13 :text "State Fish and Game announced the opening of trout season"))

14

15 (clsql:update-records-from-instance *a1*)

16 ;; modify a slot value and update database:

17 (setf (slot-value *a1* 'title) "Trout season is open on Oak Creek!!!")

18 (clsql:update-records-from-instance *a1*)

19 ;; warning: the last statement changes the "id" column in the table

You should load the file clsql_write_to_news.lisp one time in a repl to create the test data. The
following listing shows file clsql_read_from_news.lisp:

Accessing Relational Databases 95

1 (ql:quickload :clsql)

2 (ql:quickload :clsql-postgresql)

3

4 ;; Open connection to database and create CLOS class and database view

5 ;; for table 'articles':

6 (load "clsql_create_news_schema.lisp")

7

8 (defun pp-article (article)

9 (format t

10 "~%URI: ~S ~%Title: ~S ~%Text: ~S ~%"

11 (slot-value article 'uri)

12 (slot-value article 'title)

13 (slot-value article 'text)))

14

15 (dolist (a (clsql:select 'article))

16 (pp-article (car a)))

Loading the file clsql_read_from_news.lisp produces the following output:

1 URI: "http://test.com"

2 Title: "Trout season is open on Oak Creek!!!"

3 Text: "State Fish and Game announced the opening of trout season"

4

5 URI: "http://example.com"

6 Title: "Longest day of year"

7 Text: "The summer solstice is on Friday."

You can also embed SQL where clauses in queries:

(dolist (a (clsql:select 'article :where "title like '%season%'"))

(pp-article (car a)))

which produces this output:

1 URI: "http://test.com"

2 Title: "Trout season is open on Oak Creek!!!"

3 Text: "State Fish and Game announced the opening of

4 trout season"

In this example, I am using a SQL like expression to perform partial text matching.

Accessing Relational Databases 96

Database Wrap Up

You learned the basics for accessing relational databases. When I am designing new systems for
processing data I like to think ofmyCommon Lisp code as being purely functional: my Lisp functions
accept arguments that they do not modify and return results. I like to avoid side effects, that is
changing global state. When I do have to handle mutable state (or data) I prefer storing mutable state
in an external database. I use this same approach when I use the Haskell functional programming
language.

Using MongoDB, Solr NoSQL Data
Stores
Non-relational data stores are commonly used for applications that don’t need either full relational
algebra or must scale.

TheMongoDB example code is in the file src/loving_snippets/mongo_news.lisp. The Solr example
code is in the subdirectories src/solr_examples.

Note for the fifth edition: The Common Lisp cl-mongo library is now unsupported for versions of
MongoDB later than 2.6 (released in 2016). You can install an old version of MongoDB for macOS³⁷
or for Linux³⁸. I have left the MongoDB examples in this section but I can’t recommend that you use
cl-mongo and MongoDB for any serious applications.

Brewer’s CAP theorem states that a distributed data storage system comprised of multiple nodes can
be robust to two of three of the following guarantees: all nodes always have aConsistent view of the
state of data, general Availablity of data if not all nodes are functioning, and Partition tolerance so
clients can still communicate with the data storage system when parts of the system are unavailable
because of network failures. The basic idea is that different applications have different requirements
and sometimes it makes sense to reduce system cost or improve scalability by easing back on one of
these requirements.

A good example is that some applications may not need transactions (the first guarantee) because it
is not important if clients sometimes get data that is a few seconds out of date.

MongoDB allows you to choose consistency vs. availability vs. efficiency.

I cover the Solr indexing and search service (based on Lucene) both because a Solr indexed document
store is a type of NoSQL data store and also because I believe that you will find Solr very useful for
building systems, if you don’t already use it.

MongoDB

The following discussion of MongoDB is based on just my personal experience, so I am not covering
all use cases. I have used MongoDB for:

• Small clusters of MongoDB nodes to analyze social media data, mostly text mining and
sentiment analysis. In all cases for each application I ran MongoDB with one write master

³⁷https://www.mongodb.org/dl/osx
³⁸https://www.mongodb.org/dl/linux

https://www.mongodb.org/dl/osx
https://www.mongodb.org/dl/linux
https://www.mongodb.org/dl/osx
https://www.mongodb.org/dl/linux

Using MongoDB, Solr NoSQL Data Stores 98

(i.e., I wrote data to this one node but did not use it for reads) and multiple read-only slave
nodes. Each slave node would run on the same server that was usually performing a single bit
of analytics.

• Multiple very large independent clusters for web advertising. Problems faced included trying
to have some level of consistency across data centers. Replica sets were used within each data
center.

• Running a single node MongoDB instance for low volume data collection and analytics.

One of the advantages of MongoDB is that it is very “developer friendly” because it supports ad-
hoc document schemas and interactive queries. I mentioned that MongoDB allows you to choose
consistency vs. availability vs. efficiency. When you performMongoDBwrites you can specify some
granularity of what constitutes a “successful write” by requiring that a write is performed at a
specific number of nodes before the client gets acknowledgement that the write was successful. This
requirement adds overhead to each write operation and can cause writes to fail if some nodes are
not available.

The MongoDB online documentation³⁹ is very good. You don’t have to read it in order to have fun
playing with the following Common Lisp and MongoDB examples, but if you find that MongoDB is
a good fit for your needs after playing with these examples then you should read the documentation.
I usually install MongoDB myself but it is sometimes convenient to use a hosting service. There are
several well regarded services and I have used MongoHQ⁴⁰.

At this time there is no official Common Lisp support for accessing MongoDB but there is a useful
project by Alfons Haffmans’ cl-mongo⁴¹ that will allow us to write Common Lisp client applications
and have access to most of the capabilities of MongoDB.

The file src/mongo_news.lisp contains the example code used in the next three sessions.

Adding Documents

The following repl listing shows the cl-mongo APIs for creating a new document, adding elements
(attributes) to it, and inserting it in a MongoDB data store:

³⁹http://docs.mongodb.org/manual/
⁴⁰https://www.mongohq.com/
⁴¹https://github.com/fons/cl-mongo

http://docs.mongodb.org/manual/
https://www.mongohq.com/
https://github.com/fons/cl-mongo
http://docs.mongodb.org/manual/
https://www.mongohq.com/
https://github.com/fons/cl-mongo

Using MongoDB, Solr NoSQL Data Stores 99

(ql:quickload "cl-mongo")

(cl-mongo:db.use "news")

(defun add-article (uri title text)

(let ((doc (cl-mongo:make-document)))

(cl-mongo:add-element "uri" uri doc)

(cl-mongo:add-element "title" title doc)

(cl-mongo:add-element "text" text doc)

(cl-mongo:db.insert "article" doc)))

;; add a test document:

(add-article "http://test.com" "article title 1" "article text 1")

In this example, three string attributes were added to a new document before it was saved.

Fetching Documents by Attribute

We will start by fetchng and pretty-printing all documents in the collection articles and fetching all
articles a list of nested lists where the inner nested lists are document URI, title, and text:

1 (defun print-articles ()

2 (cl-mongo:pp (cl-mongo:iter (cl-mongo:db.find "article" :all))))

3

4 ;; for each document, use the cl-mongo:get-element on

5 ;; each element we want to save:

6 (defun article-results->lisp-data (mdata)

7 (let ((ret '()))

8 ;;(print (list "size of result=" (length mdata)))

9 (dolist (a mdata)

10 ;;(print a)

11 (push

12 (list

13 (cl-mongo:get-element "uri" a)

14 (cl-mongo:get-element "title" a)

15 (cl-mongo:get-element "text" a))

16 ret)))

17 ret))

18

19 (defun get-articles ()

20 (article-results->lisp-data

21 (cadr (cl-mongo:db.find "article" :all))))

Output for these two functions looks like:

Using MongoDB, Solr NoSQL Data Stores 100

1 * (print-articles)

2

3 {

4 "_id" -> objectid(99778A792EBB4F76B82F75C6)

5 "uri" -> http://test.com/3

6 "title" -> article title 3

7 "text" -> article text 3

8 }

9

10 {

11 "_id" -> objectid(D47DEF3CFDB44DEA92FD9E56)

12 "uri" -> http://test.com/2

13 "title" -> article title 2

14 "text" -> article text 2

15 }

16

17 * (get-articles)

18

19 (("http://test.com/2" "article title 2" "article text 2")

20 ("http://test.com/3" "article title 3" "article text 3"))

Fetching Documents by Regular Expression Text Search

By reusing the function article-results->lisp-data defined in the last section, we can also search for
JSON documents using regular expressions matching attribute values:

1 ;; find documents where substring 'str' is in the title:

2 (defun search-articles-title (str)

3 (article-results->lisp-data

4 (cadr

5 (cl-mongo:iter

6 (cl-mongo:db.find

7 "article"

8 (cl-mongo:kv

9 "title" // TITLE ATTRIBUTE

10 (cl-mongo:kv "$regex" str)) :limit 10)))))

11

12 ;; find documents where substring 'str' is in the text element:

13 (defun search-articles-text (str)

14 (article-results->lisp-data

15 (cadr

16 (cl-mongo:db.find

Using MongoDB, Solr NoSQL Data Stores 101

17 "article"

18 (cl-mongo:kv

19 "text" // TEXT ATTRIBUTE

20 (cl-mongo:kv "$regex" str)) :limit 10))))

I set the limit to return a maximum of ten documents. If you do not set the limit, this example code
only returns one search result. The following repl listing shows the results from calling function
search-articles-text:

1 * (SEARCH-ARTICLES-TEXT "text")

2

3 (("http://test.com/2" "article title 2" "article text 2")

4 ("http://test.com/3" "article title 3" "article text 3"))

5 * (SEARCH-ARTICLES-TEXT "3")

6

7 (("http://test.com/3" "article title 3" "article text 3"))

I find usingMongoDB to be especially effectivewhen experimentingwith data and code. The schema
free JSON document format, using interactive queries using the mongo shell⁴², and easy to use client
libraries like clouchdb for Common Lisp will let you experiment with a lot of ideas in a short period
of time. The following listing shows the use of the interactive mongo shell. The database news is
the database used in the MongoDB examples in this chapter; you will notice that I also have other
databases for other projects on my laptop:

1 -> src git:(master) mongo

2 MongoDB shell version: 2.4.5

3 connecting to: test

4 > show dbs

5 kbsportal 0.03125GB

6 knowledgespace 0.03125GB

7 local (empty)

8 mark_twitter 0.0625GB

9 myfocus 0.03125GB

10 news 0.03125GB

11 nyt 0.125GB

12 twitter 0.125GB

13 > use news

14 switched to db news

15 > show collections

16 article

17 system.indexes

⁴²http://docs.mongodb.org/manual/mongo/

http://docs.mongodb.org/manual/mongo/
http://docs.mongodb.org/manual/mongo/

Using MongoDB, Solr NoSQL Data Stores 102

18 > db.article.find()

19 { "uri" : "http://test.com/3",

20 "title" : "article title 3",

21 "text" : "article text 3",

22 "_id" : ObjectId("99778a792ebb4f76b82f75c6") }

23 { "uri" : "http://test.com/2",

24 "title" : "article title 2",

25 "text" : "article text 2",

26 "_id" : ObjectId("d47def3cfdb44dea92fd9e56") }

27 >

Line 1 of this listing shows starting the mongo shell. Line 4 shows how to list all databases in the
data store. In line 13 I select the database “news” to use. Line 15 prints out the names of all collections
in the current database “news”. Line 18 prints out all documents in the “articles” collection. You can
read the documentation for the mongo shell⁴³ for more options like selective queries, adding indices,
etc.

When you run aMongoDB service on your laptop, also try the admin interface on http://localhost:28017/⁴⁴.

A Common Lisp Solr Client

The Lucene project is one of the most widely used Apache Foundation projects. Lucene is a flexible
library for preprocessing and indexing text, and searching text. I have personally used Lucene on
so many projects that it would be difficult to count them. The Apache Solr Project⁴⁵ adds a network
interface to the Lucene text indexer and search engine. Solr also adds other utility features to Lucene:

• While Lucene is a library to embed in your programs, Solr is a complete system.
• Solr provides good defaults for preprocessing and indexing text and also provides rich support
for managing structured data.

• Provides both XML and JSON APIs using HTTP and REST.
• Supports faceted search, geospatial search, and provides utilities for highlighting search terms
in surrounding text of search results.

• If your system ever grows to a very large number of users, Solr supports scaling via replication.

I hope that you will find the Common Lisp example Solr client code in the following sections helps
you make Solr part of large systems that you write using Common Lisp.

Installing Solr

Download a binary Solr distribution⁴⁶ and un-tar or un-zip this Solr distribution, cd to the
distribution directory, then cd to the example directory and run:

⁴³http://docs.mongodb.org/manual/mongo/
⁴⁴http://localhost:28017/
⁴⁵https://lucene.apache.org/solr/
⁴⁶https://lucene.apache.org/solr/downloads.html

http://docs.mongodb.org/manual/mongo/
http://localhost:28017/
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/downloads.html
http://docs.mongodb.org/manual/mongo/
http://localhost:28017/
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/downloads.html

Using MongoDB, Solr NoSQL Data Stores 103

1 ~/solr/example> java -jar start.jar

You can access the Solr Admin Web App at http://localhost:8983/solr/#/⁴⁷. This web app can be seen
in the following screen shot:

Solr Admin Web App

There is no data in the Solr example index yet, so following the Solr tutorial instructions:

⁴⁷http://localhost:8983/solr/#/

http://localhost:8983/solr/#/
http://localhost:8983/solr/#/

Using MongoDB, Solr NoSQL Data Stores 104

1 ~/> cd ~/solr/example/exampledocs

2 ~/solr/example/exampledocs> java -jar post.jar *.xml

3 SimplePostTool version 1.5

4 Posting files to base url http://localhost:8983/solr/update

5 using content-type application/xml..

6 POSTing file gb18030-example.xml

7 POSTing file hd.xml

8 POSTing file ipod_other.xml

9 POSTing file ipod_video.xml

10 POSTing file manufacturers.xml

11 POSTing file mem.xml

12 POSTing file money.xml

13 POSTing file monitor.xml

14 POSTing file monitor2.xml

15 POSTing file mp500.xml

16 POSTing file sd500.xml

17 POSTing file solr.xml

18 POSTing file utf8-example.xml

19 POSTing file vidcard.xml

20 14 files indexed.

21 COMMITting Solr index changes

22 to http://localhost:8983/solr/update..

23 Time spent: 0:00:00.480

You will learn how to add documents to Solr directly in your Common Lisp programs in a later
section.

Assuming that you have a fast Internet connection so that downloading Solr was quick, you have
hopefully spent less than five or six minutes getting Solr installed and running with enough example
search data for the Common Lisp client examples we will play with. Solr is a great tool for storing,
indexing, and searching data. I recommend that you put off reading the official Solr documentation
for now and instead work through the Common Lisp examples in the next two sections. Later, if
you want to use Solr then you will need to carefully read the Solr documentation.

Solr’s REST Interface

The Solr REST Interface Documentation⁴⁸ documents how to perform search using HTTP GET
requests. All we need to do is implement this in Common Lisp which you will see is easy.

Assuming that you have Solr running and the example data loaded, we can try searching for docu-
mentswith, for example, theword “British” using the URLhttp://localhost:8983/solr/select?q=British⁴⁹.
This is a REST request URL and you can use utilities like curl orwget to fetch the XML data. I fetched

⁴⁸https://wiki.apache.org/solr/SolJSON
⁴⁹http://localhost:8983/solr/select?q=British

https://wiki.apache.org/solr/SolJSON
http://localhost:8983/solr/select?q=British
https://wiki.apache.org/solr/SolJSON
http://localhost:8983/solr/select?q=British

Using MongoDB, Solr NoSQL Data Stores 105

the data in a web browser, as seen in the following screen shot of a Firefox web browser (I like the
way Firefox formats and displays XML data):

Solr Search Results as XML Data

The attributes in the returned search results need some explanation. We indexed several example
XML data files, one of which contained the following XML element that we just saw as a search
result:

1 <doc>

2 <field name="id">GBP</field>

3 <field name="name">One British Pound</field>

4 <field name="manu">U.K.</field>

5 <field name="manu_id_s">uk</field>

6 <field name="cat">currency</field>

7 <field name="features">Coins and notes</field>

8 <field name="price_c">1,GBP</field>

9 <field name="inStock">true</field>

10 </doc>

Using MongoDB, Solr NoSQL Data Stores 106

So, the search result has the same attributes as the structured XML data that was added to the Solr
search index. Solr’s capability for indexing structured data is a superset of just indexing plain text.
If for example we were indexing news stories, then example input data might look like:

1 <doc>

2 <field name="id">new_story_0001</field>

3 <field name="title">Fishing Season Opens</field>

4 <field name="text">Fishing season opens on Friday in Oak Creek.</field>

5 </doc>

With this example, a search result that returned this document as a result would return attributes
id, title, and text, and the values of these three attributes.

By default the Solr web service returns XML data as seen in the last screen shot. For our examples, I
prefer using JSON so we are going to always add a request parameterwt=json to all REST calls. The
following screen shot shows the same data returned in JSON serialization format instead of XML
format of a Chrome web browser (I like the way Chrome formats and displays JSON data with the
JSONView Chrome Browser extension):

Solr Search Results as JSON Data

Using MongoDB, Solr NoSQL Data Stores 107

You can read the full JSON REST Solr documentation later, but for our use here we will use the
following search patterns:

• http://localhost:8983/solr/select?q=British+One&wt=json - search for documents with either of
the words “British” or “one” in them. Note that in URIs that the “+” character is used to encode
a space character. If you wanted a “+” character you would encode it with “%2B” and a space
character is encoded as “%20”. The default Solr search option is an OR of the search terms,
unlike, for example, Google Search.

• http://localhost:8983/solr/select?q=British+AND+one&wt=json - search for documents that
contain both of the words “British” and “one” in them. The search term in plain text is “British
AND one”.

Common Lisp Solr Client for Search

As we sawearlier in Network Programming it is fairly simple to use the drakma and cl-json
Common Lisp libraries to call REST services that return JSON data. The function do-search defined
in the next listing (all the Solr example code is in the file src/solr-client.lisp) constructs a query
URI as we saw in the last section and uses theDrackma library to perform an HTTP GET operation
and the cl-json library to parse the returned string containing JSON data into Lisp data structures:

(ql:quickload :drakma)

(ql:quickload :cl-json)

(defun do-search (&rest terms)

(let ((query-string (format nil "~{~A~^+AND+~}" terms)))

(cl-json:decode-json-from-string

(drakma:http-request

(concatenate

'string

"http://localhost:8983/solr/select?q="

query-string

"&wt=json")))))

This example code does return the search results as Lisp list data; for example:

Using MongoDB, Solr NoSQL Data Stores 108

1 * (do-search "British" "one")

2

3 ((:RESPONSE-HEADER (:STATUS . 0) (:*Q-TIME . 1)

4 (:PARAMS (:Q . "British+AND+one") (:WT . "json")))

5 (:RESPONSE (:NUM-FOUND . 6) (:START . 0)

6 (:DOCS

7 ((:ID . "GBP") (:NAME . "One British Pound") (:MANU . "U.K.")

8 (:MANU--ID--S . "uk") (:CAT "currency")

9 (:FEATURES "Coins and notes")

10 (:PRICE--C . "1,GBP") (:IN-STOCK . T)

11 (:--VERSION-- . 1440194917628379136))

12 ((:ID . "USD") (:NAME . "One Dollar")

13 (:MANU . "Bank of America")

14 (:MANU--ID--S . "boa") (:CAT "currency")

15 (:FEATURES "Coins and notes")

16 (:PRICE--C . "1,USD") (:IN-STOCK . T)

17 (:--VERSION-- . 1440194917624184832))

18 ((:ID . "EUR") (:NAME . "One Euro")

19 (:MANU . "European Union")

20 (:MANU--ID--S . "eu") (:CAT "currency")

21 (:FEATURES "Coins and notes")

22 (:PRICE--C . "1,EUR") (:IN-STOCK . T)

23 (:--VERSION-- . 1440194917626281984))

24 ((:ID . "NOK") (:NAME . "One Krone")

25 (:MANU . "Bank of Norway")

26 (:MANU--ID--S . "nor") (:CAT "currency")

27 (:FEATURES "Coins and notes")

28 (:PRICE--C . "1,NOK") (:IN-STOCK . T)

29 (:--VERSION-- . 1440194917631524864))

30 ((:ID . "0579B002")

31 (:NAME . "Canon PIXMA MP500 All-In-One Photo Printer")

32 (:MANU . "Canon Inc.")

33 (:MANU--ID--S . "canon")

34 (:CAT "electronics" "multifunction printer"

35 "printer" "scanner" "copier")

36 (:FEATURES "Multifunction ink-jet color photo printer"

37 "Flatbed scanner, optical scan resolution of 1,200 x 2,400 dpi"

38 "2.5\" color LCD preview screen" "Duplex Copying"

39 "Printing speed up to 29ppm black, 19ppm color" "Hi-Speed USB"

40 "memory card: CompactFlash, Micro Drive, SmartMedia,

41 Memory Stick, Memory Stick Pro, SD Card, and MultiMediaCard")

42 (:WEIGHT . 352.0) (:PRICE . 179.99)

43 (:PRICE--C . "179.99,USD")

Using MongoDB, Solr NoSQL Data Stores 109

44 (:POPULARITY . 6) (:IN-STOCK . T)

45 (:STORE . "45.19214,-93.89941")

46 (:--VERSION-- . 1440194917651447808))

47 ((:ID . "SOLR1000")

48 (:NAME . "Solr, the Enterprise Search Server")

49 (:MANU . "Apache Software Foundation")

50 (:CAT "software" "search")

51 (:FEATURES "Advanced Full-Text Search Capabilities using Lucene"

52 "Optimized for High Volume Web Traffic"

53 "Standards Based Open Interfaces - XML and HTTP"

54 "Comprehensive HTML Administration Interfaces"

55 "Scalability - Efficient Replication to other Solr Search Servers"

56 "Flexible and Adaptable with XML configuration and Schema"

57 "Good unicode support: hÃ©llo (hello with an accent over the e)")

58 (:PRICE . 0.0) (:PRICE--C . "0,USD") (:POPULARITY . 10) (:IN-STOCK . T)

59 (:INCUBATIONDATE--DT . "2006-01-17T00:00:00Z")

60 (:--VERSION-- . 1440194917671370752)))))

I might modify the search function to return just the fetched documents as a list, discarding the
returned Solr meta data:

1 * (cdr (cadddr (cadr (do-search "British" "one"))))

2

3 (((:ID . "GBP") (:NAME . "One British Pound") (:MANU . "U.K.")

4 (:MANU--ID--S . "uk") (:CAT "currency") (:FEATURES "Coins and notes")

5 (:PRICE--C . "1,GBP") (:IN-STOCK . T)

6 (:--VERSION-- . 1440194917628379136))

7 ((:ID . "USD") (:NAME . "One Dollar") (:MANU . "Bank of America")

8 (:MANU--ID--S . "boa") (:CAT "currency") (:FEATURES "Coins and notes")

9 (:PRICE--C . "1,USD") (:IN-STOCK . T)

10 (:--VERSION-- . 1440194917624184832))

11 ((:ID . "EUR") (:NAME . "One Euro") (:MANU . "European Union")

12 (:MANU--ID--S . "eu") (:CAT "currency") (:FEATURES "Coins and notes")

13 (:PRICE--C . "1,EUR") (:IN-STOCK . T)

14 (:--VERSION-- . 1440194917626281984))

15 ((:ID . "NOK") (:NAME . "One Krone") (:MANU . "Bank of Norway")

16 (:MANU--ID--S . "nor") (:CAT "currency")

17 (:FEATURES "Coins and notes")

18 (:PRICE--C . "1,NOK") (:IN-STOCK . T)

19 (:--VERSION-- . 1440194917631524864))

20 ((:ID . "0579B002")

21 (:NAME . "Canon PIXMA MP500 All-In-One Photo Printer")

22 (:MANU . "Canon Inc.") (:MANU--ID--S . "canon")

Using MongoDB, Solr NoSQL Data Stores 110

23 (:CAT "electronics" "multifunction printer" "printer"

24 "scanner" "copier")

25 (:FEATURES "Multifunction ink-jet color photo printer"

26 "Flatbed scanner, optical scan resolution of 1,200 x 2,400 dpi"

27 "2.5\" color LCD preview screen" "Duplex Copying"

28 "Printing speed up to 29ppm black, 19ppm color" "Hi-Speed USB"

29 "memory card: CompactFlash, Micro Drive, SmartMedia, Memory Stick,

30 Memory Stick Pro, SD Card, and MultiMediaCard")

31 (:WEIGHT . 352.0) (:PRICE . 179.99) (:PRICE--C . "179.99,USD")

32 (:POPULARITY . 6) (:IN-STOCK . T) (:STORE . "45.19214,-93.89941")

33 (:--VERSION-- . 1440194917651447808))

34 ((:ID . "SOLR1000") (:NAME . "Solr, the Enterprise Search Server")

35 (:MANU . "Apache Software Foundation") (:CAT "software" "search")

36 (:FEATURES "Advanced Full-Text Search Capabilities using Lucene"

37 "Optimized for High Volume Web Traffic"

38 "Standards Based Open Interfaces - XML and HTTP"

39 "Comprehensive HTML Administration Interfaces"

40 "Scalability - Efficient Replication to other Solr Search Servers"

41 "Flexible and Adaptable with XML configuration and Schema"

42 "Good unicode support: hÃ©llo (hello with an accent over the e)")

43 (:PRICE . 0.0) (:PRICE--C . "0,USD") (:POPULARITY . 10) (:IN-STOCK . T)

44 (:INCUBATIONDATE--DT . "2006-01-17T00:00:00Z")

45 (:--VERSION-- . 1440194917671370752)))

There are a few more important details if you want to add Solr search to your Common Lisp
applications. When there are many search results you might want to fetch a limited number of
results and then “page” through them. The following strings can be added to the end of a search
query:

• &rows=2 this example returns a maximum of two “rows” or two query results.
• &start=4 this example skips the first 4 available results

A query that combines skipping results and limiting the number of returned results looks like this:

1 http://localhost:8983/solr/select?q=British+One&wt=json&start=2&rows=2

Common Lisp Solr Client for Adding Documents

In the last example we relied on adding example documents to the Solr search index using the
directions for setting up a new Solr installation. In a real application, in addition to performing search
requests for indexed documents you will need to add new documents from your Lisp applications.
Using the Drakma we will see that it is very easy to add documents.

We need to construct a bit of XML containing new documents in the form:

Using MongoDB, Solr NoSQL Data Stores 111

1 <add>

2 <doc>

3 <field name="id">123456</field>

4 <field name="title">Fishing Season</field>

5 </doc>

6 </add>

You can specify whatever field names (attributes) that are required for your application. You can
also pass multiple <doc></doc> elements in one add request. We will want to specify documents in
a Lisp-like way: a list of cons values where each cons value is a field name and a value. For the last
XML document example we would like an API that lets us just deal with Lisp data like:

(do-add '(("id" . "12345")

("title" . "Fishing Season")))

One thing to note: the attribute names and values must be passed as strings. Other data types like
integers, floating point numbers, structs, etc. will not work.

This is nicer than having to use XML, right? The first thing we need is a function to convert a list
of cons values to XML. I could have used the XML Builder functionality in the cxml library that is
available via Quicklisp, but for something this simple I just wrote it in pure Common Lisp with no
other dependencies (also in the example file src/solr-client.lisp) :

1 (defun keys-values-to-xml-string (keys-values-list)

2 (with-output-to-string (stream)

3 (format stream "<add><doc>")

4 (dolist (kv keys-values-list)

5 (format stream "<field name=\"")

6 (format stream (car kv))

7 (format stream "\">")

8 (format stream (cdr kv))

9 (format stream "\"</field>"))

10 (format stream "</doc></add>")))

The macro with-output-to-string on line 2 of the listing is my favorite way to generate strings.
Everything written to the variable stream inside the macro call is appended to a string; this string
is the return value of the macro.

The following function adds documents to the Solr document input queue but does not actually
index them:

Using MongoDB, Solr NoSQL Data Stores 112

1 (defun do-add (keys-values-list)

2 (drakma:http-request

3 "http://localhost:8983/solr/update"

4 :method :post

5 :content-type "application/xml"

6 :content (keys-values-to-xml-string keys-values-list)))

You have noticed in line 3 that I am accessing a Solr server running on localhost and not a remote
server. In an application using a remote Solr server you would need to modify this to reference your
server; for example:

1 "http://solr.knowledgebooks.com:8983/solr/update"

For efficiency Solr does not immediately add new documents to the index until you commit the
additions. The following function should be called after you are done adding documents to actually
add them to the index:

(defun commit-adds ()

(drakma:http-request

"http://localhost:8983/solr/update"

:method :post

:content-type "application/xml"

:content "<commit></commit>"))

Notice that all we need is an empty element <commit></commit> that signals the Solr server that
it should index all recently added documents. The following repl listing shows everything working
together (I am assuming that the contents of the file src/solr-client.lisp has been loaded); not all of
the output is shown in this listing:

* (do-add '(("id" . "12345") ("title" . "Fishing Season")))

200

((:CONTENT-TYPE . "application/xml; charset=UTF-8")

(:CONNECTION . "close"))

#<PURI:URI http://localhost:8983/solr/update>

#<FLEXI-STREAMS:FLEXI-IO-STREAM {1009193133}>

T

"OK"

* (commit-adds)

200

((:CONTENT-TYPE . "application/xml; charset=UTF-8")

Using MongoDB, Solr NoSQL Data Stores 113

(:CONNECTION . "close"))

#<PURI:URI http://localhost:8983/solr/update>

#<FLEXI-STREAMS:FLEXI-IO-STREAM {10031F20B3}>

T

"OK"

* (do-search "fishing")

((:RESPONSE-HEADER (:STATUS . 0) (:*Q-TIME . 2)

(:PARAMS (:Q . "fishing") (:WT . "json")))

(:RESPONSE (:NUM-FOUND . 1) (:START . 0)

(:DOCS

((:ID . "12345\"") (:TITLE "Fishing Season\"")

(:--VERSION-- . 1440293991717273600)))))

*

Common Lisp Solr Client Wrap Up

Solr has a lot of useful features that we have not used here like supporting faceted search (drilling
down in previous search results), geolocation search, and looking up indexed documents by attribute.
In the examples I have shown you, all text fields are indexed but Solr optionally allows you fine
control over indexing, spelling correction, word stemming, etc.

Solr is a very capable tool for storing, indexing, and searching data. I have seen Solr used effectively
on projects as a replacement for a relational database or other NoSQL data stores like CouchDB or
MongoDB. There is a higher overhead for modifying or removing data in Solr so for applications
that involve frequent modifications to stored data Solr might not be a good choice.

NoSQL Wrapup

There are more convenient languages than Common Lisp to use for accessing MongoDB. To be
honest, my favorites are Ruby and Clojure. That said, for applications where the advantages of
Common Lisp are compelling, it is good to know that your Common Lisp applications can play
nicely with MongoDB.

I am a polyglot programmer: I like to use the best programming language for any specific job. When
we design and build systems with more than one programming language, there are several options
to share data:

• Use foreign function interfaces to call one language from another from inside one process.
• Use a service architecture and send requests using REST or SOAP.
• Use shared data stores, like relational databases, MongoDB, CouchDB and Solr.

Hopefully this chapter and the last chapter will provide most of what you need for the last option.

Natural Language Processing
Natural Language Processing (NLP) is the automated processing of natural language text with
several goals:

• Determine the parts of speech (POS tagging) of words based on the surrounding words.
• Detect if two text documents are similar.
• Categorize text (e.g., is it about the economy, politics, sports, etc.)
• Summarize text
• Determine the sentiment of text
• Detect names (e.g., place names, people’s names, product names, etc.)

We will use a library that I wrote that performs POS tagging, categorization (classification),
summarization, and detects proper names.

My example code for this chapter is contained in separate Quicklisp projects located in the
subdirectories:

• src/fasttag: performs part of speech tagging and tokenizes text
• src/categorize_summarize: performs categorization (e.g., detects the topic of text is news,
politics, economy, etc.) and text summarization

• src/kbnlp: the top level APIs for my pure Common Lisp natural language processing (NLP)
code. In later chapters we will take a different approach by using Python deep learning models
for NLP that we call as a web service. I use both approaches in my own work.

I worked on this Lisp code, and also similar code in Java, from about 2001 to 2011, and again in 2019
for my application for generating knowledge graph data automatically (this is an example in a later
chapter). I am going to begin the next section with a quick explanation of how to run the example
code. If you find the examples interesting then you can also read the rest of this chapter where I
explain how the code works.

The approach that I used in my library for categorization (word counts) is now dated. I recommend
that you consider taking Andrew Ng’s course on Machine Learning on the free online Coursera
system and then take one of the Coursera NLP classes for a more modern treatment of NLP.

In addition to the code for my library you might also find the linguistic data in src/linguistic_data
useful.

Loading and Running the NLP Library

I repackaged the NLP example code into one long file. The code used to be split over 18 source files.
The code should be loaded from the src/kbnlp directory:

Natural Language Processing 115

1 % loving-common-lisp git:(master) > cd src/kbnlp

2 % src/kbnlp git:(master) > sbcl

3 * (ql:quickload "kbnlp")

4

5 "Startng to load data...."

6 "....done loading data."

7 *

This also loads the projects in src/fasttag and src/categorize_summarize.

Unfortunately, it takes about a minute using SBCL to load the required linguistic data so I
recommend creating a Lisp image that can be reloaded to avoid the time required to load the data:

1 * (sb-ext:save-lisp-and-die "nlp-image" :purify t)

2 [undoing binding stack and other enclosing state... done]

3 [saving current Lisp image into nlp-image:

4 writing 5280 bytes from the read-only space at 0x0x20000000

5 writing 3088 bytes from the static space at 0x0x20100000

6 writing 80052224 bytes from the dynamic space at 0x0x1000000000

7 done]

8 % src git:(master) > ls -lh nlp-image

9 -rw-r--r-- 1 markw staff 76M Jul 13 12:49 nlp-image

In line 1 in this repl listing, I use the SBCL built-in function save-lisp-and-die to create the Lisp
image file. Using save-lisp-and-die is a great technique to use whenever it takes a while to set up
your work environment. Saving a Lisp image for use the next time you work on a Common Lisp
project is reminiscent of working in Smalltalk where your work is saved between sessions in an
image file.

Note: I often use Clozure-CL (CCL) instead of SBCL for developing my NLP libraries because CCL
loads my data files much faster than SBCL.

You can now start SBCL with the NLP library and data preloaded using the Lisp image that you just
created:

1 % src git:(master) > sbcl --core nlp-image

2 * (in-package :kbnlp)

3

4 #<PACKAGE "KBNLP">

5 * (defvar

6 *x*

7 (make-text-object

8 "President Bob Smith talked to Congress about the economy and taxes"))

9

Natural Language Processing 116

10 *X*

11

12 * *X*

13

14 #S(TEXT

15 :URL ""

16 :TITLE ""

17 :SUMMARY "<no summary>"

18 :CATEGORY-TAGS (("news_politics.txt" 0.01648)

19 ("news_economy.txt" 0.01601))

20 :KEY-WORDS NIL

21 :KEY-PHRASES NIL

22 :HUMAN-NAMES ("President Bob Smith")

23 :PLACE-NAMES NIL

24 :TEXT #("President" "Bob" "Smith" "talked" "to" "Congress" "about" "the"

25 "economy" "and" "taxes")

26 :TAGS #("NNP" "NNP" "NNP" "VBD" "TO" "NNP" "IN" "DT" "NN" "CC" "NNS")

27 :STEMS #("presid" "bob" "smith" "talk" "to" "congress" "about" "the"

28 "economi" "and" "tax"))

29 *

At the end of the file src/knowledgebooks_nlp.lisp in comments is some test code that processes
much more text so that a summary is also generated; here is a bit of the output you will see if you
load the test code into your repl:

1 (:SUMMARY

2 "Often those amendments are an effort to change government policy

3 by adding or subtracting money for carrying it out. The initial

4 surge in foreclosures in 2007 and 2008 was tied to subprime

5 mortgages issued during the housing boom to people with shaky

6 credit. 2 trillion in annual appropriations bills for funding

7 most government programs — usually low profile legislation that

8 typically dominates the work of the House in June and July.

9 Bill Clinton said that banking in Europe is a good business.

10 These days homeowners who got fixed rate prime mortgages because

11 they had good credit cannot make their payments because they are

12 out of work. The question is whether or not the US dollar remains

13 the world s reserve currency if not the US economy will face

14 a depression."

15 :CATEGORY-TAGS (("news_politics.txt" 0.38268)

16 ("news_economy.txt" 0.31182)

17 ("news_war.txt" 0.20174))

Natural Language Processing 117

18 :HUMAN-NAMES ("President Bill Clinton")

19 :PLACE-NAMES ("Florida"))

The top-level function make-text-object takes one required argument that can be either a string
containing text or an array of strings where each string is a word or punctuation. Function make-
text-object has two optional keyword parameters: the URL where the text was found and a title.

1 (defun make-text-object (words &key (url "") (title ""))

2 (if (typep words 'string) (setq words (words-from-string words)))

3 (let* ((txt-obj (make-text :text words :url url :title title)))

4 (setf (text-tags txt-obj) (part-of-speech-tagger words))

5 (setf (text-stems txt-obj) (stem-text txt-obj))

6 ;; note: we must find human and place names before calling

7 ;; pronoun-resolution:

8 (let ((names-places (find-names-places txt-obj)))

9 (setf (text-human-names txt-obj) (car names-places))

10 (setf (text-place-names txt-obj) (cadr names-places)))

11 (setf (text-category-tags txt-obj)

12 (mapcar

13 #'(lambda (x)

14 (list

15 (car x)

16 (/ (cadr x) 1000000.0)))

17 (get-word-list-category (text-text txt-obj))))

18 (setf (text-summary txt-obj) (summarize txt-obj))

19 txt-obj))

In line 2, we check if this function was called with a string containing text in which case the function
words-from-string is used to tokenize the text into an array of string tokens. Line two defines the
local variable txt-obj with the value of a new text object with only three slots (attributes) defined:
text, url, and title. Line 4 sets the slot text-tags to the part of speech tokens using the function part-
of-speech-tagger. We use the function find-names-places in line 8 to get person and place names
and store these values in the text object. In lines 11 through 17 we use the function get-word-list-
category to set the categories in the text object. In line 18 we similarly use the function summarize
to calculate a summary of the text and also store it in the text object. We will discuss these NLP
helper functions throughout the rest of this chapter.

The function make-text-object returns a struct that is defined as:

Natural Language Processing 118

(defstruct text

url

title

summary

category-tags

key-words

key-phrases

human-names

place-names

text

tags

stems)

Part of Speech Tagging

This tagger is the Common Lisp implementation of my FastTag open source project. I based this
project on Eric Brill’s PhD thesis (1995). He usedmachine learning on annotated text to learn tagging
rules. I used a subset of the tagging rules that he generated that were most often used when he tested
his tagger. I hand coded his rules in Lisp (and Ruby, Java, and Pascal). My tagger is less accurate, but
it is fast - thus the name FastTag.

If you just need part of speech tagging (and not summarization, categorization, and top level APIs
used in the last section) you can load:

1 (ql:quickload "fasttag")

You can find the tagger implementation in the function part-of-speech-tagger. We already saw
sample output from the tagger in the last section:

1 :TEXT #("President" "Bob" "Smith" "talked" "to" "Congress" "about" "the"

2 "economy" "and" "taxes")

3 :TAGS #("NNP" "NNP" "NNP" "VBD" "TO" "NNP" "IN" "DT" "NN" "CC" "NNS")

The following table shows the meanings of the tags and a few example words:

Natural Language Processing 119

Tag Definition Example words
CC Coord Conjuncn and, but, or
NN Noun, sing. or mass dog
CD Cardinal number one, two
NNS Noun, plural dogs, cats
DT Determiner the, some
NNP Proper noun, sing. Edinburgh
EX Existential there there
NNPS Proper noun, plural Smiths
FW Foreign Word mon dieu
PDT Predeterminer all, both
IN Preposition of, in, by
POS Possessive ending ’s
JJ Adjective big
PP Personal pronoun I, you, she
JJR Adj., comparative bigger
PP$ Possessive pronoun my, one’s
JJS Adj., superlative biggest
RB Adverb quickly
LS List item marker 1, One
RBR Adverb, comparative faster
MD Modal can, should
RBS Adverb, superlative fastest
RP Particle up, off
WP$ Possessive-Wh whose
SYM Symbol +, %, &
WRB Wh-adverb how, where
TO “to” to
$ Dollar sign $
UH Interjection oh, oops
Pound sign
VB verb, base form eat, run
” quote ”
VBD verb, past tense ate
VBG verb, gerund eating
(Left paren (
VBN verb, past part eaten
) Right paren)
VBP Verb, present eat
, Comma ,
VBZ Verb, present eats
. Sent-final punct . ! ?
WDT Wh-determiner which, that
: Mid-sent punct. : ; —
WP Wh pronoun who, what

The function part-of-speech-tagger loops through all input words and initially assigns the most

Natural Language Processing 120

likely part of speech as specified in the lexicon. Then a subset of Brill’s rules are applied. Rules
operate on the current word and the previous word.

As an example Common Lisp implementation of a rule, look for words that are tagged as common
nouns, but end in “ing” so they should be a gerand (verb form):

; rule 8: convert a common noun to a present

; participle verb (i.e., a gerand)

(if (equal (search "NN" r) 0)

(let ((i (search "ing" w :from-end t)))

(if (equal i (- (length w) 3))

(setq r "VBG"))))

You can find the lexicon data in the file src/linguistic_data/FastTagData.lisp. This file is List code
instead of plain data (that in retrospect would be better because it would load faster) and looks like:

(defvar lex-hash (make-hash-table :test #'equal :size 110000))

(setf (gethash "shakeup" lex-hash) (list "NN"))

(setf (gethash "Laurance" lex-hash) (list "NNP"))

(setf (gethash "expressing" lex-hash) (list "VBG"))

(setf (gethash "citybred" lex-hash) (list "JJ"))

(setf (gethash "negative" lex-hash) (list "JJ" "NN"))

(setf (gethash "investors" lex-hash) (list "NNS" "NNPS"))

(setf (gethash "founding" lex-hash) (list "NN" "VBG" "JJ"))

I generated this file automatically from lexicon data using a small Ruby script. Notice that words
can have more than one possible part of speech. The most common part of speech for a word is the
first entry in the lexicon.

Categorizing Text

The code to categorize text is fairly simple using a technique often called “bag of words.” I collected
sample text in several different categories and for each category (like politics, sports, etc.) I calculated
the evidence or weight that words contribute to supporting a category. For example, the word
“president” has a strong weight for the category “politics” but not for the category “sports.” The
reason is that the word “president” occurs frequently in articles and books about politics. The data
file that contains the word weightings for each category is src/data/cat-data-tables.lisp. You can
look at this file; here is a very small part of it:

If you only need categorization and not the other libraries developed in this chapter, you can just
load this library and run the example in the comment at the bottom of the file categorize_summa-
rize.lisp:

Natural Language Processing 121

({lang=”lisp”,linenos=off} (ql:quickload “categorize_summarize”) (defvar x “President Bill Clinton
<<2 pages text no shown>> “) (defvar words1 (myutils:words-from-string x)) (print words1) (setq
cats1 (categorize_summarize:categorize words1)) (print cats1) (defvar sum1 (categorize_summa-
rize:summarize words1 cats1)) (print sum1)

Let’s look at the implementation, starting with creating hash tables for storing word count data for
each category or topic:

;;; Starting topic: news_economy.txt

(setf *h* (make-hash-table :test #'equal :size 1000))

(setf (gethash "news" *h*) 3915)

(setf (gethash "debt" *h*) 3826)

(setf (gethash "money" *h*) 1809)

(setf (gethash "work" *h*) 1779)

(setf (gethash "business" *h*) 1631)

(setf (gethash "tax" *h*) 1572)

(setf (gethash "poverty" *h*) 1512)

This file was created by a simple Ruby script (not included with the book’s example code) that
processes a list of sub-directories, one sub-directory per category. The following listing shows the
implementation of function get-word-list-category that calculates category tags for input text:

1 (defun get-word-list-category (words)

2 (let ((x nil)

3 (ss nil)

4 (cat-hash nil)

5 (word nil)

6 (len (length words))

7 (num-categories (length categoryHashtables))

8 (category-score-accumulation-array

9 (make-array num-categories :initial-element 0)))

10

11 (defun list-sort (list-to-sort)

12 ;;(pprint list-to-sort)

13 (sort list-to-sort

14 #'(lambda (list-element-1 list-element-2)

15 (> (cadr list-element-1) (cadr list-element-2)))))

16

17 (do ((k 0 (+ k 1)))

18 ((equal k len))

19 (setf word (string-downcase (aref words k)))

Natural Language Processing 122

20 (do ((i 0 (+ i 1)))

21 ((equal i num-categories))

22 (setf cat-hash (nth i categoryHashtables))

23 (setf x (gethash word cat-hash))

24 (if x

25 (setf

26 (aref category-score-accumulation-array i)

27 (+ x (aref category-score-accumulation-array i))))))

28 (setf ss '())

29 (do ((i 0 (+ i 1)))

30 ((equal i num-categories))

31 (if (> (aref category-score-accumulation-array i) 0.01)

32 (setf

33 ss

34 (cons

35 (list

36 (nth i categoryNames)

37 (round (* (aref category-score-accumulation-array i) 10)))

38 ss))))

39 (setf ss (list-sort ss))

40 (let ((cutoff (/ (cadar ss) 2))

41 (results-array '()))

42 (dolist (hit ss)

43 (if (> (cadr hit) cutoff)

44 (setf results-array (cons hit results-array))))

45 (reverse results-array))))

On thing to notice in this listing is lines 11 through 15 where I define a nested function list-sort that
takes a list of sub-lists and sorts the sublists based on the second value (which is a number) in the
sublists. I often nest functions when the “inner” functions are only used in the “outer” function.

Lines 2 through 9 define several local variables used in the outer function. The global variable
categoryHashtables is a list of word weighting score hash tables, one for each category. The local
variable category-score-accumulation-array is initialized to an array containing the number zero
in each element and will be used to “keep score” of each category. The highest scored categories will
be the return value for the outer function.

Lines 17 through 27 are two nested loops. The outer loop is over each word in the input word array.
The inner loop is over the number of categories. The logic is simple: for each word check to see if it
has a weighting score in each category’s word weighting score hash table and if it is, increment the
matching category’s score.

The local variable ss is set to an empty list on line 28 and in the loop in lines 29 through 38 I am
copying over categories and their scores when the score is over a threshold value of 0.01. We sort

Natural Language Processing 123

the list in ss on line 39 using the inner function and then return the categories with a score greater
than the median category score.

Detecting People’s Names and Place Names

The code for detecting people and place names is in the top level API code in the package defined
in src/kbnlp. This package is loaded using:

(ql:quickload "kbnlp")

(kbnlp:make-text-object "President Bill Clinton ran for president of the USA")

The functions that support identifying people’s names and place names in text are in the Common
Lisp package kb nlp::

• find-names (words tags exclusion-list) – words is an array of strings for the words in text, tags
are the parts of speech tags (from FastTag), and the exclusion list is a an array of words that
you want to exclude from being considered as parts of people’s names. The list of found names
records starting and stopping indices for names in the array words.

• not-in-list-find-names-helper (a-list start end) – returns true if a found name is not already
been added to a list for saving people’s names in text

• find-places (words exclusion-list) – this is similar to find-names, but it finds place names. The
list of found place names records starting and stopping indices for place names in the array
words.

• not-in-list-find-places-helper (a-list start end) – returns true if a found place name is not already
been added to a list for saving place names in text

• build-list-find-name-helper (v indices) – This converts lists of start/stop word indices to strings
containing the names

• find-names-places (txt-object) – this is the top level function that your application will call. It
takes a defstruct text object as input and modifies the defstruct text by adding people’s and
place names it finds in the text. You saw an example of this earlier in this chapter.

I will let you read the code and just list the top level function:

Natural Language Processing 124

1 (defun find-names-places (txt-object)

2 (let* ((words (text-text txt-object))

3 (tags (text-tags txt-object))

4 (place-indices (find-places words nil))

5 (name-indices (find-names words tags place-indices))

6 (name-list

7 (remove-duplicates

8 (build-list-find-name-helper words name-indices) :test #'equal))

9 (place-list

10 (remove-duplicates

11 (build-list-find-name-helper words place-indices) :test #'equal)))

12 (let ((ret '()))

13 (dolist (x name-list)

14 (if (search " " x)

15 (setq ret (cons x ret))))

16 (setq name-list (reverse ret)))

17 (list

18 (remove-shorter-names name-list)

19 (remove-shorter-names place-list))))

In line 2 we are using the slot accessor text-text to fetch the array of word tokens from the text
object. In lines 3, 4, and 5 we are doing the same for part of speech tags, place name indices in the
words array, and person names indices in the words array.

In lines 6 through 11 we are using the function build-list-find-name-helper twice to construct the
person names and place names as strings given the indices in the words array. We are also using the
Common Lisp built-in function remove-duplicates to get rid of duplicate names.

In lines 12 through 16 we are discarding any persons names that do not contain a space, that is, only
keep names that are at least two word tokens. Lines 17 through 19 define the return value for the
function: a list of lists of people and place names using the function remove-shorter-names twice
to remove shorter versions of the same names from the lists. For example, if we had two names “Mr.
John Smith” and “John Smith” then we would want to drop the shorter name “John Smith” from the
return list.

Summarizing Text

The code for summarizing text is located in the directory src/categorize_summarize and can be
loaded using:

({lang=”lisp”,linenos=off} (ql:quickload “categorize_summarize”)

The code for summarization depends on the categorization code we saw earlier.

Natural Language Processing 125

There are many applications for summarizing text. As an example, if you are writing a document
management system you will certainly want to use something like Solr to provide search func-
tionality. Solr will return highlighted matches in snippets of indexed document field values. Using
summarization, when you add documents to a Solr (or other) search index you could create a new
unindexed field that contains a document summary. Then when the users of your system see search
results they will see the type of highlighted matches in snippets they are used to seeing in Google,
Bing, or DuckDuckGo search results, and, they will see a summary of the document.

Sounds good? The problem to solve is getting good summaries of text and the technique used may
have to be modified depending on the type of text you are trying to summarize. There are two basic
techniques for summarization: a practical way that almost everyone uses, and an area of research
that I believe has so far seen little practical application. The techniques are sentence extraction and
abstraction of text into a shorter form by combining and altering sentences. We will use sentence
extraction.

How do we choose which sentences in text to extract for the summary? The idea I had in 1999 was
simple. Since I usually categorize text in my NLP processing pipeline why not use the words that
gave the strongest evidence for categorizing text, and find the sentences with the largest number of
these words. As a concrete example, if I categorize text as being “politics”, I identify the words in the
text like “president”, “congress”, “election”, etc. that triggered the “politics” classification, and find
the sentences with the largest concentrations of these words.

Summarization is something that you will probably need to experiment with depending on your
application. My old summarization code contained a lot of special cases, blocks of commented out
code, etc. I have attempted to shorten and simplify my old summarization code for the purposes of
this book as much as possible and still maintain useful functionality.

The function for summarizing text is fairly simple because when the function summarize is called
by the top level NLP library functionmake-text-object, the input text has already been categorized.
Remember from the example at the beginning of the chapter that the category data looks like this:

1 :CATEGORY-TAGS (("news_politics.txt" 0.38268)

2 ("news_economy.txt" 0.31182)

3 ("news_war.txt" 0.20174))

This category data is saved in the local variable cats on line 4 of the following listing.

Natural Language Processing 126

1 (defun summarize (txt-obj)

2 (let* ((words (text-text txt-obj))

3 (num-words (length words))

4 (cats (text-category-tags txt-obj))

5 (sentence-count 0)

6 best-sentences sentence (score 0))

7 ;; loop over sentences:

8 (dotimes (i num-words)

9 (let ((word (svref words i)))

10 (dolist (cat cats)

11 (let* ((hash (gethash (car cat) categoryToHash))

12 (value (gethash word hash)))

13 (if value

14 (setq score (+ score (* 0.01 value (cadr cat)))))))

15 (push word sentence)

16 (if (or (equal word ".") (equal word "!") (equal word ";"))

17 (let ()

18 (setq sentence (reverse sentence))

19 (setq score (/ score (1+ (length sentence))))

20 (setq sentence-count (1+ sentence-count))

21 (format t "~%~A : ~A~%" sentence score)

22 ;; process this sentence:

23 (if (and

24 (> score 0.4)

25 (> (length sentence) 4)

26 (< (length sentence) 30))

27 (progn

28 (setq sentence

29 (reduce

30 #'(lambda (x y) (concatenate 'string x " " y))

31 (coerce sentence 'list)))

32 (push (list sentence score) best-sentences)))

33 (setf sentence nil score 0)))))

34 (setf

35 best-sentences

36 (sort

37 best-sentences

38 #'(lambda (x y) (> (cadr x) (cadr y)))))

39 (if best-sentences

40 (replace-all

41 (reduce #'(lambda (x y) (concatenate 'string x " " y))

42 (mapcar #'(lambda (x) (car x)) best-sentences))

43 " ." ".")

Natural Language Processing 127

44 "<no summary>")))

The nested loops in lines 8 through 33 look a little complicated, so let’s walk through it. Our goal
is to calculate an importance score for each word token in the input text and to then select a few
sentences containing highly scored words. The outer loop is over the word tokens in the input text.
For each word token we loop over the list of categories, looking up the current word in each category
hash and incrementing the score for the current word token. As we increment the word token scores
we also look for sentence breaks and save sentences.

The complicated bit of code in lines 16 through 32 where I construct sentences and their scores, and
store sentences with a score above a threshold value in the list best-sentences. After the two nested
loops, in lines 34 through 44 we simply sort the sentences by score and select the “best” sentences for
the summary. The extracted sentences are no longer in their original order, which can have strange
effects, but I like seeing the most relevant sentences first.

Text Mining

Text mining in general refers to finding data in unstructured text. We have covered several text
mining techniques in this chapter:

• Named entity recognition - the NLP library covered in this chapter recognizes person
and place entity names. I leave it as an exercise for you to extend this library to handle
company and product names. You can start by collecting company and product names in
the files src/kbnlp/linguistic_data/names/names.companies and src/kbnlp/data/names/-
names.products and extend the library code.

• Categorizing text - you can increase the accuracy of categorization by adding more weighted
words/terms that support categories. If you are already using Java in the systems you build, I
recommend the Apache OpenNLP library that is more accurate than the simpler “bag of words”
approach I used in my Common Lisp NLP library. If you use Python, then I recommend that
you also try the NLTK library.

• Summarizing text.

In the next chapter I am going to cover another “data centric” topic: performing information
gathering on the web. You will likely find some synergy between being able to use NLP to create
structured data from unstructured text.

Information Gathering
This chapter covers information gathering on the web using data sources and general techniques that
I have found useful. When I was planning this new book edition I had intended to also cover some
basics for using the Semantic Web from Common Lisp, basically distilling some of the data from
my previous book “Practical Semantic Web and Linked Data Applications, Common Lisp Edition”
published in 2011. However since a free PDF is now available for that book⁵⁰ I decided to just refer
you to my previous work if you are interested in the Semantic Web and Linked Data. You can also
find the Java edition of this previous book on my web site.

Gathering information from the web in realtime has some real advantages:

• You don’t need to worry about storing data locally.
• Information is up to date (depending on which web data resources you choose to use).

There are also a few things to consider:

• Data on the web may have legal restrictions on its use so be sure to read the terms and
conditions on web sites that you would like to use.

• Authorship and validity of data may be questionable.

DBPedia Lookup Service

Wikipedia is a great source of information. As you may know, you can download a data dump of all
Wikipedia data⁵¹ with or without version information and comments. When I want fast access to the
entire Wikipedia set of English language articles I choose the second option and just get the current
pages with no comments of versioning information. This is the direct download link for current
Wikipedia articles.⁵² There are no comments or user pages in this GZIP file. This is not as much data
as you might think, only about 9 gigabytes compressed or about 42 gigabytes uncompressed.

To load and run an example, try:

(ql:quickload "dbpedia")

(dbpedia:dbpedia-lookup "berlin")

Wikipedia is a great resource to have on hand but I am going to show you in this section how to
access the Semantic Web version or Wikipedia, DBPedia⁵³ using the DBPedia Lookup Service in the
next code listing that shows the contents of the example file dbpedia-lookup.lisp in the directory
src/dbpedia:

⁵⁰http://markwatson.com/#books/
⁵¹https://en.wikipedia.org/wiki/Wikipedia:Database_download
⁵²http://download.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
⁵³http://dbpedia.org/

http://markwatson.com/#books/
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://download.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://download.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dbpedia.org/
http://markwatson.com/#books/
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://download.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dbpedia.org/

Information Gathering 129

1 (ql:quickload :drakma)

2 (ql:quickload :babel)

3 (ql:quickload :s-xml)

4

5 ;; utility from http://cl-cookbook.sourceforge.net/strings.html#manip:

6 (defun replace-all (string part replacement &key (test #'char=))

7 "Returns a new string in which all the occurrences of the part

8 is replaced with replacement."

9 (with-output-to-string (out)

10 (loop with part-length = (length part)

11 for old-pos = 0 then (+ pos part-length)

12 for pos = (search part string

13 :start2 old-pos

14 :test test)

15 do (write-string string out

16 :start old-pos

17 :end (or pos (length string)))

18 when pos do (write-string replacement out)

19 while pos)))

20

21 (defstruct dbpedia-data uri label description)

22

23 (defun dbpedia-lookup (search-string)

24 (let* ((s-str (replace-all search-string " " "+"))

25 (s-uri

26 (concatenate

27 'string

28 "http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?QueryString="

29 s-str))

30 (response-body nil)

31 (response-status nil)

32 (response-headers nil)

33 (xml nil)

34 ret)

35 (multiple-value-setq

36 (response-body response-status response-headers)

37 (drakma:http-request

38 s-uri

39 :method :get

40 :accept "application/xml"))

41 ;; (print (list "raw response body as XML:" response-body))

42 ;;(print (list ("status:" response-status "headers:" response-headers)))

43 (setf xml

Information Gathering 130

44 (s-xml:parse-xml-string

45 (babel:octets-to-string response-body)))

46 (dolist (r (cdr xml))

47 ;; assumption: data is returned in the order:

48 ;; 1. label

49 ;; 2. DBPedia URI for more information

50 ;; 3. description

51 (push

52 (make-dbpedia-data

53 :uri (cadr (nth 2 r))

54 :label (cadr (nth 1 r))

55 :description

56 (string-trim

57 '(#\Space #\NewLine #\Tab)

58 (cadr (nth 3 r))))

59 ret))

60 (reverse ret)))

61

62 ;; (dbpedia-lookup "berlin")

I am only capturing the attributes for DBPedia URI, label and description in this example code. If
you uncomment line 41 and look at the entire response body from the call to DBPedia Lookup, you
can see other attributes that you might want to capture in your applications.

Here is a sample call to the function dbpedia:dbpedia-lookup (only some of the returned data is
shown):

1 * (ql:quickload "dbpedia")

2 * (dbpedia:dbpedia-lookup "berlin")

3

4 (#S(DBPEDIA-DATA

5 :URI "http://dbpedia.org/resource/Berlin"

6 :LABEL "Berlin"

7 :DESCRIPTION

8 "Berlin is the capital city of Germany and one of the 16 states of Germany.

9 With a population of 3.5 million people, Berlin is Germany's largest city

10 and is the second most populous city proper and the eighth most populous

11 urban area in the European Union. Located in northeastern Germany, it is

12 the center of the Berlin-Brandenburg Metropolitan Region, which has 5.9

13 million residents from over 190 nations. Located in the European Plains,

14 Berlin is influenced by a temperate seasonal climate.")

15 ...)

Wikipedia, and the DBPedia linked data for of Wikipedia are great sources of online data. If you

Information Gathering 131

get creative, you will be able to think of ways to modify the systems you build to pull data from
DPPedia. One warning: Semantic Web/Linked Data sources on the web are not available 100% of
the time. If your business applications depend on having the DBPedia always available then you can
follow the instructions on the DBPedia web site⁵⁴ to install the service on one of your own servers.

Web Spiders

When you write web spiders to collect data from the web there are two things to consider:

• Make sure you read the terms of service for web sites whose data you want to use. I have found
that calling or emailing web site owners explaining how I want to use the data on their site
usually works to get permission.

• Make sure you don’t access a site too quickly. It is polite to wait a second or two between
fetching pages and other assets from a web site.

We have already used the Drakma web client library in this book. See the files src/dbpedia/dbpedia-
lookup.lisp (covered in the last section) and src/solr_examples/solr-client.lisp (covered in the
Chapter on NoSQL). Paul Nathan has written library using Drakma to crawl a web site with an
example to print out links as they are found. His code is available under the AGPL license at
articulate-lisp.com/src/web-trotter.lisp⁵⁵ and I recommend that as a starting point.

I find it is sometimes easier during development to make local copies of a web site so that I don’t
have to use excess resources from web site hosts. Assuming that you have thewget utility installed,
you can mirror a site like this:

1 wget -m -w 2 http://knowledgebooks.com/

2 wget -mk -w 2 http://knowledgebooks.com/

Both of these examples have a two-second delay between HTTP requests for resources. The option
-m indicates to recursively follow all links on the web site. The -w 2 option delays for two seconds
between requests. The option -mk converts URI references to local file references on your local
mirror. The second example on line 2 is more convenient.

We covered reading from local files in the Chapter on Input and Output. One trick I use is to simply
concatenate all web pages into one file. Assuming that you created a local mirror of a web site, cd
to the top level directory and use something like this:

1 cd knowledgebooks.com

2 cat *.html */*.html > ../web_site.html

You can then open the file, search for text in in p, div, h1, etc. HTML elements to process an entire
web site as one file.

⁵⁴http://dbpedia.org
⁵⁵http://articulate-lisp.com/examples/trotter.html

http://dbpedia.org/
http://articulate-lisp.com/examples/trotter.html
http://dbpedia.org/
http://articulate-lisp.com/examples/trotter.html

Information Gathering 132

Using Apache Nutch

Apache Nutch⁵⁶, like Solr, is built on Lucene search technology. I use Nutch as a “search engine in a
box” when I need to spider web sites and I want a local copy with a good search index.

Nutch handles a different developer’s use case over Solr which we covered in the Chapter on NoSQL.
As we saw, Solr is an effective tool for indexing and searching structured data as documents. With
very little setup, Nutch can be set up to automatically keep an up to date index of a list of web sites,
and optionally follow links to some desired depth from these “seed” web sites.

You can use the same Common Lisp client code that we used for Solr with one exception; you will
need to change the root URI for the search service to:

1 http://localhost:8080/opensearch?query=

So the modified client code src/solr_examples/solr-client.lisp needs one line changed:

1 (defun do-search (&rest terms)

2 (let ((query-string (format nil "~{~A~^+AND+~}" terms)))

3 (cl-json:decode-json-from-string

4 (drakma:http-request

5 (concatenate

6 'string

7 "http://localhost:8080/opensearch?query="

8 query-string

9 "&wt=json")))))

Early versions of Nutch were very simple to install and configure. Later versions of Nutch have been
more complex, more performant, and have more services, but it will take you longer to get set up
than earlier versions. If you just want to experiment with Nutch, you might want to start with an
earlier version.

The OpenSearch.org⁵⁷ web site contains many public OpenSearch services that you might want to
try. If you want to modify the example client code in src/solr-client.lisp a good start is OpenSearch
services that return JSON data and OpenSearch Community JSON formats web page⁵⁸ is a good
place to start. Some of the services on this web page like the New York Times service require that
you sign up for a developer’s API key.

When I start writing an application that requires web data (no matter which programming language
I am using) I start by finding services that may provide the type of data I need and do my initial
development with a web browser with plugin support to nicely format XML and JSON data. I do a
lot of exploring and take a lot of notes before I write any code.

⁵⁶https://nutch.apache.org/
⁵⁷http://www.opensearch.org/Home
⁵⁸http://www.opensearch.org/Community/JSON_Formats

https://nutch.apache.org/
http://www.opensearch.org/Home
http://www.opensearch.org/Community/JSON_Formats
https://nutch.apache.org/
http://www.opensearch.org/Home
http://www.opensearch.org/Community/JSON_Formats

Information Gathering 133

Wrap Up

I tried to provide some examples and advice in this short chapter to show you that even though
other languages like Ruby and Python have more libraries and tools for gathering information from
the web, Common Lisp has good libraries for information gathering also and they are easily used
via Quicklisp.

Using The CL Machine-Learning
Library
The CLMachine-Learning (CLML) library was originally developed byMSI (NTT DATAMathemat-
ical Systems Inc. in Japan) and is supported by many developers. You should visit the CLML web
page⁵⁹ for project documentation and follow the installation directions and read about the project
before using the examples in this chapter. However if you just want to quickly try the following
CLML examples then you can install CLML using Quicklisp:

1 mkdir -p ~/quicklisp/local-projects

2 cd ~/quicklisp/local-projects

3 git clone https://github.com/mmaul/clml.git

4 sbcl --dynamic-space-size 2560

5 > (ql:quickload :clml :verbose t)

The installation will take a while to run but after installation using the libraries via quickload is fast.
You can now run the example Quicklisp project src/clml_examples:

$ sbcl --dynamic-space-size 2560

* (ql:quickload "clmltest")

* (clmltest:clml-tests-example)

Please be patient the first time you run this because the first time you load the example project, the
one time installation of CLML will take a while to run but after installation then the example project
loads quickly. CLML installation involves downloading and installing BLAS, LAPACK, and other
libraries.

Other resources for CLML are the tutorials⁶⁰ and contributed extensions⁶¹ that include support for
plotting (using several libraries) and for fetching data sets.

Although CLML is fairly portable we will be using SBCL and we need to increase the heap space
when starting SBCL when we want to use the CLML library:

sbcl --dynamic-space-size 5000

⁵⁹https://github.com/mmaul/clml
⁶⁰https://github.com/mmaul/clml.tutorials
⁶¹https://github.com/mmaul/clml.extras

https://github.com/mmaul/clml
https://github.com/mmaul/clml
https://github.com/mmaul/clml.tutorials
https://github.com/mmaul/clml.extras
https://github.com/mmaul/clml
https://github.com/mmaul/clml.tutorials
https://github.com/mmaul/clml.extras

Using The CL Machine-Learning Library 135

You can refer to the documentation at https://github.com/mmaul/clml⁶². This documentation lists
the packages with some information for each package but realistically I keep the source code for
CLML in an editor or IDE and read source code while writing code that uses CLML. I will show you
with short examples how to use the KNN (K nearest neighbors) and SVM (support vector machines)
APIs. We will not cover other useful CLML APIs like time series processing, Naive Bayes, PCA
(principle component analysis) and general matrix and tensor operations.

Even though the learning curve is a bit steep, CLML provides a lot of functionality for machine
learning, dealing with time series data, and general matrix and tensor operations.

Using the CLML Data Loading and Access APIs

The CLML project uses several data sets and since the few that we will use are small files, they are
included in the book’s repository in directory machine_learning_data under the src directory. The
first few lines of labeled_cancer_training_data.csv are:

Cl.thickness,Cell.size,Cell.shape,Marg.adhesion,Epith.c.size,Bare.nuclei,Bl.cromatin\

,Normal.nucleoli,Mitoses,Class

5,4,4,5,7,10,3,2,1,benign

6,8,8,1,3,4,3,7,1,benign

8,10,10,8,7,10,9,7,1,malignant

2,1,2,1,2,1,3,1,1,benign

The first line in the CSV data files specifies names for each attribute with the name of the last
column being “Class” which here takes on values benign or malignant. Later, the goal will be to
create models that are constructed from training data and then make predictions of the “Class” of
new input data. We will look at how to build and use machine learning models later but here we
concentrate on reading and using input data.

The example file clml_data_apis.lisp shows how to open a file and loop over the values for each
row:

1 ;; note; run SBCL using: sbcl --dynamic-space-size 2560

2

3 (ql:quickload '(:clml

4 :clml.hjs)) ; read data sets

5

6 (defpackage #:clml-data-test

7 (:use #:cl #:clml.hjs.read-data))

8

9 (in-package #:clml-data-test)

⁶²https://github.com/mmaul/clml

https://github.com/mmaul/clml
https://github.com/mmaul/clml

Using The CL Machine-Learning Library 136

10

11 (defun read-data ()

12 (let ((train1

13 (clml.hjs.read-data:read-data-from-file

14 "./machine_learning_data/labeled_cancer_training_data.csv"

15 :type :csv

16 :csv-type-spec (append

17 (make-list 9 :initial-element 'double-float)

18 '(symbol)))))

19 (loop-over-and-print-data train1)))

20

21 (defun loop-over-and-print-data (clml-data-set)

22 (print "Loop over and print a CLML data set:")

23 (let ((testdata (clml.hjs.read-data:dataset-points clml-data-set)))

24 (loop for td across testdata

25 do

26 (print td))))

27

28 (read-data)

The function read-data defined in lines 11-19 uses the utility function clml.hjs.read-data:read-
data-from-file to read a CSV (comma separated value) spreadsheet file from disk. The CSV file is
expected to contain 10 columns (set in lines 17-18) with the first nine columns containing floating
point values and the last column text data.

The function loop-over-and-print-data defined in lines 21-26 reads the CLML data set object,
looping over each data sample (i.e., each row in the original spreadsheet file) and printing it.

Here is some output from loading this file:

1 $ sbcl --dynamic-space-size 2560

2 This is SBCL 1.3.16, an implementation of ANSI Common Lisp.

3 More information about SBCL is available at <http://www.sbcl.org/>.

4

5 SBCL is free software, provided as is, with absolutely no warranty.

6 It is mostly in the public domain; some portions are provided under

7 BSD-style licenses. See the CREDITS and COPYING files in the

8 distribution for more information.

9 * (load "clml_data_apis.lisp")

10

11 "Loop over and print a CLML data set:"

12 #(5.0d0 4.0d0 4.0d0 5.0d0 7.0d0 10.0d0 3.0d0 2.0d0 1.0d0 |benign|)

13 #(6.0d0 8.0d0 8.0d0 1.0d0 3.0d0 4.0d0 3.0d0 7.0d0 1.0d0 |benign|)

Using The CL Machine-Learning Library 137

14 #(8.0d0 10.0d0 10.0d0 8.0d0 7.0d0 10.0d0 9.0d0 7.0d0 1.0d0 |malignant|)

15 #(2.0d0 1.0d0 2.0d0 1.0d0 2.0d0 1.0d0 3.0d0 1.0d0 1.0d0 |benign|)

In the next section we will use the same cancer data training file, and another test data in the same
format to cluster this cancer data into similar sets, one set for non-malignant and one for malignant
samples.

K-Means Clustering of Cancer Data Set

We will now read the same University of Wisconsin cancer data set and cluster the input samples
(one sample per row of the spreadsheet file) into similar classes. We will find after training a model
that the data is separated into two clusters, representing non-malignant and malignant samples.

The function cancer-data-cluster-example-read-data defined in lines 33-47 is very similar to the
function read-data in the last section except here we read in two data files: one for training and one
for testing.

The function cluster-using-k-nn defined in lines 13-30 uses the training and test data objects to first
train a model and then to test it with test data that was previously used for training. Notice how
we call this function in line 47: the first two arguments are the two data set objects, the third is the
string “Class” that is the label for the 10th column of the original spreadsheet CSV files, and the last
argument is the type of distance measurement used to compare two data samples (i.e., comparing
any two rows of the training CSV data file).

1 ;; note; run SBCL using: sbcl --dynamic-space-size 2560

2

3 (ql:quickload '(:clml

4 :clml.hjs ; utilities

5 :clml.clustering))

6

7 (defpackage #:clml-knn-cluster-example1

8 (:use #:cl #:clml.hjs.read-data))

9

10 (in-package #:clml-knn-cluster-example1)

11

12 ;; folowing is derived from test code in CLML:

13 (defun cluster-using-k-nn (test train objective-param-name manhattan)

14 (let (original-data-column-length)

15 (setq original-data-column-length

16 (length (aref (clml.hjs.read-data:dataset-points train) 0)))

17 (let* ((k 5)

18 (k-nn-estimator

19 (clml.nearest-search.k-nn:k-nn-analyze train

Using The CL Machine-Learning Library 138

20 k

21 objective-param-name :all

22 :distance manhattan :normalize t)))

23 (loop for data across

24 (dataset-points

25 (clml.nearest-search.k-nn:k-nn-estimate k-nn-estimator test))

26 if (equal (aref data 0) (aref data original-data-column-length))

27 do

28 (format t "Correct: ~a~%" data)

29 else do

30 (format t "Wrong: ~a~%" data)))))

31

32 ;; folowing is derived from test code in CLML:

33 (defun cancer-data-cluster-example-read-data ()

34 (let ((train1

35 (clml.hjs.read-data:read-data-from-file

36 "./machine_learning_data/labeled_cancer_training_data.csv"

37 :type :csv

38 :csv-type-spec (append (make-list 9 :initial-element 'double-float)

39 '(symbol))))

40 (test1

41 (clml.hjs.read-data:read-data-from-file

42 "./machine_learning_data/labeled_cancer_test_data.csv"

43 :type :csv

44 :csv-type-spec (append (make-list 9 :initial-element 'double-float)

45 '(symbol)))))

46 ;;(print test1)

47 (print (cluster-using-k-nn test1 train1 "Class" :double-manhattan))))

48

49 (cancer-data-cluster-example-read-data)

The following listing shows the output from running the last code example:

1 Number of self-misjudgement : 13

2 Correct: #(benign 5.0d0 1.0d0 1.0d0 1.0d0 2.0d0 1.0d0 3.0d0 1.0d0 1.0d0 benign)

3 Correct: #(benign 3.0d0 1.0d0 1.0d0 1.0d0 2.0d0 2.0d0 3.0d0 1.0d0 1.0d0 benign)

4 Correct: #(benign 4.0d0 1.0d0 1.0d0 3.0d0 2.0d0 1.0d0 3.0d0 1.0d0 1.0d0 benign)

5 Correct: #(benign 1.0d0 1.0d0 1.0d0 1.0d0 2.0d0 10.0d0 3.0d0 1.0d0 1.0d0 benign)

6 Correct: #(benign 2.0d0 1.0d0 1.0d0 1.0d0 2.0d0 1.0d0 1.0d0 1.0d0 5.0d0 benign)

7 Correct: #(benign 1.0d0 1.0d0 1.0d0 1.0d0 1.0d0 1.0d0 3.0d0 1.0d0 1.0d0 benign)

8 Wrong: #(benign 5.0d0 3.0d0 3.0d0 3.0d0 2.0d0 3.0d0 4.0d0 4.0d0 1.0d0

9 malignant)

10 Correct: #(malignant 8.0d0 7.0d0 5.0d0 10.0d0 7.0d0 9.0d0 5.0d0 5.0d0 4.0d0

Using The CL Machine-Learning Library 139

11 malignant)

12 Correct: #(benign 4.0d0 1.0d0 1.0d0 1.0d0 2.0d0 1.0d0 2.0d0 1.0d0 1.0d0 benign)

13 Correct: #(malignant 10.0d0 7.0d0 7.0d0 6.0d0 4.0d0 10.0d0 4.0d0 1.0d0 2.0d0

14 malignant)

15 ...

SVM Classification of Cancer Data Set

We will now reuse the same cancer data set but use a different way to classify data into non-
malignant and malignant categories: Support Vector Machines (SVM). SVMs are linear classifiers
which means that they work best when data is linearly separable. In the case of the cancer data, there
are nine dimensions of values that (hopefully) predict one of the two output classes (or categories).
If we think of the first 9 columns of data as defining a 9-dimensional space, then SVMwill work well
when a 8-dimensional hyperplane separates the samples into the two output classes (categories).

To make this simpler to visualize, if we just had two input columns, that defines a two-dimensional
space, and if a straight line can separate most of the examples into the two output categories, then
the data is linearly separable so SVM is a good technique to use. The SVM algorithm is effectively
determining the parameters defining this one-dimensional line (or in the cancer data case, the 9-
dimensional hyperspace).

What if data is not linearly separable? Then use the backpropagation neural network code in the
chapter “Backpropagation Neural Networks” or the deep learning code in the chapter “Using Armed
Bear Common Lisp With DeepLearning4j” to create a model.

SVM is very efficient so it often makes sense to first try SVM and if trained models are not accurate
enough then use neural networks, including deep learning.

The following listing of file clml_svm_classifier.lisp shows how to read data, build a model and
evaluate the model with different test data. In line 15 we use the function clml.svm.mu:svm that
requires the type of kernel function to use, the training data, and testing data. Just for reference, we
usually use Gaussian kernel functions for processing numeric data and linear kernel functions for
handling text in natural language processing applications. Here we use a Gaussian kernel.

The function cancer-data-svm-example-read-data defined on line 40 differs from howwe read and
processed data earlier because we need to separate out the positive and negative training examples.
The data is split in the lexically scoped function in lines 42-52. The last block of code in lines 54-82
is just top-level test code that gets executed when the file clml_svm_classifier.lisp is loaded.

Using The CL Machine-Learning Library 140

1 ;; note; run SBCL using: sbcl --dynamic-space-size 2560

2

3 (ql:quickload '(:clml

4 :clml.hjs ; utilities

5 :clml.svm))

6

7 (defpackage #:clml-svm-classifier-example1

8 (:use #:cl #:clml.hjs.read-data))

9

10 (in-package #:clml-svm-classifier-example1)

11

12 (defun svm-classifier-test (kernel train test)

13 "train and test are lists of lists, with first elements being negative

14 samples and the second elements being positive samples"

15 (let ((decision-function (clml.svm.mu:svm kernel (cadr train) (car train)))

16 (correct-positives 0)

17 (wrong-positives 0)

18 (correct-negatives 0)

19 (wrong-negatives 0))

20 ;; type: #<CLOSURE (LAMBDA (CLML.SVM.MU::Z) :IN CLML.SVM.MU::DECISION)>

21 (print decision-function)

22 (princ "***** NEGATIVE TESTS: calling decision function:")

23 (terpri)

24 (dolist (neg (car test)) ;; negative test examples

25 (let ((prediction (funcall decision-function neg)))

26 (print prediction)

27 (if prediction (incf wrong-negatives) (incf correct-negatives))))

28 (princ "***** POSITIVE TESTS: calling decision function:")

29 (terpri)

30 (dolist (pos (cadr test)) ;; positive test examples

31 (let ((prediction (funcall decision-function pos)))

32 (print prediction)

33 (if prediction (incf correct-positives) (incf wrong-positives))))

34 (format t "Number of correct negatives ~a~%" correct-negatives)

35 (format t "Number of wrong negatives ~a~%" wrong-negatives)

36 (format t "Number of correct positives ~a~%" correct-positives)

37 (format t "Number of wrong positives ~a~%" wrong-positives)))

38

39

40 (defun cancer-data-svm-example-read-data ()

41

42 (defun split-positive-negative-cases (data)

43 (let ((negative-cases '())

Using The CL Machine-Learning Library 141

44 (positive-cases '()))

45 (dolist (d data)

46 ;;(print (list "* d=" d))

47 (if (equal (symbol-name (first (last d))) "benign")

48 (setf negative-cases

49 (cons (reverse (cdr (reverse d))) negative-cases))

50 (setf positive-cases

51 (cons (reverse (cdr (reverse d))) positive-cases))))

52 (list negative-cases positive-cases)))

53

54 (let* ((train1

55 (clml.hjs.read-data:read-data-from-file

56 "./machine_learning_data/labeled_cancer_training_data.csv"

57 :type :csv

58 :csv-type-spec (append (make-list 9 :initial-element 'double-float)

59 '(symbol))))

60 (train-as-list

61 (split-positive-negative-cases

62 (coerce

63 (map 'list

64 #'(lambda (x) (coerce x 'list))

65 (coerce (clml.hjs.read-data:dataset-points train1) 'list))

66 'list)))

67 (test1

68 (clml.hjs.read-data:read-data-from-file

69 "./machine_learning_data/labeled_cancer_test_data.csv"

70 :type :csv

71 :csv-type-spec (append (make-list 9 :initial-element 'double-float)

72 '(symbol))))

73 (test-as-list

74 (split-positive-negative-cases

75 (coerce

76 (map 'list

77 #'(lambda (x) (coerce x 'list))

78 (coerce (clml.hjs.read-data:dataset-points test1) 'list))

79 'list))))

80

81 ;; we will use a gaussian kernel for numeric data.

82 ;; note: for text classification, use a clml.svm.mu:+linear-kernel+

83 (svm-classifier-test

84 (clml.svm.mu:gaussian-kernel 2.0d0)

85 train-as-list test-as-list)))

86

Using The CL Machine-Learning Library 142

87 (cancer-data-svm-example-read-data)

The sample code prints the prediction values for the test data which I will not show here. Here are
the last four lines of output showing the cumulative statistics for the test data:

1 Number of correct negatives 219

2 Number of wrong negatives 4

3 Number of correct positives 116

4 Number of wrong positives 6

CLML Wrap Up

The CLML machine learning library is under fairly active development and I showed you enough to
get started: understanding the data APIs and examples for KNN clustering and SVM classification.

A good alternative to CLML is MGL⁶³ that supports backpropagation neural networks, boltzmann
machines, and gaussian processes.

In the next two chapters we continue with the topic of machine learning with backpropagation andf
Hopfield neural networks.

⁶³https://github.com/melisgl/mgl

https://github.com/melisgl/mgl
https://github.com/melisgl/mgl

Backpropagation Neural Networks
Let’s start with an overview of how these networks work and then fill in more detail later.
Backpropagation networks are trained by applying training inputs to the network input layer,
propagate values through the network to the output neurons, compare the errors (or differences)
between these propagated output values and the training data output values. These output errors
are backpropagated though the network and the magnitude of backpropagated errors are used to
adjust the weights in the network.

The example we look at here uses the plotlib package from an earlier chapter and the source code
for the example is the file loving_snippet/backprop_neural_network.lisp.

We will use the following diagram to make this process more clear. There are four weights in this
very simple network:

• W¹,¹ is the floating point number representing the connection strength between input_neuron¹
and output_neuron¹

• W²,¹ connects input_neuron² to output_neuron¹
• W¹,² connects input_neuron¹ to output_neuron²
• W²,² connects input_neuron² to output_neuron²

Understanding how connection weights connect neurons in adjacent layers

Backpropagation Neural Networks 144

Before any training the weight values are all small random numbers.

Consider a training data element where the input neurons have values [0.1, 0.9] and the desired
output neuron values are [0.9 and 0.1], that is flipping the input values. If the propagated output
values for the current weights are [0.85, 0.5] then the value of the first output neuron has a small
error abs(0.85 - 0.9) which is 0.05. However the propagated error of the second output neuron is high:
abs(0.5 - 0.1) which is 0.4. Informally we see that the weights feeding input output neuron 1 (W¹,¹
andW²,¹) don’t need to be changed much but the neuron that feeding input neuron 2 (W¹,² andW²,²)
needs modification (the value of W²,² is too large).

Of course, wewould never try tomanually train a network like this but it is important to have at least
an informal understanding of how weights connect the flow of value (we will call this activation
value later) between neurons.

In this neural network see in the first figure we have four weights connecting the input and output
neurons. Think of these four weights forming a four-dimensional space where the range in each
dimension is constrained to small positive and negative floating point values. At any point in this
“weight space”, the numeric values of the weights defines a model that maps the inputs to the outputs.
The error seen at the output neurons is accumulated for each training example (applied to the input
neurons). The training process is finding a point in this four-dimensional space that has low errors
summed across the training data. We will use gradient descent to start with a random point in the
four-dimensional space (i.e., an initial random set of weights) and move the point towards a local
minimum that represents the weights in a model that is (hopefully) “good enough” at representing
the training data.

This process is simple enough but there are a few practical considerations:

• Sometimes the accumulated error at a local minimum is too large even after many training
cycles and it is best to just restart the training process with new random weights.

• If we don’t have enough training data then the network may have enough memory capacity
to memorize the training examples. This is not what we want: we want a model with just
enough memory capacity (as represented by the number of weights) to form a generalized
predictive model, but not so specific that it just memorizes the training examples. The solution
is to start with small networks (few hidden neurons) and increase the number of neurons until
the training data can be learned. In general, having a lot of training data is good and it is also
good to use as small a network as possible.

In practice using backpropagation networks is an iterative process of experimenting with the size of
a network.

In the example program (in the file backprop_neural_network.lisp) we use the plotting library
developed earlier to visualize neuron activation and connecting weight values while the network
trains.

The following three screen shots from running the function test3 defined at the bottom of the
file backprop_neural_network.lisp illustrate the process of starting with random weights, getting

Backpropagation Neural Networks 145

random outputs during initial training, and as delta weights are used to adjust the weights in a
network, then the training examples are learned:

At the start of the training run with random weights and large delta weights

In the last figure the initial weights are random so we get random mid-range values at the output
neurons.

The trained weights start to produce non-random output

Aswe start to train the network, adjusting theweights, we start to see variation in the output neurons
as a function of what the inputs are.

Backpropagation Neural Networks 146

After training many cycles the training examples are learned, with only small output errors

In the last figure the network is trained sufficiently well to map inputs [0, 0, 0, 1] to output values
that are approximately [0.8, 0.2, 0.2, 0.3] which is close to the expected value [1, 0, 0, 0].

The example source file backprop_neural_network.lisp is long so we will only look at the more
interesting parts here. Specifically we will not look at the code to plot neural networks using plotlib.

The activation values of individual neurons are limited to the range [0, 1] by first calculating their
values based on the sum activation values of neurons in the previous layer times the values of the
connecting weights and then using the Sigmoid function to map the sums to the desired range. The
Sigmoid function and the derivative of the Sigmoid function (dSigmoid) look like:

Sigmoid and Derivative of the Sigmid Functions

Here are the definitions of these functions:

Backpropagation Neural Networks 147

(defun Sigmoid (x)

(/ 1.0 (+ 1.0 (exp (- x)))))

(defun dSigmoid (x)

(let ((temp (Sigmoid x)))

(* temp (- 1.0 temp)))

The function NewDeltaNetwork creates a new neual network object. This code allocates storage
for input, hidden, output layers (I sometimes refer to neuron layers as “slabs”), and the connection
weights. Connection weights are initialized to small random values.

1 ; (NewDeltaNetwork sizeList)

2 ; Args: sizeList = list of sizes of slabs. This also defines

3 ; the number of slabs in the network.

4 ; (e.g., '(10 5 4) ==> a 3-slab network with 10

5 ; input neurons, 5 hidden neurons, and 4 output

6 ; neurons).

7 ;

8 ; Returned value = a list describing the network:

9 ; (nLayers sizeList

10 ; (activation-array[1] .. activation-array[nLayers])

11 ; (weight-array[2] .. weight-array[nLayers])

12 ; (sum-of-products[2] .. sum-of-products[nLayers[nLayers])

13 ; (back-prop-error[2] .. back-prop-error[nLayers]))

14 ; (old-delta-weights[2] .. for momentum term

15

16 :initial-element 0.0))

17 (reverse old-dw-list)))

18

19 ;;

20 ; Initialize values for all activations:

21 ;;

22 (mapc

23 (lambda (x)

24 (let ((num (array-dimension x 0)))

25 (dotimes (n num)

26 (setf (aref x n) (frandom 0.01 0.1)))))

27 a-list)

28

29 ;;

30 ; Initialize values for all weights:

31 ;;

32 (mapc

Backpropagation Neural Networks 148

33 (lambda (x)

34 (let ((numI (array-dimension x 0))

35 (numJ (array-dimension x 1)))

36 (dotimes (j numJ)

37 (dotimes (i numI)

38 (setf (aref x i j) (frandom -0.5 0.5))))))

39 w-list)

40 (list numLayers sizeList a-list s-list w-list dw-list

41 d-list old-dw-list alpha beta)))

In the following listing the function DeltaLearn processes one pass through all of the training data.
Function DeltaLearn is called repeatedly until the return value is below a desired error threshold.
The main loop over each training example is implemented in lines 69-187. Inside this outer loop there
are two phases of training for each training example: a forward pass propagating activation from
the input neurons to the output neurons via any hidden layers (lines 87-143) and then the weight
correcting backpropagation of output errors while making small adjustments to weights (lines 148-
187):

1 ;;

2 ; Utility function for training a delta rule neural network.

3 ; The first argument is the name of an output PNG plot file

4 ; and a nil value turns off plotting the network during training.

5 ; The second argument is a network definition (as returned from

6 ; NewDeltaNetwork), the third argument is a list of training

7 ; data cases (see the example test functions at the end of this

8 ; file for examples.

9 ;;

10

11 (defun DeltaLearn (plot-output-file-name

12 netList trainList)

13 (let ((nLayers (car netList))

14 (sizeList (cadr netList))

15 (activationList (caddr netList))

16 (sumOfProductsList (car (cdddr netList)))

17 (weightList (cadr (cdddr netList)))

18 (deltaWeightList (caddr (cdddr netList)))

19 (deltaList (cadddr (cdddr netList)))

20 (oldDeltaWeightList (cadddr (cdddr (cdr netList))))

21 (alpha (cadddr (cdddr (cddr netList))))

22 (beta (cadddr (cdddr (cdddr netList))))

23 (inputs nil)

24 (targetOutputs nil)

25 (iDimension nil)

Backpropagation Neural Networks 149

26 (jDimension nil)

27 (iActivationVector nil)

28 (jActivationVector nil)

29 (n nil)

30 (weightArray nil)

31 (sumOfProductsArray nil)

32 (iDeltaVector nil)

33 (jDeltaVector nil)

34 (deltaWeightArray nil)

35 (oldDeltaWeightArray nil)

36 (sum nil)

37 (iSumOfProductsArray nil)

38 (error nil)

39 (outputError 0)

40 (delta nil)

41 (eida nil)

42 (inputNoise 0))

43

44 ;;

45 ; Zero out deltas:

46 ;;

47 (dotimes (n (- nLayers 1))

48 (let* ((dw (nth n deltaList))

49 (len1 (array-dimension dw 0)))

50 (dotimes (i len1)

51 (setf (aref dw i) 0.0))))

52

53 ;;

54 ; Zero out delta weights:

55 ;;

56 (dotimes (n (- nLayers 1))

57 (let* ((dw (nth n deltaWeightList))

58 (len1 (array-dimension dw 0))

59 (len2 (array-dimension dw 1)))

60 (dotimes (i len1)

61 (dotimes (j len2)

62 (setf (aref dw i j) 0.0)))))

63

64 (setq inputNoise *delta-default-input-noise-value*)

65

66 ;;

67 ; Main loop on training examples:

68 ;;

Backpropagation Neural Networks 150

69 (dolist (tl trainList)

70

71 (setq inputs (car tl))

72 (setq targetOutputs (cadr tl))

73

74 (if *delta-rule-debug-flag*

75 (print (list "Current targets:" targetOutputs)))

76

77 (setq iDimension (car sizeList)) ; get the size of the input slab

78 (setq iActivationVector (car activationList)) ; input activations

79 (dotimes (i iDimension) ; copy training inputs to input slab

80 (setf

81 (aref iActivationVector i)

82 (+ (nth i inputs) (frandom (- inputNoise) inputNoise))))

83 ;;

84 ; Propagate activation through all of the slabs:

85 ;;

86 (dotimes (n-1 (- nLayers 1)) ; update layer i to layer flowing to layer j

87 (setq n (+ n-1 1))

88 (setq jDimension (nth n sizeList)) ; get the size of the j'th layer

89 (setq jActivationVector (nth n activationList)) ; activation for slab j

90 (setq weightArray (nth n-1 weightList))

91 (setq sumOfProductsArray (nth n-1 sumOfProductsList))

92 (dotimes (j jDimension) ; process each neuron in slab j

93 (setq sum 0.0) ; init sum of products to zero

94 (dotimes (i iDimension) ; activation from neurons in previous slab

95 (setq

96 sum

97 (+ sum (* (aref weightArray i j) (aref iActivationVector i)))))

98 (setf (aref sumOfProductsArray j) sum) ; save sum of products

99 (setf (aref jActivationVector j) (Sigmoid sum)))

100 (setq iDimension jDimension) ; reset index for next slab pair

101 (setq iActivationVector jActivationVector))

102 ;;

103 ; Activation is spread through the network and sum of products

104 ; calculated. Now modify the weights in the network using back

105 ; error propagation. Start by calculating the error signal for

106 ; each neuron in the output layer:

107 ;;

108 (setq jDimension (nth (- nLayers 1) sizeList)) ; size of last layer

109 (setq jActivationVector (nth (- nLayers 1) activationList))

110 (setq jDeltaVector (nth (- nLayers 2) deltaList))

111 (setq sumOfProductsArray (nth (- nLayers 2) sumOfProductsList))

Backpropagation Neural Networks 151

112 (setq outputError 0)

113 (dotimes (j jDimension)

114 (setq delta (- (nth j targetOutputs) (aref jActivationVector j)))

115 (setq outputError (+ outputError (abs delta)))

116 (setf

117 (aref jDeltaVector j)

118 (+

119 (aref jDeltaVector j)

120 (* delta (dSigmoid (aref sumOfProductsArray j))))))

121 ;;

122 ; Now calculate the backpropagated error signal for all hidden slabs:

123 ;;

124 (dotimes (nn (- nLayers 2))

125 (setq n (- nLayers 3 nn))

126 (setq iDimension (nth (+ n 1) sizeList))

127 (setq iSumOfProductsArray (nth n sumOfProductsList))

128 (setq iDeltaVector (nth n deltaList))

129 (dotimes (i iDimension)

130 (setf (aref iDeltaVector i) 0.0))

131 (setq weightArray (nth (+ n 1) weightList))

132 (dotimes (i iDimension)

133 (setq error 0.0)

134 (dotimes (j jDimension)

135 (setq error

136 (+ error (* (aref jDeltaVector j) (aref weightArray i j)))))

137 (setf

138 (aref iDeltaVector i)

139 (+

140 (aref iDeltaVector i)

141 (* error (dSigmoid (aref iSumOfProductsArray i))))))

142 (setq jDimension iDimension)

143 (setq jDeltaVector iDeltaVector))

144

145 ;;

146 ; Update all delta weights in the network:

147 ;;

148 (setq iDimension (car sizeList))

149 (dotimes (n (- nLayers 1))

150 (setq iActivationVector (nth n activationList))

151 (setq jDimension (nth (+ n 1) sizeList))

152 (setq jDeltaVector (nth n deltaList))

153 (setq deltaWeightArray (nth n deltaWeightList))

154 (setq weightArray (nth n weightList))

Backpropagation Neural Networks 152

155 (setq eida (nth n eidaList))

156

157 (dotimes (j jDimension)

158 (dotimes (i iDimension)

159 (setq delta (* eida (aref jDeltaVector j) (aref iActivationVector i)))

160 (setf

161 (aref DeltaWeightArray i j)

162 (+ (aref DeltaWeightArray i j) delta)))) ; delta weight changes

163

164 (setq iDimension jDimension))

165

166 ;;

167 ; Update all weights in the network:

168 ;;

169 (setq iDimension (car sizeList))

170 (dotimes (n (- nLayers 1))

171 (setq iActivationVector (nth n activationList))

172 (setq jDimension (nth (+ n 1) sizeList))

173 (setq jDeltaVector (nth n deltaList))

174 (setq deltaWeightArray (nth n deltaWeightList))

175 (setq oldDeltaWeightArray (nth n oldDeltaWeightList))

176 (setq weightArray (nth n weightList))

177 (dotimes (j jDimension)

178 (dotimes (i iDimension)

179 (setf

180 (aref weightArray i j)

181 (+ (aref weightArray i j)

182 (* alpha (aref deltaWeightArray i j))

183 (* beta (aref oldDeltaWeightArray i j))))

184 (setf (aref oldDeltaWeightArray i j) ; save current delta weights

185 (aref deltaWeightArray i j)))) ; ...for next momentum term.

186 (setq iDimension jDimension))

187

188 (if plot-output-file-name

189 (DeltaPlot netList plot-output-file-name)))

190

191 (/ outputError jDimension)))

The functionDeltaRecall in the next listing can be used with a trained network to calculate outputs
for new input values:

Backpropagation Neural Networks 153

1 ;;

2 ; Utility for using a trained neural network in the recall mode.

3 ; The first argument to this function is a network definition (as

4 ; returned from NewDeltaNetwork) and the second argument is a list

5 ; of input neuron activation values to drive through the network.

6 ; The output is a list of the calculated activation energy for

7 ; each output neuron.

8 ;;

9 (defun DeltaRecall (netList inputs)

10 (let ((nLayers (car netList))

11 (sizeList (cadr netList))

12 (activationList (caddr netList))

13 (weightList (cadr (cdddr netList)))

14 (iDimension nil)

15 (jDimension nil)

16 (iActivationVector nil)

17 (jActivationVector nil)

18 (n nil)

19 (weightArray nil)

20 (returnList nil)

21 (sum nil))

22 (setq iDimension (car sizeList)) ; get the size of the input slab

23 (setq iActivationVector (car activationList)) ; get input activations

24 (dotimes (i iDimension) ; copy training inputs to input slab

25 (setf (aref iActivationVector i) (nth i inputs)))

26 (dotimes (n-1 (- nLayers 1)) ; update layer j to layer i

27 (setq n (+ n-1 1))

28 (setq jDimension (nth n sizeList)) ; get the size of the j'th layer

29 (setq jActivationVector (nth n activationList)) ; activation for slab j

30 (setq weightArray (nth n-1 weightList))

31 (dotimes (j jDimension) ; process each neuron in slab j

32 (setq sum 0.0) ; init sum of products to zero

33 (dotimes (i iDimension) ; get activation from each neuron in last slab

34 (setq

35 sum

36 (+ sum (* (aref weightArray i j) (aref iActivationVector i)))))

37 (if *delta-rule-debug-flag*

38 (print (list "sum=" sum)))

39 (setf (aref jActivationVector j) (Sigmoid sum)))

40 (setq iDimension jDimension) ; get ready for next slab pair

41 (setq iActivationVector jActivationVector))

42 (dotimes (j jDimension)

43 (setq returnList (append returnList (list (aref jActivationVector j)))))

Backpropagation Neural Networks 154

44 returnList))

We saw three output plots earlier that were produced during a training run using the following code:

1 (defun test3 (&optional (restart 'yes) &aux RMSerror) ; three layer network

2 (if

3 (equal restart 'yes)

4 (setq temp (newdeltanetwork '(5 4 5))))

5 (dotimes (ii 3000)

6 (let ((file-name

7 (if (equal (mod ii 400) 0)

8 (concatenate 'string "output_plot_" (format nil "~12,'0d" ii) ".png")

9 nil)))

10 (setq

11 RMSerror

12 (deltalearn

13 file-name temp

14 '(((1 0 0 0 0) (0 1 0 0 0))

15 ((0 1 0 0 0) (0 0 1 0 0))

16 ((0 0 1 0 0) (0 0 0 1 0))

17 ((0 0 0 1 0) (0 0 0 0 1))

18 ((0 0 0 0 1) (1 0 0 0 0)))))

19 (if (equal (mod ii 50) 0) ;; print error out every 50 cycles

20 (progn

21 (princ "....training cycle \#")

22 (princ ii)

23 (princ " RMS error = ")

24 (princ RMSerror)

25 (terpri))))))

Here the function test3 defines training data for a very small test network for a moderately difficult
function to learn: to rotate the values in the input neurons to the right, wrapping around to the first
neuron. The start of the main loop in line calls the training function 3000 times, creating a plot of
the network every 400 times through the main loop.

Backpropagation networks have been used sucessfully in production for about 25 years. In the next
chapter we will look at a less practical type of network, Hopfield networks, that are still interesting
because the in some sense Hopfield networks model how our brains work. In the final chapter we
will look at deep learning neural networks.

Hopfield Neural Networks
AHopfield network⁶⁴ (named after John Hopfield) is a recurrent network since the flow of activation
through the network has loops. These networks are trained by applying input patterns and letting
the network settle in a state that stores the input patterns.

The example code is in the file src/loving_snippets/Hopfield_neural_network.lisp.

The example we look at recognizes patterns that are similar to the patterns seen in training examples
and maps input patterns to a similar training input pattern. The following figure shows output from
the example program showing an original training pattern, a similar pattern with one cell turned
on and other off, and the reconstructed pattern:

To be clear, we have taken one of the original input patterns the network has learned, slightly altered
it, and applied it as input to the network. After cycling the network, the slightly scrambled input
pattern we just applied will be used as an associative memory key, look up the original pattern,
and rewrite to input values with the original learned pattern. These Hopfield networks are very
different than backpropagation networks: neuron activation are forced to values of -1 or +1 and not
be differentiable and there are no separate output neurons.

The next example has the values of three cells modified from the original and the original pattern is
still reconstructed correctly:

⁶⁴https://en.wikipedia.org/wiki/Hopfield_network

https://en.wikipedia.org/wiki/Hopfield_network
https://en.wikipedia.org/wiki/Hopfield_network

Hopfield Neural Networks 156

This last example has four of the original cells modified:

The following example program shows a type of content-addressable memory. After a Hopfield
network learns a set of input patterns then it can reconstruct the original paterns when shown
similar patterns. This reconstruction is not always perfecrt.

The following functionHopfield-Init (in fileHopfield_neural_network.lisp) is passed a list of lists of
training examples that will be remembered in the network. This function returns a list containing the
data defining a Hopfield neural network. All data for the network is encapsulated in the list returned
by this function, so multiple Hopfield neural networks can be used in an application program.

In lines 9-12 we allocate global arrays for data storage and in lines 14-18 the training data is copied.

The inner function adjustInput on lines 20-29 adjusts data values to values of -1.0 or +1.0. In lines
31-33 we are initializing all of the weights in the Hopfield network to zero.

The last nested loop, on lines 35-52, calculates the autocorrelation weight matrix from the input test
patterns.

On lines 54-56, the function returns a representation of the Hopfield network that will be used later in
the function HopfieldNetRecall to find the most similar “remembered” pattern given a new (fresh)
input pattern.

Hopfield Neural Networks 157

1 (defun Hopfield-Init (training-data

2 &aux temp *num-inputs* *num-training-examples*

3 *training-list* *inputCells* *tempStorage*

4 *HopfieldWeights*)

5

6 (setq *num-inputs* (length (car training-data)))

7 (setq *num-training-examples* (length training-data))

8

9 (setq *training-list* (make-array (list *num-training-examples* *num-inputs*)))

10 (setq *inputCells* (make-array (list *num-inputs*)))

11 (setq *tempStorage* (make-array (list *num-inputs*)))

12 (setq *HopfieldWeights* (make-array (list *num-inputs* *num-inputs*)))

13

14 (dotimes (j *num-training-examples*) ;; copy training data

15 (dotimes (i *num-inputs*)

16 (setf

17 (aref *training-list* j i)

18 (nth i (nth j training-data)))))

19

20 (defun adjustInput (value) ;; this function is lexically scoped

21 (if (< value 0.1)

22 -1.0

23 +1.0))

24

25 (dotimes (i *num-inputs*) ;; adjust training data

26 (dotimes (n *num-training-examples*)

27 (setf

28 (aref *training-list* n i)

29 (adjustInput (aref *training-list* n i)))))

30

31 (dotimes (i *num-inputs*) ;; zero weights

32 (dotimes (j *num-inputs*)

33 (setf (aref *HopfieldWeights* i j) 0)))

34

35 (dotimes (j-1 (- *num-inputs* 1)) ;; autocorrelation weight matrix

36 (let ((j (+ j-1 1)))

37 (dotimes (i j)

38 (dotimes (s *num-training-examples*)

39 (setq temp

40 (truncate

41 (+

42 (* ;; 2 if's truncate values to -1 or 1:

43 (adjustInput (aref *training-list* s i))

Hopfield Neural Networks 158

44 (adjustInput (aref *training-list* s j)))

45 (aref *HopfieldWeights* i j))))

46 (setf (aref *HopfieldWeights* i j) temp)

47 (setf (aref *HopfieldWeights* j i) temp)))))

48 (dotimes (i *num-inputs*)

49 (setf (aref *tempStorage* i) 0)

50 (dotimes (j i)

51 (setf (aref *tempStorage* i)

52 (+ (aref *tempStorage* i) (aref *HopfieldWeights* i j)))))

53

54 (list ;; return the value of the Hopfield network data object

55 *num-inputs* *num-training-examples* *training-list*

56 *inputCells* *tempStorage* *HopfieldWeights*))

The following function HopfieldNetRecall iterates the network to let it settle in a stable pattern
which we hope will be the original training pattern most closely resembling the noisy test pattern.

The inner (lexically scoped) function deltaEnergy defined on lines 9-12 calculates a change in energy
from old input values and the autocorrelation weight matrix. The main code uses the inner functions
to iterate over the input cells, possibly modifying the cell at index i delta energy is greater than zero.
Remember that the lexically scoped inner functions have access to the variables for the number of
inputs, the number of training examples, the list of training examples, the input cell values, tempoary
storage, and the Hopfield network weights.

1 (defun HopfieldNetRecall (aHopfieldNetwork numberOfIterations)

2 (let ((*num-inputs* (nth 0 aHopfieldNetwork))

3 (*num-training-examples* (nth 1 aHopfieldNetwork))

4 (*training-list* (nth 2 aHopfieldNetwork))

5 (*inputCells* (nth 3 aHopfieldNetwork))

6 (*tempStorage* (nth 4 aHopfieldNetwork))

7 (*HopfieldWeights* (nth 5 aHopfieldNetwork)))

8

9 (defun deltaEnergy (row-index y &aux (temp 0.0)) ;; lexically scoped

10 (dotimes (j *num-inputs*)

11 (setq temp (+ temp (* (aref *HopfieldWeights* row-index j) (aref y j)))))

12 (- (* 2.0 temp) (aref *tempStorage* row-index)))

13

14 (dotimes (ii numberOfIterations) ;; main code

15 (dotimes (i *num-inputs*)

16 (setf (aref *inputCells* i)

17 (if (> (deltaEnergy i *inputCells*) 0)

18 1

19 0))))))

Hopfield Neural Networks 159

Function test in the next listing uses three different patterns for each test. Note that only the last
pattern gets plotted to the output graphics PNG file for the purpose of producing figures for this
chapter. If you want to produce plots of other patterns, edit just the third pattern defined on line
AAAAA. The following plotting functions are inner lexically scoped so they have access to the data
defined in the enclosing let expression in lines 16-21:

• plotExemplar - plots a vector of data
• plot-original-inputCells - plots the original input cells from training data
• plot-inputCells - plots the modified input cells (a few cells randomly flipped in value)
• modifyInput - scrambles training inputs

1 (defun test (&aux aHopfieldNetwork)

2 (let ((tdata '(;; sample sine wave data with different periods:

3 (1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0)

4 (0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0)

5 (0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1)))

6 (width 300)

7 (height 180))

8 (vecto::with-canvas (:width width :height height)

9 (plotlib:plot-string-bold 10 (- height 14) "Hopfield pattern classifier")

10

11 ;; Set up network:

12 (print tdata)

13 (setq aHopfieldNetwork (Hopfield-Init tdata))

14

15 ;; lexically scoped variables are accesible by inner functions:

16 (let ((*num-inputs* (nth 0 aHopfieldNetwork))

17 (*num-training-examples* (nth 1 aHopfieldNetwork))

18 (*training-list* (nth 2 aHopfieldNetwork))

19 (*inputCells* (nth 3 aHopfieldNetwork))

20 (*tempStorage* (nth 4 aHopfieldNetwork))

21 (*HopfieldWeights* (nth 5 aHopfieldNetwork)))

22

23 (defun plotExemplar (row &aux (dmin 0.0) (dmax 1.0) (x 20) (y 40))

24 (let ((YSize (array-dimension *training-list* 1)))

25 (plotlib:plot-string (+ x 20) (- height (- y 10))

26 "Original Training Exemplar")

27 (dotimes (j Ysize)

28 (plotlib:plot-fill-rect

29 (+ x (* j plot-size+1)) (- height y) plot-size plot-size

30 (truncate (*

31 (/ (- (aref *training-list* row j) dmin)

Hopfield Neural Networks 160

32 (- dmax dmin))

33 5)))

34 (plotlib:plot-frame-rect (+ x (* j plot-size+1))

35 (- height y) plot-size plot-size))))

36

37 (defun plot-original-inputCells (&aux (dmin 0.0) (dmax 1.0) (x 20) (y 80))

38 (let ((Xsize (array-dimension *inputCells* 0)))

39 (plotlib:plot-string (+ x 20) (- height (- y 10)) "Scrambled Inputs")

40 (dotimes (j Xsize)

41 (plotlib:plot-fill-rect

42 (+ x (* j plot-size+1)) (- height y) plot-size plot-size

43 (truncate (*

44 (/ (- (aref *inputCells* j) dmin) (- dmax dmin))

45 5)))

46 (plotlib:plot-frame-rect (+ x (* j plot-size+1))

47 (- height y) plot-size plot-size))))

48

49 (defun plot-inputCells (&aux (dmin 0.0) (dmax 1.0) (x 20) (y 120))

50 (let ((Xsize (array-dimension *inputCells* 0)))

51 (plotlib:plot-string (+ x 20) (- height (- y 10))

52 "Reconstructed Inputs")

53 (dotimes (j Xsize)

54 (plotlib:plot-fill-rect

55 (+ x (* j plot-size+1)) (- height y) plot-size plot-size

56 (truncate (* (/

57 (- (aref *inputCells* j) dmin)

58 (- dmax dmin))

59 5)))

60 (plotlib:plot-frame-rect

61 (+ x (* j plot-size+1)) (- height y) plot-size plot-size))))

62

63 (defun modifyInput (arrSize arr) ;; modify input array for testing

64 (dotimes (i arrSize)

65 (if (< (random 50) 5)

66 (if (> (aref arr i) 0)

67 (setf (aref arr i) -1)

68 (setf (aref arr i) 1)))))

69

70 ;; Test network on training data that is randomly modified:

71

72 (dotimes (iter 10) ;; cycle 10 times and make 10 plots

73 (dotimes (s *num-training-examples*)

74 (dotimes (i *num-inputs*)

Hopfield Neural Networks 161

75 (setf (aref *inputCells* i) (aref *training-list* s i)))

76 (plotExemplar s)

77 (modifyInput *num-inputs* *inputCells*)

78 (plot-original-inputCells)

79 (dotimes (call-net 5) ;; iterate Hopfield net 5 times

80 (HopfieldNetRecall aHopfieldNetwork 1) ;; calling with 1 iteration

81 (plot-inputCells)))

82

83 (vecto::save-png

84 (concatenate

85 'string

86 "output_plot_hopfield_nn_" (format nil "~5,'0d" iter) ".png")))))))

The plotting functions in lines 23-62 use the plotlib library to make the plots you saw earlier. The
function modifyInput in lines 64-69 randomly flips the values of the input cells, taking an original
pattern and slightly modifying it.

Hopfield neural networks, at least to some extent, seem to model some aspects of human brains in
the sense that they can function as content-addressable (also called associative) memories. Ideally
a partial input pattern from a remembered input can reconstruct the complete original pattern.
Another interesting feature of Hopfield networks is that these memories really are stored in a
distributed fashion: some of the weights can be randomly altered and patterns are still remembered,
but with more recall errors.

Using Python Deep Learning Models
In Common Lisp With a Web Services
Interface
In older editions of this book I had an example of using the Java DeepLearning4J deep learning
library using Armed Bear Common Lisp, implemented in Java. I no longer use hybrid Java and
Common Lisp applications in my own work and I decided to remove this example and replace it
with two projects that use simple Python web services that act as wrappers for state of the art deep
learning models with Common Lisp clients in the subdirectories:

• src/spacy_web_client: use the spaCy deep learning models for general NLP. I sometimes use
my own pure Common Lisp NLP libraries we saw in earlier chapters and sometimes I use a
Common Lisp client calling deep learning libraries like spaCy and TensorFlow.

• src/coref_web_client: coreference or anaphora resolution is the act of replacing pronouns in
text with the original nouns that they refer to. This has traditionally been a very difficult and
only partially solved problem until recent advances in deep learning models like BERT.

Note: in the next chapter we will cover similar functionality but we will use the py4cl library to
more directly use Python and libraries like spaCy by starting another Python process and using
streams for communication.

Setting up the Python Web Services Used in this
Chapter

Youwill need python and pip installed on your system. The source e code for the Pythonweb services
is found in the directory loving-common-lisp/python.

Installing the spaCY NLP Services

I assume that you have some familiaritywith using Python. If not, youwill still be able to follow these
directions assuming that you have the utilities pip, and python installed. I recommend installing
Python and Pip using Anaconda⁶⁵.

⁶⁵https://anaconda.org/anaconda/conda

https://anaconda.org/anaconda/conda
https://anaconda.org/anaconda/conda

Using Python Deep Learning Models In Common Lisp With a Web Services Interface 163

The server code is in the subdirectory python/python_spacy_nlp_server where you will work
when performing a one time initialization. After the server is installed you can then run it from the
command line from any directory on your laptop.

I recommend that you use virtual Python environments when using Python applications to separate
the dependencies required for each application or development project. Here I assume that you are
running in a Python version 3.6 or higher environment. First you must install the dependencies:

1 pip install -U spacy

2 python -m spacy download en

3 pip install falcon

Then change directory to the subdirectory python/python_spacy_nlp_server in the git repo for
this book and install the NLP server:

1 cd python/python_spacy_nlp_server

2 python setup.py install

Once you install the server, you can run it from any directory on your laptop or server using:

1 spacynlpserver

I use deep learning models written in Python using TensorFlow or PyTorch and provide Python
web services that can be used in applications I write in Haskell or Common Lisp using web client
interfaces for the services written in Python. While it is possible to directly embed models in Haskell
and Common Lisp, I find it much easier and developer friendly to wrap deep learning models I use
a REST services as I have done here. Often deep learning models only require about a gigabyte of
memory and using pre-trained models has lightweight CPU resource needs so while I am developing
on my laptop I might have two or three models running and available as wrapped REST services.
For production, I configure both the Python services and my Haskell and Common Lisp applications
to start automatically on system startup.

This is not a Python programming book and I will not discuss the simple Python wrapping code but
if you are also a Python developer you can easily read and understand the code.

Installing the Coreference NLP Services

I recommend that you use virtual Python environments when using Python applications to separate
the dependencies required for each application or development project. Here I assume that you are
running in a Python version 3.6 environment. First you should install the dependencies:

Using Python Deep Learning Models In Common Lisp With a Web Services Interface 164

1 pip install spacy==2.1.0

2 pip install neuralcoref

3 pip install falcon

As I write this chapter the neuralcoref model and library require a slightly older version of SpaCy
(the current latest version is 2.1.4).

Then change directory to the subdirectory python/python_coreference_anaphora_resolution_-
server in the git repo for this book and install the coref server:

1 cd python_coreference_anaphora_resolution_server

2 python setup.py install

Once you install the server, you can run it from any directory on your laptop or server using:

1 corefserver

While. as we saw in the last example, it is possible to directly embed models in Haskell and Common
Lisp, I find it much easier and developer friendly to wrap deep learning models I use a REST services
as I have done here. Often deep learning models only require about a gigabyte of memory and
using pre-trained models has lightweight CPU resource needs so while I am developing on my
laptop I might have two or three models running and available as wrapped REST services. For
production, I configure both the Python services and my Haskell and Common Lisp applications
to start automatically on system startup.

This is not a Python programming book and I will not discuss the simple Python wrapping code but
if you are also a Python developer you can easily read and understand the code.

Common Lisp Client for the spaCy NLP Web Services

Before looking at the code, I will show you typical output from running this example:

1 $ sbcl

2 This is SBCL 1.3.16, an implementation of ANSI Common Lisp.

3 * (ql:quickload "spacy-web-client")

4 To load "spacy":

5 Load 1 ASDF system:

6 spacy-web-client

7 ; Loading "spacy-web-client"

8

9 ("spacy-web-client")

10 * (defvar x

Using Python Deep Learning Models In Common Lisp With a Web Services Interface 165

11 (spacy-web-client:spacy-client

12 "President Bill Clinton went to Congress. He gave a speech on taxes and Mexico."))

13 * (spacy-web-client:spacy-data-entities x)

14 "Bill Clinton/PERSON"

15 * (spacy-web-client:spacy-data-tokens x)

16 ("President" "Bill" "Clinton" "went" "to" "Congress" "." "He" "gave" "a"

17 "speech" "on" "taxes" "and" "Mexico" ".")

The client library is implemented in the file src/spacy_web_client/spacy-web-client.lisp:

1 (in-package spacy-web-client)

2

3 (defvar base-url "http://127.0.0.1:8008?text=")

4

5 (defstruct spacy-data entities tokens)

6

7 (defun spacy-client (query)

8 (let* ((the-bytes

9 (drakma:http-request

10 (concatenate 'string

11 base-url

12 (do-urlencode:urlencode query))

13 :content-type "application/text"))

14 (fetched-data

15 (flexi-streams:octets-to-string the-bytes :external-format :utf-8))

16 (lists (with-input-from-string (s fetched-data)

17 (json:decode-json s))))

18 (print lists)

19 (make-spacy-data :entities (cadar lists) :tokens (cdadr lists))))

On line 3 we define base URL for accessing the spaCy web service, assuming that it is running on
your laptop and not a remote server. On line 5 we define a defstruct named spacy-data that has
two fields: a list of entities in the input text and a list of word tokens in the input text.

The function spacy-client builds a query string on lines 10-12 that consists of the base-url and the
input query text URL encoded. The drakma library, that we used before, is used to make a HTTP
request from the Python spaCy server. Lines 14-15 uses the flexi-streams package to convert raw byte
data to UTF8 characters. Lines 16-17 use the json package to parse the UTF8 encoded string, getting
two lists of strings. I left the debug printout expression in line 18 so that you can see the results
of parsing the JSON data. The function make-spacy-data was generated for us by the defstruct
statement on line 5.

Using Python Deep Learning Models In Common Lisp With a Web Services Interface 166

Common Lisp Client for the Coreference NLP Web
Services

Let’s look at some typical output from this example, then we will look at the code:

1 $ sbcl

2 This is SBCL 1.3.16, an implementation of ANSI Common Lisp.

3 More information about SBCL is available at <http://www.sbcl.org/>.

4

5 SBCL is free software, provided as is, with absolutely no warranty.

6 It is mostly in the public domain; some portions are provided under

7 BSD-style licenses. See the CREDITS and COPYING files in the

8 distribution for more information.

9

10 #P"/Users/markw/quicklisp/setup.lisp"

11 "starting up quicklisp"

12 * (ql:quickload "coref")

13 To load "coref":

14 Load 1 ASDF system:

15 coref

16 ; Loading "coref"

17 ..

18 [package coref]

19 ("coref")

20 * (coref:coref-client "My sister has a dog Henry. She loves him.")

21

22 "My sister has a dog Henry. My sister loves a dog Henry."

23 * (coref:coref-client "My sister has a dog Henry. He often runs to her.")

24

25 "My sister has a dog Henry. a dog Henry often runs to My sister."

Notice that pronouns in the input text are correctly replaced by the noun phrases that the pronoun
refer to.

The implementation for the core client is in the file src/coref_web_client/coref.lisp:

Using Python Deep Learning Models In Common Lisp With a Web Services Interface 167

1 (in-package #:coref)

2

3 ;; (ql:quickload :do-urlencode)

4

5 (defvar base-url "http://127.0.0.1:8000?text=")

6

7 (defun coref-client (query)

8 (let ((the-bytes

9 (drakma:http-request

10 (concatenate 'string

11 base-url

12 (do-urlencode:urlencode query)

13 "&no_detail=1")

14 :content-type "application/text")))

15 (flexi-streams:octets-to-string the-bytes :external-format :utf-8)))

This code is similar to the example in the last section for setting up a call to http-request but is
simpler: here the Python coreference web service accepts a string as input and returns a string as
output with pronouns replaced by the nouns or noun phrases that they refer to. The example in the
last section had to parse returned JSON data, this example does not.

Trouble Shooting Possible Problems - Skip if this
Example Works on Your System

If you run Common Lisp in an IDE (for example in LispWorks’ IDE or VSCode with a Common Lisp
plugin) make sure you start the IDE from the command line so your PATH environment variable
will be set as it is in our bash or zsh shell.

Make sure you are starting your Common Lisp program or running a Common Lisp repl with the
same Python installation (if you have Quicklisp installed, then you also have the package uiop
installed):

1 $ which python

2 /Users/markw/bin/anaconda3/bin/python

3 $ sbcl

4 This is SBCL 2.0.2, an implementation of ANSI Common Lisp.

5 * (uiop:run-program "which python" :output :string)

6 "/Users/markw/bin/anaconda3/bin/python"

7 nil

8 0

9 *

Using Python Deep Learning Models In Common Lisp With a Web Services Interface 168

Python Interop Wrap-up

Much of my professional work in the last five years involved deep learning models and currently
most available software is written in Python. While there are available libraries for calling Python
code from Common Lisp, these libraries tend to not work well for Python code using libraries like
TensorFlow, spaCy, PyTorch, etc., especially if the Python code is configured to use GPUs via CUDA
of special hardware like TPUs. I find it simpler to simply wrap functionality implemented in Python
as a simple web service.

Using the PY4CL Library to Embed
Python in Common Lisp
We will tackle the same problem as the previous chapter but take a different approach. Now we will
use Ben Dudson’s project Py4CL⁶⁶ that automatically starts a Python process and communicates
with the Python process via a stream interface. The approach we took before is appropriate for large
scale systems where you might want scale horizontally by having Python processes running on
different servers than the servers used for the Common Lisp parts of your application. The approach
we now take is much more convenient for what I call “laptop development” where the management
of a Python process and communication is handled for you by the Py4CL library. If you need to
build multi-server distributed systems for scaling reasons then use the examples in the last chapter.

While Py4CL provides a lot of flexibility for passing primitive types between Common Lisp and
Python (in both directions), I find it easiest to write small Python wrappers that only use lists,
arrays, numbers, and strings as arguments and return types. You might want to experiment with
the examples on the Py4CL GitHub page that let you directly call Python libraries without writing
wrappers. When I write code for my own projects I try to make code as simple as possible so when
I need to later revisit my own code it is immediately obvious what it is doing. Since I have been
using Common Lisp for almost 40 years, I often find myself reusing bits of my own old code and I
optimize for making this as easy as possible. In other words I favor readability over “clever” code.

Project Structure, Building the Python Wrapper, and
Running an Example

The packaging of the Lisp code for my spacy-py4cl package is simple. Here is the listing of
package.lisp for this project:

1 ;;;; package.lisp

2

3 (defpackage #:spacy-py4cl

4 (:use #:cl #:py4cl)

5 (:export #:nlp))

Listing of spacy-py4cl.asd:

⁶⁶https://github.com/bendudson/py4cl/

https://github.com/bendudson/py4cl/
https://github.com/bendudson/py4cl/

Using the PY4CL Library to Embed Python in Common Lisp 170

1 ;;;; spacy-py4cl.asd

2

3 (asdf:defsystem #:spacy-py4cl

4 :description "Use py4cl to use Python spaCy library embedded in Common Lisp"

5 :author "Mark Watson <markw@markwatson.com>"

6 :license "Apache 2"

7 :depends-on (#:py4cl)

8 :serial t

9 :components ((:file "package")

10 (:file "spacy-py4cl")))

You need to run a Python setup procedure to install the Python wrapper for space-py4cl on your
system. Some output is removed for conciseness:

1 $ cd loving-common-lisp/src/spacy-py4cl

2 $ cd PYTHON_SPACY_SETUP_install/spacystub

3 $ pip install -U spacy

4 $ python -m spacy download en

5 $ python setup.py install

6 running install

7 running build

8 running build_py

9 running install_lib

10 running install_egg_info

11 Writing /Users/markw/bin/anaconda3/lib/python3.7/site-packages/spacystub-0.21-py3.7.\

12 egg-info

You only need to do this once unless you update to a later version of Python on your system.

If you are not familiar with Python, it is worth looking at the wrapper implementation, otherwise
skip the next few paragraphs.

$ ls -R PYTHON_SPACY_SETUP_install

spacystub

PYTHON_SPACY_SETUP_install/spacystub:

README.md setup.py spacystub

PYTHON_SPACY_SETUP_install/spacystub/build/lib:

spacystub

PYTHON_SPACY_SETUP_install/spacystub/spacystub:

parse.py

Using the PY4CL Library to Embed Python in Common Lisp 171

Here is the implementation of setup.py that specifies how to build and install the wrapper globally
for use on your system:

1 from distutils.core import setup

2

3 setup(name='spacystub',

4 version='0.21',

5 packages=['spacystub'],

6 license='Apache 2',

7 py_modules=['pystub'],

8 long_description=open('README.md').read())

The definition of the library in filePYTHON_SPACY_SETUP_install/spacystub/spacystub/parse.py:

1 import spacy

2

3 nlp = spacy.load("en")

4

5 def parse(text):

6 doc = nlp(text)

7 response = {}

8 response['entities'] = [(ent.text, ent.start_char, ent.end_char, ent.label_) for e\

9 nt in doc.ents]

10 response['tokens'] = [token.text for token in doc]

11 return [response['tokens'], response['entities']]

Here is a Common Lisp repl session showing you how to use the library implemented in the next
section:

1 $ ccl

2 Clozure Common Lisp Version 1.12 DarwinX8664

3

4 For more information about CCL, please see http://ccl.clozure.com.

5

6 CCL is free software. It is distributed under the terms of the Apache Licence, Vers\

7 ion 2.0.

8 ? (ql:quickload "spacy-py4cl")

9 To load "spacy-py4cl":

10 Load 1 ASDF system:

11 spacy-py4cl

12 ; Loading "spacy-py4cl"

13 [package spacy-py4cl]

Using the PY4CL Library to Embed Python in Common Lisp 172

14 ("spacy-py4cl")

15 ? (spacy-py4cl:nlp "The President of Mexico went to Canada")

16 #(#("The" "President" "of" "Mexico" "went" "to" "Canada") #(("Mexico" 17 23 "GPE") (\

17 "Canada" 32 38 "GPE")))

18 ? (spacy-py4cl:nlp "Bill Clinton bought a red car. He drove it to the beach.")

19 #(#("Bill" "Clinton" "bought" "a" "red" "car" "." "He" "drove" "it" "to" "the" "beac\

20 h" ".") #(("Bill Clinton" 0 12 "PERSON")))

Entities in text are identified with the starting and ending character indices that refer to the input
string. For example, the entity “Mexico” starts at character position 17 and character index 23 is the
character after the entity name in the input string. The entity type “GPE” refers to a country name
and “PERSON” refers to a person’s name in the input text.

Implementation of spacy-py4cl

The Common Lisp implementation for this package is simple. In line 5 the call to py4cl:python-exec
starts a process to run Python and imports the function parse from my Python wrapper. The call
to py4cl:import-function in line 6 finds a function named “parse” in the attached Python process
and generates a Common Lisp function with the same name that handles calling into Python and
converting handling the returned values to Common Lisp values:

1 ;;;; spacy-py4cl.lisp

2

3 (in-package #:spacy-py4cl)

4

5 (py4cl:python-exec "from spacystub.parse import parse")

6 (py4cl:import-function "parse")

7

8 (defun nlp (text)

9 (parse text))

While it is possible to call Python libraries directly using Py4CL, when I need to frequently use
Python libraries like spaCY, TensorFlow, fast.ai, etc. in Common Lisp, I like to use wrappers that use
simple as possible data types and APIs to communicate between a Common Lisp process and the
spawned Python process.

Trouble Shooting Possible Problems - Skip if this
Example Works on Your System

When you install my wrapper library in Python on the command line whatever your shell if (bash,
zsh, etc.) you should then try to import the library in a Python repl:

Using the PY4CL Library to Embed Python in Common Lisp 173

1 $ python

2 Python 3.7.4 (default, Aug 13 2019, 15:17:50)

3 [Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin

4 Type "help", "copyright", "credits" or "license" for more information.

5 >>> from spacystub.parse import parse

6 >>> parse("John Smith is a Democrat")

7 [['John', 'Smith', 'is', 'a', 'Democrat'], [('John Smith', 0, 10, 'PERSON'), ('Democ\

8 rat', 16, 24, 'NORP')]]

9 >>>

If this works and the Common Lisp library spacy-py4cl does not, then make sure you are starting
your Common Lisp program or running a Common Lisp repl with the same Python installation (if
you have Quicklisp installed, then you also have the package uiop installed):

1 $ which python

2 /Users/markw/bin/anaconda3/bin/python

3 $ sbcl

4 This is SBCL 2.0.2, an implementation of ANSI Common Lisp.

5 * (uiop:run-program "which python" :output :string)

6 "/Users/markw/bin/anaconda3/bin/python"

7 nil

8 0

9 *

If you run Common Lisp in an IDE (for example in LispWorks’ IDE or VSCode with a Common Lisp
plugin) make sure you start the IDE from the command line so your PATH environment variable
will be set as it is in our bash or zsh shell.

Wrap-up for Using Py4CL

While I prefer Common Lisp for general development and also AI research, there are useful Python
libraries that I want to integrate into my projects. I hope that the last chapter and this chapter provide
you with two solid approaches for you to use in your ownwork to take advantage of Python libraries.

Semantic Web and Linked Data
I havewritten two previous books on the semantic web and linked data andmost ofmy programming
books have semantic web examples. Please note that the background material here on the semantic
web standards RDF, RDFS, and SPARQL is shared with my book Practical Artificial Intelligence
Programming With Java⁶⁷ so if you have read that book then the first several pages of this chapter
will seem familiar.

Construction of Knowledge Graphs, as we will do in later chapters, is a core technology at many
corporations and organizations to prevent data silos where different database systems are poorly
connected and not as useful in combination than they could be. The use of RDF data stores is a
powerful technique for data interoperability within organizations. Semantic Web standards like
RDF, RDFS, and SPARQL support both building Knowledge Graphs and also key technologies for
automating the collection and use of web data.

I worked as a contractor at Google on an internal Knowledge Graph project and I currently work at
Olive AI⁶⁸ on their Knowledge Graph team.

The semantic web is intended to provide a massive linked set of data for use by software systems
just as the World Wide Web provides a massive collection of linked web pages for human reading
and browsing. The semantic web is like the web in that anyone can generate any content that they
want. This freedom to publish anything works for the web because we use our ability to understand
natural language to interpret what we read – and often to dismiss material that based upon our own
knowledge we consider to be incorrect.

Semantic web and linked data technologies are also useful for smaller amounts of data, an example
being a Knowledge Graph containing information for a business. Wewill further explore Knowledge
Graphs in the next two chapters.

The core concept for the semantic web is data integration and use from different sources. As we will
soon see, the tools for implementing the semantic web are designed for encoding data and sharing
data from many different sources.

I cover the semantic web in this book because I believe that semantic web technologies are
complementary to AI systems for gathering and processing data on the web. As more web pages
are generated by applications (as opposed to simply showing static HTML files) it becomes easier to
produce both HTML for human readers and semantic data for software agents.

There are several very good semantic web toolkits for the Java language and platform. Here we use
Apache Jena because it is what I often use in my own work and I believe that it is a good starting
technology for your first experiments with semantic web technologies. This chapter provides an

⁶⁷https://leanpub.com/javaai
⁶⁸https://oliveai.com

https://leanpub.com/javaai
https://leanpub.com/javaai
https://oliveai.com/
https://leanpub.com/javaai
https://oliveai.com/

Semantic Web and Linked Data 175

incomplete coverage of semantic web technologies and is intended as a gentle introduction to a
few useful techniques and how to implement those techniques in Java. This chapter is the start of
a journey in the technology that I think is as important as technologies like deep learning that get
more public mindshare.

The following figure shows a layered hierarchy of data models that are used to implement semantic
web applications. To design and implement these applications we need to think in terms of physical
models (storage and access of RDF, RDFS, and perhaps OWL data), logical models (how we use
RDF and RDFS to define relationships between data represented as unique URIs and string literals
and how we logically combine data from different sources) and conceptual modeling (higher level
knowledge representation and reasoning using OWL). Originally RDF data was serialized as XML
data but other formats have becomemuchmore popular because they are easier to read andmanually
create. The top three layers in the figure might be represented as XML, or as LD-JSON (linked data
JSON) or formats like N-Triples and N3 that we will use later.

Semantic Web Data Models

Resource Description Framework (RDF) Data Model

The Resource Description Framework (RDF) is used to encode information and the RDF Schema
(RDFS) facilitates using data with different RDF encodings without the need to convert one set
of schemas to another. Later, using OWL we can simply declare that one predicate is the same as
another, that is, one predicate is a sub-predicate of another (e.g., a property containsCity can be
declared to be a sub-property of containsPlace so if something contains a city then it also contains
a place), etc. The predicate part of an RDF statement often refers to a property.

Semantic Web and Linked Data 176

RDF data was originally encoded as XML and intended for automated processing. In this chapter we
will use two simple to read formats called “N-Triples” and “N3.” Apache Jena can be used to convert
between all RDF formats so we might as well use formats that are easier to read and understand.
RDF data consists of a set of triple values:

• subject
• predicate
• object

Some of my work with semantic web technologies deals with processing news stories, extracting
semantic information from the text, and storing it in RDF. I will use this application domain for the
examples in this chapter and the next chapter when we implement code to automatically generate
RDF for Knowledge Graphs. I deal with triples like:

• subject: a URL (or URI) of a news article.
• predicate: a relation like “containsPerson”.
• object: a literal value like “Bill Clinton” or a URI representing Bill Clinton.

In the next chapter we will use the entity recognition library we developed in an earlier chapter to
create RDF from text input.

We will use either URIs or string literals as values for objects. We will always use URIs for
representing subjects and predicates. In any case URIs are usually preferred to string literals. We
will see an example of this preferred use but first we need to learn the N-Triple and N3 RDF formats.

I proposed the idea that RDF was more flexible than Object Modeling in programming languages,
relational databases, and XML with schemas. If we can tag new attributes on the fly to existing
data, how do we prevent what I might call “data chaos” as we modify existing data sources? It turns
out that the solution to this problem is also the solution for encoding real semantics (or meaning)
with data: we usually use unique URIs for RDF subjects, predicates, and objects, and usually with
a preference for not using string literals. The definitions of predicates are tied to a namespace and
later with OWL we will state the equivalence of predicates in different namespaces with the same
semantic meaning. I will try to make this idea more clear with some examples and Wikipedia has a
good writeup on RDF⁶⁹.

Any part of a triple (subject, predicate, or object) is either a URI or a string literal. URIs encode
namespaces. For example, the containsPerson predicate in the last example could be written as:

http://knowledgebooks.com/ontology/#containsPerson

The first part of this URI is considered to be the namespace for this predicate “containsPerson.”
When different RDF triples use this same predicate, this is some assurance to us that all users of this

⁶⁹https://en.wikipedia.org/wiki/Resource_Description_Framework

https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework

Semantic Web and Linked Data 177

predicate understand to the same meaning. Furthermore, we will see later that we can use RDFS to
state equivalency between this predicate (in the namespace http://knowledgebooks.com/ontology/)
with predicates represented by different URIs used in other data sources. In an “artificial intelligence”
sense, software that we write does not understand predicates like “containsCity”, “containsPerson”,
or “isLocation” in the way that a human reader can by combining understood common meanings
for the words “contains”, “city”, “is”, “person”, and “location” but for many interesting and useful
types of applications that is fine as long as the predicate is used consistently. We will see shortly
that we can define abbreviation prefixes for namespaces which makes RDF and RDFS files shorter
and easier to read.

The Jena library supports most serialization formats for RDF:

• Turtle
• N3
• N-Triples
• NQuads
• TriG
• JSON-LD
• RDF/XML
• RDF/JSON
• TriX
• RDF Binary

A statement in N-Triple format consists of three URIs (two URIs and a string literals for the object)
followed by a period to end the statement.While statements are often written one per line in a source
file they can be broken across lines; it is the ending period which marks the end of a statement. The
standard file extension for N-Triple format files is *.nt and the standard format for N3 format files
is *.n3.

My preference is to use N-Triple format files as output from programs that I write to save data as
RDF. N-Triple files don’t use any abbreviations and each RDF statement is self-contained. I often
use tools like the command line commands in Jena or RDF4J to convert N-Triple files to N3 or other
formats if I will be reading them or even hand editing them. Here is an example using the N3 syntax:

@prefix kb: <http://knowledgebooks.com/ontology#>

<http://news.com/201234/> kb:containsCountry "China" .

The N3 format adds prefixes (abbreviations) to the N-Triple format. In practice it would be better to
use the URI http://dbpedia.org/resource/China instead of the literal value “China.”

Here we see the use of an abbreviation prefix “kb:” for the namespace for my company Knowledge-
Books.com ontologies. The first term in the RDF statement (the subject) is the URI of a news article.
The second term (the predicate) is “containsCountry” in the “kb:” namespace. The last item in the

http://dbpedia.org/resource/China

Semantic Web and Linked Data 178

statement (the object) is a string literal “China.” I would describe this RDF statement in English as,
“The news article at URI http://news.com/201234 mentions the country China.”

This was a very simple N3 example which we will expand to show additional features of the N3
notation. As another example, let’s look at the case if this news article alsomentions the USA. Instead
of adding a whole new statement like this we can combine them using N3 notation. Here we have
two separate RDF statements:

@prefix kb: <http://knowledgebooks.com/ontology#> .

<http://news.com/201234/>

kb:containsCountry

<http://dbpedia.org/resource/China> .

<http://news.com/201234/>

kb:containsCountry

<http://dbpedia.org/resource/United_States> .

We can collapse multiple RDF statements that share the same subject and optionally the same
predicate:

@prefix kb: <http://knowledgebooks.com/ontology#> .

<http://news.com/201234/>

kb:containsCountry

<http://dbpedia.org/resource/China> ,

<http://dbpedia.org/resource/United_States> .

The indentation and placement on separate lines is arbitrary - use whatever style you like that is
readable. We can also add in additional predicates that use the same subject (I am going to use string
literals here instead of URIs for objects to make the following example more concise but in practice
prefer using URIs):

@prefix kb: <http://knowledgebooks.com/ontology#> .

<http://news.com/201234/>

kb:containsCountry "China" ,

"USA" .

kb:containsOrganization "United Nations" ;

kb:containsPerson "Ban Ki-moon" , "Gordon Brown" ,

"Hu Jintao" , "George W. Bush" ,

"Pervez Musharraf" ,

"Vladimir Putin" ,

"Mahmoud Ahmadinejad" .

Semantic Web and Linked Data 179

This single N3 statement represents ten individual RDF triples. Each section defining triples with
the same subject and predicate have objects separated by commas and ending with a period. Please
note that whatever RDF storage system you use (we will be using Jena) it makes no difference if we
load RDF as XML, N-Triple, of N3 format files: internally subject, predicate, and object triples are
stored in the same way and are used in the same way. RDF triples in a data store represent directed
graphs that may not all be connected.

I promised you that the data in RDF data stores was easy to extend. As an example, let us assume
that we have written software that is able to read online news articles and create RDF data that
captures some of the semantics in the articles. If we extend our program to also recognize dates
when the articles are published, we can simply reprocess articles and for each article add a triple to
our RDF data store using a form like:

@prefix kb: <http://knowledgebooks.com/ontology#> .

<http://news.com/201234/> kb:datePublished "2008-05-11" .

Here we just represent the date as a string. We can add a type to the object representing a specific
date:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix kb: <http://knowledgebooks.com/ontology#> .

<http://news.com/201234/> kb:datePublished "2008-05-11"^^xsd:date .

Furthermore, if we do not have dates for all news articles that is often acceptable because when
constructing SPARQL queries you can match optional patterns. If for example you are looking up
articles on a specific subject then some results may have a publication date attached to the results
for that article and some might not. In practice RDF supports types and we would use a date type as
seen in the last example, not a string. However, in designing the example programs for this chapter
I decided to simplify our representation of URIs and often use string literals as simple Java strings.
For many applications this isn’t a real limitation.

Extending RDF with RDF Schema

RDF Schema (RDFS) supports the definition of classes and properties based on set inclusion. In
RDFS classes and properties are orthogonal. Let’s start with looking at an example using additional
namespaces:

Semantic Web and Linked Data 180

@prefix kb: <http://knowledgebooks.com/ontology#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

@prefix dbo: <http://dbpedia.org/ontology/>

<http://news.com/201234/>

kb:containsCountry

<http://dbpedia.org/resource/China> .

<http://news.com/201234/>

kb:containsCountry

<http://dbpedia.org/resource/United_States> .

<http://dbpedia.org/resource/China>

rdfs:label "China"@en,

rdf:type dbo:Place ,

rdf:type dbo:Country .

Because the semantic web is intended to be processed automatically by software systems it is
encoded as RDF. There is a problem that must be solved in implementing and using the semantic
web: everyone who publishes semantic web data is free to create their own RDF schemas for storing
data; for example, there is usually no single standard RDF schema definition for topics like news
stories and stock market data. The SKOS⁷⁰ is a namespace containing standard schemas and the
most widely used standard is schema.org⁷¹. Understanding the ways of integrating different data
sources using different schemas helps to understand the design decisions behind the semantic web
applications. In this chapter I often use my own schemas in the knowledgebooks.com namespace for
the simple examples you see here. When you build your own production systems part of the work is
searching through schema.org and SKOS to use standard name spaces and schemas when possible.
The use of standard schemas helps when you link internal proprietary Knowledge Graphs used in
organization with public open data from sources like WikiData⁷² and DBPedia⁷³.

We will start with an example that is an extension of the example in the last section that also uses
RDFS. We add a few additional RDF statements:

⁷⁰https://www.w3.org/2009/08/skos-reference/skos.html
⁷¹https://schema.org/docs/schemas.html
⁷²https://www.wikidata.org/wiki/Wikidata:Main_Page
⁷³https://wiki.dbpedia.org/about

https://www.w3.org/2009/08/skos-reference/skos.html
https://schema.org/docs/schemas.html
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://wiki.dbpedia.org/about
https://www.w3.org/2009/08/skos-reference/skos.html
https://schema.org/docs/schemas.html
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://wiki.dbpedia.org/about

Semantic Web and Linked Data 181

@prefix kb: <http://knowledgebooks.com/ontology#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

kb:containsCity rdfs:subPropertyOf kb:containsPlace .

kb:containsCountry rdfs:subPropertyOf kb:containsPlace .

kb:containsState rdfs:subPropertyOf kb:containsPlace .

The last three lines declare that:

• The property containsCity is a sub-property of containsPlace.
• The property containsCountry is a sub-property of containsPlace.
• The property containsState is a sub-property of containsPlace.

Why is this useful? For at least two reasons:

• You can query an RDF data store for all triples that use property containsPlace and also match
triples with properties equal to containsCity, containsCountry, or containsState. There may not
even be any triples that explicitly use the property containsPlace.

• Consider a hypothetical case where you are using two different RDF data stores that use
different properties for naming cities: cityName and city. You can define cityName to be a
sub-property of city and then write all queries against the single property name city. This
removes the necessity to convert data from different sources to use the same Schema. You can
also use OWL to state property and class equivalency.

In addition to providing a vocabulary for describing properties and class membership by properties,
RDFS is also used for logical inference to infer new triples, combine data from different RDF data
sources, and to allow effective querying of RDF data stores. We will see examples of all of these
features of RDFS when we later start using the Jena libraries to perform SPARQL queries.

The SPARQL Query Language

SPARQL is a query language used to query RDF data stores. While SPARQL may initially look
like SQL, we will see that there are some important differences like support for RDFS and OWL
inferencing and graph-based instead of relational matching operations. We will cover the basics of
SPARQL in this section and then see more examples later when we learn how to embed Jena in Java
applications, and see more examples in the last chapter Knowledge Graph Navigator.

We will use the N3 format RDF file test_data/news.n3 for the examples. I created this file
automatically by spidering Reuters news stories on the news.yahoo.com web site and automatically
extracting named entities from the text of the articles. We saw techniques for extracting named
entities from text in earlier chapters. In this chapter we use these sample RDF files.

You have already seen snippets of this file and I list the entire file here for reference, edited to fit
line width: you may find the file news.n3 easier to read if you are at your computer and open the
file in a text editor so you will not be limited to what fits on a book page:

Semantic Web and Linked Data 182

@prefix kb: <http://knowledgebooks.com/ontology#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

kb:containsCity rdfs:subPropertyOf kb:containsPlace .

kb:containsCountry rdfs:subPropertyOf kb:containsPlace .

kb:containsState rdfs:subPropertyOf kb:containsPlace .

<http://yahoo.com/20080616/usa_flooding_dc_16/>

kb:containsCity "Burlington" , "Denver" ,

"St. Paul" ," Chicago" ,

"Quincy" , "CHICAGO" ,

"Iowa City" ;

kb:containsRegion "U.S. Midwest" , "Midwest" ;

kb:containsCountry "United States" , "Japan" ;

kb:containsState "Minnesota" , "Illinois" ,

"Mississippi" , "Iowa" ;

kb:containsOrganization "National Guard" ,

"U.S. Department of Agriculture" ,

"White House" ,

"Chicago Board of Trade" ,

"Department of Transportation" ;

kb:containsPerson "Dena Gray-Fisher" ,

"Donald Miller" ,

"Glenn Hollander" ,

"Rich Feltes" ,

"George W. Bush" ;

kb:containsIndustryTerm "food inflation" , "food" ,

"finance ministers" ,

"oil" .

<http://yahoo.com/78325/ts_nm/usa_politics_dc_2/>

kb:containsCity "Washington" , "Baghdad" ,

"Arlington" , "Flint" ;

kb:containsCountry "United States" ,

"Afghanistan" ,

"Iraq" ;

kb:containsState "Illinois" , "Virginia" ,

"Arizona" , "Michigan" ;

kb:containsOrganization "White House" ,

"Obama administration" ,

"Iraqi government" ;

Semantic Web and Linked Data 183

kb:containsPerson "David Petraeus" ,

"John McCain" ,

"Hoshiyar Zebari" ,

"Barack Obama" ,

"George W. Bush" ,

"Carly Fiorina" ;

kb:containsIndustryTerm "oil prices" .

<http://yahoo.com/10944/ts_nm/worldleaders_dc_1/>

kb:containsCity "WASHINGTON" ;

kb:containsCountry "United States" , "Pakistan" ,

"Islamic Republic of Iran" ;

kb:containsState "Maryland" ;

kb:containsOrganization "University of Maryland" ,

"United Nations" ;

kb:containsPerson "Ban Ki-moon" , "Gordon Brown" ,

"Hu Jintao" , "George W. Bush" ,

"Pervez Musharraf" ,

"Vladimir Putin" ,

"Steven Kull" ,

"Mahmoud Ahmadinejad" .

<http://yahoo.com/10622/global_economy_dc_4/>

kb:containsCity "Sao Paulo" , "Kuala Lumpur" ;

kb:containsRegion "Midwest" ;

kb:containsCountry "United States" , "Britain" ,

"Saudi Arabia" , "Spain" ,

"Italy" , India" ,

""France" , "Canada" ,

"Russia" , "Germany" , "China" ,

"Japan" , "South Korea" ;

kb:containsOrganization "Federal Reserve Bank" ,

"European Union" ,

"European Central Bank" ,

"European Commission" ;

kb:containsPerson "Lee Myung-bak" , "Rajat Nag" ,

"Luiz Inacio Lula da Silva" ,

"Jeffrey Lacker" ;

kb:containsCompany "Development Bank Managing" ,

"Reuters" ,

"Richmond Federal Reserve Bank" ;

kb:containsIndustryTerm "central bank" , "food" ,

"energy costs" ,

Semantic Web and Linked Data 184

"finance ministers" ,

"crude oil prices" ,

"oil prices" ,

"oil shock" ,

"food prices" ,

"Finance ministers" ,

"Oil prices" , "oil" .

In the following examples, we will use the main method in the class JenaApi (developed in the
next section) that allows us to load multiple RDF input files and then to interactively enter SPARQL
queries.

We will start with a simple SPARQL query for subjects (news article URLs) and objects (matching
countries) with the value for the predicate equal to containsCountry. Variables in queries start with
a question mark character and can have any names:

SELECT ?subject ?object

WHERE {

?subject

<http://knowledgebooks.com/ontology#containsCountry>

?object .

}

It is important for you to understand what is happening when we apply the last SPARQL query to
our sample data. Conceptually, all the triples in the sample data are scanned, keeping the ones where
the predicate part of a triple is equal to http://knowledgebooks.com/ontology#containsCountry.
In practice RDF data stores supporting SPARQL queries index RDF data so a complete scan of the
sample data is not required. This is analogous to relational databases where indices are created to
avoid needing to perform complete scans of database tables.

In practice, when you are exploring a Knowledge Graph like DBPedia or WikiData (that are just
very large collections of RDF triples), you might run a query and discover a useful or interesting
entity URI in the triple store, then drill down to find out more about the entity. In a later chapter
Knowledge Graph Navigator we attempt to automate this exploration process using the DBPedia
data as a Knowledge Graph.

We will be using the same code to access the small example of RDF statements in our sample data
as we will for accessing DBPedia or WikiData.

We can make this last query easier to read and reduce the chance of misspelling errors by using a
namespace prefix:

http://knowledgebooks.com/ontology#containsCountry

Semantic Web and Linked Data 185

PREFIX kb: <http://knowledgebooks.com/ontology#>

SELECT ?subject ?object

WHERE {

?subject kb:containsCountry ?object .

}

Later in the chapter Knowledge Graph Navigator we will write an application that automatically
generates SPARQL queries for the DBPedia public knowledge Graph. These queries will be be more
complex than the simpler examples here. Reading this chapter before Knowledge Graph Navigator
is recommended.

Case Study: Using SPARQL to Find Information about
Board of Directors Members of Corporations and
Organizations

Before we write software to automate the process of using SPARQL queries to find information
on DBPedia, let’s perform a few manual queries for finding information on board of directors of
corportations. To start with, we would like to find an RDF property that indicates board membership.
There is a common expression for finding information on the web using search engines and also for
using SPARQL queries: “follow your nose,” that is, when you see something interesting, dig down
with more queries on whatever interests you.

SELECT DISTINCT ?s

WHERE {

?s ?p "Board of Directors"@en .

FILTER (?p IN (<http://www.w3.org/2000/01/rdf-schema#label>, <http://xmlns.com/f\

oaf/0.1/name>) && !regex(str(?s), "category", "i"))

}

We will find the property:

http://dbpedia.org/resource/Board_of_Directors

RDF

select ?s ?p { ?s ?p <http://dbpedia.org/resource/Board_of_Directors> } limit 6

Semantic Web and Linked Data 186

s p

http://en.wikipedia.org/wiki/Board_of_Directors http://xmlns.com/foaf/0.1/primaryTop\

ic

http://dbpedia.org/resource/Lynn_D._Stewart_(businessman) http://dbpedia.org/ontolog\

y/board

http://dbpedia.org/resource/Advance_America_Cash_Advance http://dbpedia.org/ontology\

/keyPerson

http://dbpedia.org/resource/Railways_of_Slovak_Republic http://dbpedia.org/ontology/\

keyPerson

http://dbpedia.org/resource/Divine_Word_University_of_Tacloban__DWU_Jubilee_Foundati\

on,_Inc.__1 http://dbpedia.org/ontology/keyPerson

http://dbpedia.org/resource/Mathys_Medical

The property http://dbpedia.org/ontology/board is what we are looking for. Let’s keep “following
our nose” to find examples of board members and the companies they server:

select ?person ?company { ?person <http://dbpedia.org/ontology/board> ?company} limi\

t 6

The results are:

person company

http://dbpedia.org/resource/Matthew_Buckland http://dbpedia.org/resource/Creative_Co\

mmons

http://dbpedia.org/resource/Jimmy_Wales http://dbpedia.org/resource/Creative_Commons

http://dbpedia.org/resource/Nabeel_Rajab http://dbpedia.org/resource/Human_Rights_Wa\

tch

http://dbpedia.org/resource/Vincent_Tewson http://dbpedia.org/resource/International\

_Confederation_of_Free_Trade_Unions

http://dbpedia.org/resource/William_T._Young http://dbpedia.org/resource/KFC

http://dbpedia.org/resource/Colonel_Sanders http://dbpedia.org/resource/KFC

Let’s see what information we can find on the founder of WikiPedi Jimmy Wales:

select ?p ?o { <http://dbpedia.org/resource/Jimmy_Wales> ?p ?o } limit 200

A few of the many results are:

http://dbpedia.org/ontology/board

Semantic Web and Linked Data 187

p o

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Thing

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://xmlns.com/foaf/0.1/Person

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/ontology/Person

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.wikidata.org/entity/Q2156\

27

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.wikidata.org/entity/Q2422\

9398

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.wikidata.org/entity/Q5

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/ontology/Agent

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://schema.org/Person

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Wikica\

tAmericanComputerScientists

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Wikica\

tAmericanExpatriatesInTheUnitedKingdom

http://www.w3.org/2000/01/rdf-schema#label

"Jimmy Wales"@en

Installing the Apache Jena Fuseki RDF Server

TBD

I have a github repository mark-watson/fuseki-semantic-web-dev-setup⁷⁴mthat you shoud clone:

1 git clone https://github.com/mark-watson/fuseki-semantic-web-dev-setup.git

2 cd fuseki-semantic-web-dev-setup

3 ./fuseki-server --file RDF/sample_news.nt /news

This will run the SPARQL server Fuseki locally on your laptop and the default graph is “news” and
you will see output like:

⁷⁴https://github.com/mark-watson/fuseki-semantic-web-dev-setup

https://github.com/mark-watson/fuseki-semantic-web-dev-setup
https://github.com/mark-watson/fuseki-semantic-web-dev-setup

Semantic Web and Linked Data 188

1 $./fuseki-server --file RDF/sample_news.nt /news

2 [2020-11-07 09:31:13] Server INFO Dataset: in-memory: load file: RDF/sample_new\

3 s.nt

4 [2020-11-07 09:31:14] Server INFO Running in read-only mode for /news

5 [2020-11-07 09:31:14] Server INFO Apache Jena Fuseki 3.16.0

6 [2020-11-07 09:31:14] Config INFO FUSEKI_HOME=/Users/markw/GITHUB/fuseki-semant\

7 ic-web-dev-setup/.

8 [2020-11-07 09:31:14] Config INFO FUSEKI_BASE=/Users/markw/GITHUB/fuseki-semant\

9 ic-web-dev-setup/run

10 [2020-11-07 09:31:14] Config INFO Shiro file: file:///Users/markw/GITHUB/fuseki\

11 -semantic-web-dev-setup/run/shiro.ini

12 [2020-11-07 09:31:15] Server INFO Dataset Type: in-memory, with files loaded

13 [2020-11-07 09:31:15] Server INFO Path = /news

14 [2020-11-07 09:31:15] Server INFO System

15 [2020-11-07 09:31:15] Server INFO Memory: 4.0 GiB

16 [2020-11-07 09:31:15] Server INFO Java: 14.0.1

17 [2020-11-07 09:31:15] Server INFO OS: Mac OS X 10.15.7 x86_64

18 [2020-11-07 09:31:15] Server INFO PID: 3855

19 [2020-11-07 09:31:15] Server INFO Started 2020/11/07 09:31:15 MST on port 3030

You can access a web interface for SPARQL queries by accessing localhost:3030 or http:127.0.0.1:3030.

Common Lisp Client Examples for the Apache Jena
Fuseki RDF Server

Later in the chapter “Knowledge Graph Navigator” we will develop a simple Common Lisp SPARQL
query library and use it for querying DBPedia. Here we will use it to query our local Fuseki server.

1 $ sbcl

2 This is SBCL 2.0.7, an implementation of ANSI Common Lisp.

3 More information about SBCL is available at <http://www.sbcl.org/>.

4

5 SBCL is free software, provided as is, with absolutely no warranty.

6 It is mostly in the public domain; some portions are provided under

7 BSD-style licenses. See the CREDITS and COPYING files in the

8 distribution for more information.

9

10 #P"/Users/markw/quicklisp/setup.lisp"

11 "starting up quicklisp"

12 * (quicklisp:quickload "sparql")

13 To load "sparql":

Semantic Web and Linked Data 189

14 Load 1 ASDF system:

15 sparql

16 ; Loading "sparql"

17

18 ("sparql")

19 * (sparql::fuseki "select ?s ?p ?o { ?s ?p ?o } limit 20")

20 (((:s "http://kbsportal.com/trout_season/")

21 (:p "http://knowledgebooks.com/ontology/#storyType")

22 (:o "http://knowledgebooks.com/ontology/#recreation"))

23 ((:s "http://kbsportal.com/trout_season/")

24 (:p "http://knowledgebooks.com/ontology/#storyType")

25 (:o "http://knowledgebooks.com/ontology/#sports"))

26 ((:s "http://kbsportal.com/bear_mountain_fire/")

27 (:p "http://knowledgebooks.com/ontology/#storyType")

28 (:o "http://knowledgebooks.com/ontology/#disaster"))

29 ((:s "http://kbsportal.com/bear_mountain_fire/")

30 (:p "http://knowledgebooks.com/ontology/#summary")

31 (:o "The fire on Bear Mountain was caused by lightening"))

32 ((:s "http://kbsportal.com/jc_basketball/")

33 (:p "http://knowledgebooks.com/ontology/#storyType")

34 (:o "http://knowledgebooks.com/ontology/#sports"))

35 ((:s "http://kbsportal.com/oak_creek_flooding/")

36 (:p "http://knowledgebooks.com/ontology/#storyType")

37 (:o "http://knowledgebooks.com/ontology/#disaster"))

38 ((:s "http://kbsportal.com/oak_creek_flooding/")

39 (:p "http://knowledgebooks.com/ontology/#summary")

40 (:o "Oak Creek flooded last week affecting 5 businesses")))

Here is an example of using the same library to query the public DBPedia SPARQL endpoint (most
output is not shown):

1 * (sparql:dbpedia "select ?s ?p { ?s ?p \"Bill Gates\"@en }")

2

3 ("ndbpeia SPARQL:n" "select ?s ?p { ?s ?p \"Bill Gates\"@en }" "n")

4 (((:s "http://dbpedia.org/resource/Category:Bill_Gates")

5 (:p "http://www.w3.org/2000/01/rdf-schema#label"))

6 ((:s "http://www.wikidata.org/entity/Q5284")

7 (:p "http://www.w3.org/2000/01/rdf-schema#label"))

8 ((:s "http://dbpedia.org/resource/Bill_Gates")

9 (:p "http://xmlns.com/foaf/0.1/name"))

10)

The SPARQL library in the github repository for this book also supports the commercial products

Semantic Web and Linked Data 190

AllegroGraph and Stardog RDF servers.

Automatically Generating Data for
Knowledge Graphs
We develop a complete application. The Knowledge Graph Creator (KGcreator) is a tool for
automating the generation of data for Knowledge Graphs from raw text data. We will see how to
create a single standalone executable file using SBCL Common Lisp. The application can also be run
during development from a repl. This application also implements a web application interface. In
addition to the KGcreator application we will close the chapter with a utiity library that processes
a file of RDF in N-Triple format and generates an extention file with triples pulled from DBedia
defining URIs found in the input data file.

Data created by KGcreator generates data in two formats:

• Neo4j graph database format (text format)
• RDF triples suitable for loading into any linked data/semantic web data store.

This example application works by identifying entities in text. Example entity types are people,
companies, country names, city names, broadcast network names, political party names, and
university names. We saw earlier code for detecting entities in the chapter on natural language
processing (NLP) and we will reuse this code. We will discuss later three strategies for reusing code
from different projects.

When I originally wrote KGCreator I intended to develop a commercial product. I wrote two research
prototypes, one in Common Lisp (the example in this chapter) and one in Haskell (which I also use
as an example in my book Haskell Tutorial and Cookbook⁷⁵. I decided to open source both versions
of KGCreator and if you work with Knowledge Graphs I hope you find KGCreator useful in your
work.

The following figure shows part of a Neo4j Knowledge Graph created with the example code. This
graph has shortened labels in displayed nodes but Neo4j offers a web browser-based console that lets
you interactively explore Knowledge Graphs. We don’t cover setting up Neo4j here so please use the
Neo4j documentation⁷⁶. As an introduction to RDF data, the semantic web, and linked data you can
get free copies of my two books Practical Semantic Web and Linked Data Applications, Common
Lisp Edition⁷⁷ and Practical Semantic Web and Linked Data Applications, Java, Scala, Clojure, and
JRuby Edition⁷⁸.

⁷⁵https://leanpub.com/haskell-cookbook/
⁷⁶https://neo4j.com/docs/operations-manual/current/introduction/
⁷⁷http://markwatson.com/opencontentdata/book_lisp.pdf
⁷⁸http://markwatson.com/opencontentdata/book_java.pdf

https://leanpub.com/haskell-cookbook/
https://neo4j.com/docs/operations-manual/current/introduction/
http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_java.pdf
http://markwatson.com/opencontentdata/book_java.pdf
https://leanpub.com/haskell-cookbook/
https://neo4j.com/docs/operations-manual/current/introduction/
http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_java.pdf

Automatically Generating Data for Knowledge Graphs 192

Part of a Knowledge Graph shown in Neo4j web application console

Here is a detail view:

Detail of Neo4j console

Implementation Notes

As seen in the file src /kgcreator/package.lisp this application uses several other packages:

Automatically Generating Data for Knowledge Graphs 193

1 (defpackage #:kgcreator

2 (:use #:cl

3 #:entities_dbpedia #:categorize_summarize #:myutils

4 #:cl-who #:hunchentoot #:parenscript)

5 (:export kgcreator))

The implementation of the packages shown on line 3were in a previous chapter. The packagemyutils
are mostly miscellaneous string utilities that wewon’t look at here; I leave it to you to read the source
code.

As seen in the configuration file src/kgcreator/kgcreator.asd we split the implementation of the
application into four source files:

1 ;;;; kgcreator.asd

2

3 (asdf:defsystem #:kgcreator

4 :description "Describe plotlib here"

5 :author "Mark Watson <mark.watson@gmail.com>"

6 :license "AGPL version 3"

7 :depends-on (#:entities_dbpedia #:categorize_summarize

8 #:myutils #:unix-opts #:cl-who

9 #:hunchentoot #:parenscript)

10 :components

11 ((:file "package")

12 (:file "kgcreator")

13 (:file "neo4j")

14 (:file "rdf")

15 (:file "web"))

16)

The application is separated into four source files:

• kgcreator.lisp: top level APIs and functionality. Uses the code in neo4j.lisp and rdf.lisp. Later
we will generate a standalone application that uses these top level APIs

• neo4j.lisp: generates Cyper text files that can be imported into Neo4j
• – rdf.lisp: generates RDF text data that can be loaded or imported into RDF data stores
• web.lisp: a simple web application for running KGCreator

Generating RDF Data

I leave it to you find a tutorial on RDF data on the web, or you can get a PDF for my book “Practical
Semantic Web and Linked Data Applications, Common Lisp Edition”⁷⁹ and read the tutorial sections
on RDF.

⁷⁹http://markwatson.com/opencontentdata/book_lisp.pdf

http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_lisp.pdf

Automatically Generating Data for Knowledge Graphs 194

RDF data is comprised of triples, where the value for each triple are a subject, a predicate, and an
object. Subjects are URIs, predicates are usually URIs, and objects are either literal values or URIs.
Here are two triples written by this example application:

<http://dbpedia.org/resource/The_Wall_Street_Journal>

<http://knowledgebooks.com/schema/aboutCompanyName>

"Wall Street Journal" .

<https://newsshop.com/june/z902.html>

<http://knowledgebooks.com/schema/containsCountryDbPediaLink>

<http://dbpedia.org/resource/Canada> .

The following listing of the file src/kgcreator/rdf.lisp generates RDF data:

1 (in-package #:kgcreator)

2

3 (let ((*rdf-nodes-hash*))

4

5 (defun rdf-from-files (output-file-path text-and-meta-pairs)

6 (setf *rdf-nodes-hash* (make-hash-table :test #'equal :size 200))

7 (print (list "==> rdf-from-files" output-file-path text-and-meta-pairs))

8 (with-open-file

9 (str output-file-path

10 :direction :output

11 :if-exists :supersede

12 :if-does-not-exist :create)

13

14 (defun rdf-from-files-handle-single-file (text-input-file meta-input-file)

15 (let* ((text (file-to-string text-input-file))

16 (words (myutils:words-from-string text))

17 (meta (file-to-string meta-input-file)))

18

19 (defun generate-original-doc-node-rdf ()

20 (let ((node-name (node-name-from-uri meta)))

21 (if (null (gethash node-name *rdf-nodes-hash*))

22 (let* ((cats (categorize words))

23 (sum (summarize words cats)))

24 (print (list "$$$$$$ cats:" cats))

25 (setf (gethash node-name *rdf-nodes-hash*) t)

26 (format str (concatenate 'string "<" meta

27 "> <http:knowledgebooks.com/schema/summary> \""

28 sum "\" . ~%"))

29 (dolist (cat cats)

30 (let ((hash-check (concatenate 'string node-name (car cat))))

Automatically Generating Data for Knowledge Graphs 195

31 (if (null (gethash hash-check *rdf-nodes-hash*))

32 (let ()

33 (setf (gethash hash-check *rdf-nodes-hash*) t)

34 (format str

35 (concatenate 'string "<" meta

36 "> <http://knowledgebooks.com/schema/"

37 "topicCategory> "

38 "<http://knowledgebooks.com/schema/"

39 (car cat) "> . ~%"))))))))))

40

41 (defun generate-dbpedia-contains-rdf (key value)

42 (generate-original-doc-node-rdf)

43 (let ((relation-name (concatenate 'string key "DbPediaLink")))

44 (dolist (entity-pair value)

45 (let* ((node-name (node-name-from-uri meta))

46 (object-node-name (node-name-from-uri (cadr entity-pair)))

47 (hash-check (concatenate 'string node-name object-node-name)))

48 (if (null (gethash hash-check *rdf-nodes-hash*))

49 (let ()

50 (setf (gethash hash-check *rdf-nodes-hash*) t)

51 (format str (concatenate 'string "<" meta

52 "> <http://knowledgebooks.com/schema/contains/"

53 key "> " (cadr entity-pair) " .~%"))))))))))

54

55

56 ;; start code for rdf-from-files (output-file-path text-and-meta-pairs)

57 (dolist (pair text-and-meta-pairs)

58 (rdf-from-files-handle-single-file (car pair) (cadr pair))

59 (let ((h (entities_dbpedia:find-entities-in-text (file-to-string (car pair))\

60)))

61 (entities_dbpedia:entity-iterator #'generate-dbpedia-contains-rdf h))))))

62

63

64 (defvar test_files '((#P"~/GITHUB/common-lisp/kgcreator/test_data/test3.txt"

65 #P"~/GITHUB/common-lisp/kgcreator/test_data/test3.meta")))

66 (defvar test_filesZZZ '((#P"~/GITHUB/common-lisp/kgcreator/test_data/test3.txt"

67 #P"~/GITHUB/common-lisp/kgcreator/test_data/test3.meta")

68 (#P"~/GITHUB/common-lisp/kgcreator/test_data/test2.txt"

69 #P"~/GITHUB/common-lisp/kgcreator/test_data/test2.meta")

70 (#P"~/GITHUB/common-lisp/kgcreator/test_data/test1.txt"

71 #P"~/GITHUB/common-lisp/kgcreator/test_data/test1.meta")))

72

73 (defun test3a ()

Automatically Generating Data for Knowledge Graphs 196

74 (rdf-from-files "out.rdf" test_files))

You can load all of KGCreator but just execute the test function at the end of this file using:

(ql:quickload "kgcreator")

(in-package #:kgcreator)

(kgcreator:test3a)

This code works on a list of paired files for text data and the meta data for each text file. As an
example, if there is an input text file test123.txt then there would be amatchingmeta file test123.meta
that contains the source of the data in the file test123.txt. This data source will be a URI on the web
or a local file URI. The top level function rdf-from-files takes an output file path for writing the
generated RDF data and a list of pairs of text and meta file paths.

A global variable *rdf-nodes-hash* will be used to remember the nodes in the RDF graph as it is
generated. Please note that the function rdf-from-files is not re-entrant: it uses the global *rdf-
nodes-hash* so if you are writing multi-threaded applications it will not work to execute the
function rdf-from-files simultaneously in multiple threads of execution.

The function rdf-from-files (and the nested functions) are straightforward. I left a few debug
printout statements in the code and when you run the test code that I left in the bottom of the
file, hopefully it will be clear what rdf.lisp is doing.

Generating Data for the Neo4j Graph Database

Nowwe will generate Neo4J Cypher data. In order to keep the implementation simple, both the RDF
and Cypher generation code starts with raw text and performs the NLP analysis to find entities. This
example could be refactored to perform the NLP analysis just one time but in practice you will likely
be working with either RDF or NEO4J and so you will probably extract just the code you need from
this example (i.e., either the RDF or Cypher generation code).

Before we look at the code, let’s start with a few lines of generated Neo4J Cypher import data:

CREATE (newsshop_com_june_z902_html_news)-[:ContainsCompanyDbPediaLink]->(Wall_Stree\

t_Journal)

CREATE (Canada:Entity {name:"Canada", uri:"<http://dbpedia.org/resource/Canada>"})

CREATE (newsshop_com_june_z902_html_news)-[:ContainsCountryDbPediaLink]->(Canada)

CREATE (summary_of_abcnews_go_com_US_violent_long_lasting_tornadoes_threaten_oklahom\

a_texas_storyid63146361:Summary {name:"summary_of_abcnews_go_com_US_violent_long_las\

ting_tornadoes_threaten_oklahoma_texas_storyid63146361", uri:"<https://abcnews.go.co\

m/US/violent-long-lasting-tornadoes-threaten-oklahoma-texas/story?id=63146361>", sum\

mary:"Part of the system that delivered severe weather to the central U.S. over the \

weekend is moving into the Northeast today, producing strong to severe storms -- dam\

Automatically Generating Data for Knowledge Graphs 197

aging winds, hail or isolated tornadoes can't be ruled out. Severe weather is foreca\

st to continue on Tuesday, with the western storm moving east into the Midwest and p\

arts of the mid-Mississippi Valley."})

The following listing of file src/kgcreator/neo4j.lisp is similar to the code that generated RDF in
the last section:

1 (in-package #:kgcreator)

2

3 (let ((*entity-nodes-hash*))

4

5 (defun cypher-from-files (output-file-path text-and-meta-pairs)

6 (setf *entity-nodes-hash* (make-hash-table :test #'equal :size 200))

7 ;;(print (list "==> cypher-from-files"output-file-path text-and-meta-pairs))

8 (with-open-file

9 (str output-file-path

10 :direction :output

11 :if-exists :supersede

12 :if-does-not-exist :create)

13

14 (defun generateNeo4jCategoryNodes ()

15 (let* ((names categorize_summarize::categoryNames))

16 (dolist (name names)

17 (format str

18 (myutils:replace-all

19 (concatenate

20 'string "CREATE (" name ":CategoryType {name:\"" name "\"})~%")

21 "/" "_"))))

22 (format str "~%"))

23

24

25 (defun cypher-from-files-handle-single-file (text-input-file meta-input-file)

26 (let* ((text (file-to-string text-input-file))

27 (words (myutils:words-from-string text))

28 (meta (file-to-string meta-input-file)))

29

30 (defun generate-original-doc-node ()

31 (let ((node-name (node-name-from-uri meta)))

32 (if (null (gethash node-name *entity-nodes-hash*))

33 (let* ((cats (categorize words))

34 (sum (summarize words cats)))

35 (setf (gethash node-name *entity-nodes-hash*) t)

36 (format str (concatenate 'string "CREATE (" node-name ":News {name:\""

Automatically Generating Data for Knowledge Graphs 198

37 node-name "\", uri: \"" meta

38 "\", summary: \"" sum "\"})~%"))

39 (dolist (cat cats)

40 (let ((hash-check (concatenate 'string node-name (car cat))))

41 (if (null (gethash hash-check *entity-nodes-hash*))

42 (let ()

43 (setf (gethash hash-check *entity-nodes-hash*) t)

44 (format str (concatenate 'string "CREATE (" node-name

45 ")-[:Category]->("

46 (car cat) ")~%"))))))))))

47

48 (defun generate-dbpedia-nodes (key entity-pairs)

49 (dolist (entity-pair entity-pairs)

50 (if (null (gethash (node-name-from-uri (cadr entity-pair))

51 *entity-nodes-hash*))

52 (let ()

53 (setf (gethash (node-name-from-uri (cadr entity-pair)) *entity-nodes-hash*) t)

54 (format str

55 (concatenate 'string "CREATE (" (node-name-from-uri (cadr entity-pair)) ":"

56 key " {name: \"" (car entity-pair)

57 "\", uri: \"" (cadr entity-pair) "\"})~%"))))))

58

59 (defun generate-dbpedia-contains-cypher (key value)

60 (generate-original-doc-node)

61 (generate-dbpedia-nodes key value)

62 (let ((relation-name (concatenate 'string key "DbPediaLink")))

63 (dolist (entity-pair value)

64 (let* ((node-name (node-name-from-uri meta))

65 (object-node-name (node-name-from-uri (cadr entity-pair)))

66 (hash-check (concatenate 'string node-name object-node-name)))

67 (if (null (gethash hash-check *entity-nodes-hash*))

68 (let ()

69 (setf (gethash hash-check *entity-nodes-hash*) t)

70 (format str (concatenate 'string

71 "CREATE (" node-name ")-[:"

72 relation-name "]->(" object-node-name ")~%"))))))))))

73

74

75 ;; start code for cypher-from-files (output-file-path text-and-meta-pairs)

76 (generateNeo4jCategoryNodes) ;; just once, not for every input file

77 (dolist (pair text-and-meta-pairs)

78 (cypher-from-files-handle-single-file (car pair) (cadr pair))

79 (let ((h (entities_dbpedia:find-entities-in-text (file-to-string (car pair)))))

Automatically Generating Data for Knowledge Graphs 199

80 (entities_dbpedia:entity-iterator #'generate-dbpedia-contains-cypher h))))))

81

82

83 (defvar test_files '((#P"~/GITHUB/common-lisp/kgcreator/test_data/test3.txt"

84 #P"~/GITHUB/common-lisp/kgcreator/test_data/test3.meta")

85 (#P"~/GITHUB/common-lisp/kgcreator/test_data/test2.txt"

86 #P"~/GITHUB/common-lisp/kgcreator/test_data/test2.meta")

87 (#P"~/GITHUB/common-lisp/kgcreator/test_data/test1.txt"

88 #P"~/GITHUB/common-lisp/kgcreator/test_data/test1.meta")))

89

90 (defun test2a ()

91 (cypher-from-files "out.cypher" test_files))

You can load all of KGCreator but just execute the test function at the end of this file using:

(ql:quickload "kgcreator")

(in-package #:kgcreator)

(kgcreator:test2a)

Implementing the Top Level Application APIs

The code in the file src/kgcreator/kgcreator.lisp uses both rdf.lisp and neo4j.lisp that we saw in
the last two sections. The function get-files-and-meta looks at the contents of an input directory
to generate a list of pairs, each pair containing the path to a text file and the meta file for the
corresponding text file.

We are using the opts package to parse command line arguments. This will be used when we
build a single file standalone executable file for the entire KGCreator application, including the
web application that we will see in a later section.

1 ;; KGCreator main program

2

3 (in-package #:kgcreator)

4

5 (ensure-directories-exist "temp/")

6

7 (defun get-files-and-meta (fpath)

8 (let ((data (directory (concatenate 'string fpath "/" "*.txt")))

9 (meta (directory (concatenate 'string fpath "/" "*.meta"))))

10 (if (not (equal (length data) (length meta)))

11 (let ()

Automatically Generating Data for Knowledge Graphs 200

12 (princ "Error: must be matching *.meta files for each *.txt file")

13 (terpri)

14 '())

15 (let ((ret '()))

16 (dotimes (i (length data))

17 (setq ret (cons (list (nth i data) (nth i meta)) ret)))

18 ret))))

19

20 (opts:define-opts

21 (:name :help

22 :description

23 "KGcreator command line example: ./KGcreator -i test_data -r out.rdf -c out.cyp\

24 er"

25 :short #\h

26 :long "help")

27 (:name :rdf

28 :description "RDF output file name"

29 :short #\r

30 :long "rdf"

31 :arg-parser #'identity ;; <- takes an argument

32 :arg-parser #'identity) ;; <- takes an argument

33 (:name :cypher

34 :description "Cypher output file name"

35 :short #\c

36 :long "cypher"

37 :arg-parser #'identity) ;; <- takes an argument

38 (:name :inputdir

39 :description "Cypher output file name"

40 :short #\i

41 :long "inputdir"

42 :arg-parser #'identity)) ;; <- takes an argument

43

44

45 (defun kgcreator () ;; don't need: &aux args sb-ext:*posix-argv*)

46 (handler-case

47 (let* ((opts (opts:get-opts))

48 (input-path

49 (if (find :inputdir opts)

50 (nth (1+ (position :inputdir opts)) opts)))

51 (rdf-output-path

52 (if (find :rdf opts)

53 (nth (1+ (position :rdf opts)) opts)))

54 (cypher-output-path

Automatically Generating Data for Knowledge Graphs 201

55 (if (find :cypher opts)

56 (nth (1+ (position :cypher opts)) opts))))

57 (format t "input-path: ~a rdf-output-path: ~a cypher-output-path:~a~%"

58 input-path rdf-output-path cypher-output-path)

59 (if (not input-path)

60 (format t "You must specify an input path.~%")

61 (locally

62 (declare #+sbcl(sb-ext:muffle-conditions sb-kernel:redefinition-warning))

63 (handler-bind

64 (#+sbcl(sb-kernel:redefinition-warning #'muffle-warning))

65 ;; stuff that emits redefinition-warning's

66 (let ()

67 (if rdf-output-path

68 (rdf-from-files rdf-output-path (get-files-and-meta input-path)))

69 (if cypher-output-path

70 (cypher-from-files cypher-output-path (get-files-and-meta input-path))))))))

71 (t (c)

72 (format t "We caught a runtime error: ~a~%" c)

73 (values 0 c)))

74 (format t "~%Shutting down KGcreator - done processing~%~%"))

75

76 (defun test1 ()

77 (get-files-and-meta

78 "~/GITHUB/common-lisp/kgcreator/test_data"))

79

80 (defun print-hash-entry (key value)

81 (format t "The value associated with the key ~S is ~S~%" key value))

82

83 (defun test2 ()

84 (let ((h (entities_dbpedia:find-entities-in-text "Bill Clinton and George Bush wen\

85 t to Mexico and England and watched Univision. They enjoyed Dakbayan sa Dabaw and sh\

86 oped at Best Buy and listened to Al Stewart. They agree on RepÃºblica de Nicaragua a\

87 nd support Sweden Democrats and Leicestershire Miners Association and both sent thei\

88 r kids to Darul Uloom Deoband.")))

89 (entities_dbpedia:entity-iterator #'print-hash-entry h)))

90

91 (defun test7 ()

92 (rdf-from-files "out.rdf" (get-files-and-meta "test_data")))

You can load all of KGCreator but just execute the three test functions at the end of this file using:

Automatically Generating Data for Knowledge Graphs 202

(ql:quickload "kgcreator")

(in-package #:kgcreator)

(kgcreator:test1)

(kgcreator:test2)

(kgcreator:test7)

Implementing The Web Interface

When we build a standalone single file application for KGCreator, we include a simple web
application interface that allows users to enter input text and see generated RDF and Neo4j Cypher
data.

The file src/kgcreator/web.lisp uses the libraries cl-who hunchentoot parenscript that we used
earlier. The function write-files-run-code** (lines 8-43) takes raw text, and writes generated RDF and
Neo4j Cypher data to local temporary files that are then read and formatted to HTML for display.
The code in rdf.lisp and neo4j.lisp is file oriented, and I wrote web.lisp as an afterthought so it was
easier writing temporary files than refactoring rdf.lisp and neo4j.lisp to write to strings.

1 (in-package #:kgcreator)

2

3 (ql:quickload '(cl-who hunchentoot parenscript))

4

5

6 (setf (html-mode) :html5)

7

8 (defun write-files-run-code (a-uri raw-text)

9 (if (< (length raw-text) 10)

10 (list "not enough text" "not enough text")

11 ;; generate random file number

12 (let* ((filenum (+ 1000 (random 5000)))

13 (meta-name (concatenate 'string "temp/" (write-to-string filenum) ".meta"))

14 (text-name (concatenate 'string "temp/" (write-to-string filenum) ".txt"))

15 (rdf-name (concatenate 'string "temp/" (write-to-string filenum) ".rdf"))

16 (cypher-name (concatenate 'string "temp/" (write-to-string filenum) ".cypher"))

17 ret)

18 ;; write meta file

19 (with-open-file (str meta-name

20 :direction :output

21 :if-exists :supersede

22 :if-does-not-exist :create)

23 (format str a-uri))

24 ;; write text file

Automatically Generating Data for Knowledge Graphs 203

25 (with-open-file (str text-name

26 :direction :output

27 :if-exists :supersede

28 :if-does-not-exist :create)

29 (format str raw-text))

30 ;; generate rdf and cypher files

31 (rdf-from-files rdf-name (list (list text-name meta-name)))

32 (cypher-from-files cypher-name (list (list text-name meta-name)))

33 ;; read files and return results

34 (setf ret

35 (list

36 (replace-all

37 (replace-all

38 (uiop:read-file-string rdf-name)

39 ">" ">")

40 "<" "<")

41 (uiop:read-file-string cypher-name)))

42 (print (list "ret:" ret))

43 ret)))

44

45 (defvar *h* (make-instance 'easy-acceptor :port 3000))

46

47 ;; define a handler with the arbitrary name my-greetings:

48

49 (define-easy-handler (my-greetings :uri "/") (text)

50 (setf (hunchentoot:content-type*) "text/html")

51 (let ((rdf-and-cypher (write-files-run-code "http://test.com/1" text)))

52 (print (list "*** rdf-and-cypher:" rdf-and-cypher))

53 (with-html-output-to-string

54 (*standard-output* nil :prologue t)

55 (:html

56 (:head (:title "KGCreator Demo")

57 (:link :rel "stylesheet" :href "styles.css" :type "text/css"))

58 (:body

59 :style "margin: 90px"

60 (:h1 "Enter plain text for the demo to create RDF and Cypher")

61 (:p "For more information on the KGCreator product please visit the web site:"

62 (:a :href "https://markwatson.com/products/" "Mark Watson's commercial products"\

63))

64 (:p "The KGCreator product is a command line tool that processes all text "

65 "web applications and files in a source directory and produces both RDF data "

66 "triples for semantic Cypher input data files for the Neo4j graph database. "

67 "For the purposes of this demo the URI for your input text is hardwired to "

Automatically Generating Data for Knowledge Graphs 204

68 "<http://test.com/1> but the KGCreator product offers flexibility "

69 "for assigning URIs to data sources and further, "

70 "creates links for relationships between input sources.")

71 (:p :style "text-align: left"

72 "To try the demo paste plain text into the following form that contains "

73 "information on companies, news, politics, famous people, broadcasting "

74 "networks, political parties, countries and other locations, etc. ")

75 (:p "Do not include and special characters or character sets:")

76 (:form

77 :method :post

78 (:textarea

79 :rows "20"

80 :cols "90"

81 :name "text"

82 :value text)

83 (:br)

84 (:input :type :submit :value "Submit text to process"))

85 (:h3 "RDF:")

86 (:pre (str (car rdf-and-cypher)))

87 (:h3 "Cypher:")

88 (:pre (str (cadr rdf-and-cypher))))))))

89

90 (defun kgcweb ()

91 (hunchentoot:start *h*))

You can load all of KGCreator and start the web application using:

(ql:quickload "kgcreator")

(in-package #:kgcreator)

(kgcweb)

You can access the web app at http://localhost:3000⁸⁰.

Creating a Standalone Application Using SBCL

When I originally wrote KGCreator I intended to develop a commercial product so it was important
to be able to create standalone single file executables. This is simple to do using SBCL:

⁸⁰http://localhost:3000

http://localhost:3000/
http://localhost:3000/

Automatically Generating Data for Knowledge Graphs 205

1 $ sbcl

2 (ql:quickload "kgcreator")

3 (in-package #:kgcreator)

4 (sb-ext:save-lisp-and-die "KGcreator"

5 :toplevel #'kgcreator :executable t)

As an example, you could run the application on the command line using:

1 ./KGcreator -i test_data -r out.rdf -c out.cyper

Augmenting RDF Triples in a Knowledge Graph Using
DBPedia

You can augment RDF-based Knowledge Graphs that you build with the KGcreator application by
using the library in the directory kg-add-dbpedia-triples.

As seen in the kg-add-dbpedia-triples.asd and package.lisp configuration files, we use two other
libraries developed in this book:

;;;; kg-add-dbpedia-triples.asd

(asdf:defsystem #:kg-add-dbpedia-triples

:description "Add DBPedia triples from an input N-Triples RDF file"

:author "markw@markwatson.com"

:license "Apache 2"

:depends-on (#:myutils #:sparql)

:components ((:file "package")

(:file "add-dbpedia-triples")))

;;;; package.lisp

(defpackage #:kg-add-dbpedia-triples

(:use #:cl #:myutils #:sparql)

(:export #:add-triples))

The library is implemented in the file kg-add-dbpedia-triples.lisp:

Automatically Generating Data for Knowledge Graphs 206

1 (in-package #:kg-add-dbpedia-triples)

2

3 (defun augmented-triples (a-uri ostream)

4 (let ((results

5 (sparql:dbpedia

6 (format nil "construct { ~A ?p ?o } where { ~A ?p ?o } limit 5" a-uri a-ur\

7 i))))

8 (dolist (x results)

9 (dolist (sop x)

10 (let ((val (second sop)))

11 (if (and

12 (stringp val)

13 (> (length val) 9)

14 (or

15 (equal (subseq val 0 7) "http://")

16 (equal (subseq val 0 8) "https://")))

17 (format ostream "<~A> " val)

18 (format ostream "~A " val))))

19 (format ostream " .~%"))))

20

21 (defun add-triples (in-file-name out-file-name)

22 (let* ((nt-data (myutils:file-to-string in-file-name))

23 (tokens (myutils:tokenize-string-keep-uri nt-data))

24 (uris

25 (remove-duplicates

26 (mapcan #'(lambda (s) (if

27 (and

28 (stringp s)

29 (> (length s) 19)

30 (equal (subseq s 0 19) "<http://dbpedia.org"))

31 (list s)))

32 tokens)

33 :test #'equal)))

34 (with-open-file (str out-file-name

35 :direction :output

36 :if-exists :supersede

37 :if-does-not-exist :create)

38 (dolist (uri uris)

39 (augmented-triples uri str)))))

TBD

Automatically Generating Data for Knowledge Graphs 207

1

KGCreator Wrap Up

When developing applications or systems using Knowledge Graphs it is useful to be able to quickly
generate test data which is the primary purpose of KGCreator. A secondary use is to generate
Knowledge Graphs for production use using text data sources. In this second use case you will want
to manually inspect the generated data to verify its correctness or usefulness for your application.

Knowledge Graph Sampler for
Creating Small Custom Knowledge
Graphs
I find it convenient to be able to “sample” small parts of larger knowledge graphs. The example
program in this chapter accepts a list of DBPedia entity URIs, attempts top find links between these
entities, and writes these nodes and discovered edges to a RDF triples file.

The code is in the directory src/kgsampler. As seen in the configuration files kg-add-dbpedia-
triples.asd and package.lisp, we will use the sparql library we developed earlier as well as the
libraries uiop and drakma:

;;;; kgsampler.asd

(asdf:defsystem #:kgsampler

:description "sample knowledge graphs"

:author "Mark Watson markw@markwatson.com"

:license "Apache 2"

:depends-on (#:uiop #:drakma #:sparql)

:components ((:file "package")

(:file "kgsampler")))

;;;; package.lisp

(defpackage #:kgsampler

(:use #:cl #:uiop #:sparql)

(:export #:sample))

The program starts with a list of entities and tries to find links on DBPedia between the entities.
A small sample graph of the input entities and any discovered links is written to a file. The
function dbpedia-as-nt spawns a process to use the curl utility to make a HTTP request to DBPedia.
The function construct-from-dbpedia takes a list of entities and writes SPARQL CONSTRUCT
statements with the entity as the subject and the object filtered to a string value in the English
language to an output stream. The function find-relations runs at O(N^2) where N is the number
of input entities so you should avoid using this program with a large number of input entities.

I offer this code without much explanation since much of it is similar to the techniques you saw in
the previous chapter Knowledge Graph Navigator.

Knowledge Graph Sampler for Creating Small Custom Knowledge Graphs 209

;; kgsampler main program

(in-package #:kgsampler)

(defun dbpedia-as-nt (query)

(print query)

(uiop:run-program

(list

"curl"

(concatenate 'string

"https://dbpedia.org/sparql?format=text/ntriples&query="

;; formats that work: csv, text/ntriples, text/ttl

(drakma:url-encode query :utf-8)))

:output :string))

(defun construct-from-dbpedia (entity-uri-list &key (output-stream t))

(dolist (entity-uri entity-uri-list)

(format output-stream "~%~%# ENTITY NAME: ~A~%~%" entity-uri)

(format

output-stream

(dbpedia-as-nt

(format nil

"CONSTRUCT { ~A ?p ?o } where { ~A ?p ?o . FILTER(lang(?o) = 'en') }"\

entity-uri entity-uri)))))

(defun ensure-angle-brackets (s)

"make sure URIs have angle brackets"

(if (equal #\< (char s 0))

s

(concatenate 'string "<" s ">")))

(defun find-relations (entity-uri-list &key (output-stream t))

(dolist (entity-uri1 entity-uri-list)

(dolist (entity-uri2 entity-uri-list)

(if (not (equal entity-uri1 entity-uri2))

(let ((possible-relations

(mapcar #'cadar

(sparql::dbpedia

(format nil

"select ?p where { ~A ?p ~A . filter(!regex(str(?p\

), \"page\", \"i\"))} limit 50"

entity-uri1 entity-uri2)))))

Knowledge Graph Sampler for Creating Small Custom Knowledge Graphs 210

(print "** possible-relations:") (print possible-relations)

(dolist (pr possible-relations)

(format output-stream "~A ~A ~a .~%"

entity-uri1

(ensure-angle-brackets pr)

entity-uri2)))))))

(defun sample (entity-uri-list output-filepath)

(with-open-file (ostream (pathname output-filepath) :direction :output :if-exists\

:supersede)

(construct-from-dbpedia entity-uri-list :output-stream ostream)

(find-relations entity-uri-list :output-stream ostream)))

Let’s start by running the two helper functions interactively so you can see their output (output
edited for brevity). The top level function kgsampler:sample for this example takes a list of entity
URIs and an output file name, and uses the functions construct-from-dbpedia entity-uri-list and
find-relations to write triples for the entities and then for the relationships discovered between
entities. The following listing also calls the helper function kgsampler::find-relations to show you
what its output looks like.

$ sbcl

* (ql:quickload "kgsampler")

* (kgsampler::construct-from-dbpedia '("<http://dbpedia.org/resource/Bill_Gates>" \

"<http://dbpedia.org/resource/Steve_Jobs>") :output-stream nil)

"CONSTRUCT { <http://dbpedia.org/resource/Bill_Gates> ?p ?o } where { <http://dbpedi\

a.org/resource/Bill_Gates> ?p ?o . FILTER (lang(?o) = 'en') }"

"CONSTRUCT { <http://dbpedia.org/resource/Bill_Gates> <http://purl.org/dc/terms/subj\

ect> ?o } where { <http://dbpedia.org/resource/Bill_Gates> <http://purl.org/dc/terms\

/subject> ?o }"

...

* (kgsampler::find-relations '("<http://dbpedia.org/resource/Bill_Gates>" "<http://d\

bpedia.org/resource/Microsoft>") :output-stream nil)

("dbpedia SPARQL:"

"select ?p where { <http://dbpedia.org/resource/Bill_Gates> ?p <http://dbpedia.org/\

resource/Microsoft> . filter(!regex(str(?p), \"page\", \"i\"))} limit 50"

"n")

"** possible-relations:"

("http://dbpedia.org/ontology/knownFor")

"http://dbpedia.org/ontology/knownFor"

Knowledge Graph Sampler for Creating Small Custom Knowledge Graphs 211

("dbpedia SPARQL:"

"select ?p where { <http://dbpedia.org/resource/Microsoft> ?p <http://dbpedia.org/r\

esource/Bill_Gates> . filter(!regex(str(?p), \"page\", \"i\"))} limit 50"

"n")

"** possible-relations:"

("http://dbpedia.org/property/founders" "http://dbpedia.org/ontology/foundedBy")

"http://dbpedia.org/property/founders"

"http://dbpedia.org/ontology/foundedBy"

nil

We now use the main function to generate an output RDF triple file:

1 $ sbcl

2 * (ql:quickload "kgsampler")

3 * (kgsampler:sample '("<http://dbpedia.org/resource/Bill_Gates>" "<http://dbpedia.or\

4 g/resource/Steve_Jobs>" "<http://dbpedia.org/resource/Microsoft>") "test.nt")

5 "CONSTRUCT { <http://dbpedia.org/resource/Bill_Gates> ?p ?o } where { <http://dbpedi\

6 a.org/resource/Bill_Gates> ?p ?o . FILTER (lang(?o) = 'en') }"

7 ("ndbpedia SPARQL:n"

8 "select ?p where { <http://dbpedia.org/resource/Bill_Gates> ?p <http://dbpedia.org/\

9 resource/Microsoft> . filter(!regex(str(?p), \"page\", \"i\"))} limit 50"

10 "n")

11 "** possible-relations:"

12 ("http://dbpedia.org/ontology/board")

13 ("dbpedia SPARQL:"

14 "select ?p where { <http://dbpedia.org/resource/Steve_Jobs> ?p <http://dbpedia.org/\

15 resource/Bill_Gates> . filter(!regex(str(?p), \"page\", \"i\"))} limit 50"

16 "n")

Output RDF N-Triple data is written to the file sample-KG.nt. A very small part of this file is listed
here:

1 # ENTITY NAME: <http://dbpedia.org/resource/Bill_Gates>

2

3 <http://dbpedia.org/resource/Bill_Gates> <http://dbpedia.org/ontology/abstrac\

4 t> "William Henry \"Bill\" Gates III (born October 28, 1955) is an American busines\

5 s magnate,...."@en .

6 <http://dbpedia.org/resource/Bill_Gates>

7 <http://xmlns.com/foaf/0.1/name>

8 "Bill Gates"@en .

9 <http://dbpedia.org/resource/Bill_Gates>

10 <http://xmlns.com/foaf/0.1/surname>

Knowledge Graph Sampler for Creating Small Custom Knowledge Graphs 212

11 "Gates"@en .

12 <http://dbpedia.org/resource/Bill_Gates>

13 <http://dbpedia.org/ontology/title>

14 "Co-Chairmanof theBill & Melinda Gates Foundation"@en .

The same data in Turtle RDF format can be seen in the file sample-KG.ttl that was produced by
importing the triples file into the free edition of GraphDB exporting it to the Turtle file sample-
KG.ttl that I find easier to read. GraphDB has visualization tools which I use here to generate an
interactive graph display of this data:

GraphDB Visual graph of generated RDF triples

Also, this example is set up for people and companies. I may expand it in the future to other types
of entities as I need them.

This example program takes several minutes to run since many SPARQL queries are made to
DBPedia. I am a non-corporate member of the DBPedia organization. Here is a membership
application⁸¹ if you are interested in joining me there.

⁸¹https://www.dbpedia.org/members/membership/

https://www.dbpedia.org/members/membership/
https://www.dbpedia.org/members/membership/
https://www.dbpedia.org/members/membership/

Knowledge Graph Navigator
The Knowledge Graph Navigator (which I will often refer to as KGN) is a tool for processing a set
of entity names and automatically exploring the public Knowledge Graph DBPedia⁸² using SPARQL
queries. I started to write KGN for my own use, to automate some things I used to do manually
when exploring Knowledge Graphs, and later thought that KGNmight be useful also for educational
purposes. KGN shows the user the auto-generated SPARQL queries so hopefully the user will learn
by seeing examples. KGN uses NLP code developed in earlier chapters and we will reuse that code
with a short review of using the APIs.

UI for the Knowledge Graph Navigator

After looking at generated SPARQL for an example query use of the application, we will start a
process of bottom up development, first writing low level functions to automate SPARQL queries,
writing utilities we will need for the UI, and finally writing the UI. Some of the problems we will
need to solve along the way will be colorizing the output the user sees in the UI and implementing
a progress bar so the application user does not think the application is “hanging” while generating
and making SPARQL queries to DBPedia.

Since the DBPedia queries are time consuming, we will also implement a caching layer using SQLite
that will make the app more responsive. The cache is especially helpful during development when

⁸²http://dbpedia.org

http://dbpedia.org/
http://dbpedia.org/

Knowledge Graph Navigator 214

the same queries are repeatedly used for testing.

The code for this application is in the directory src/kgn. KGN is a long example application for a book
and we will not go over all of the code. Rather, I hope to provide you with a roadmap overview of the
code, diving in on code that you might want to reuse for your own projects and some representative
code for generating SPARQL queries.

Example Output

Before we get started studying the implementation, let’s look at sample output in order to help give
meaning to the code we will look at later. Consider a query that a user might type into the top query
field in the KGN app:

1 Steve Jobs lived near San Francisco and was

2 a founder of \<http://dbpedia.org/resource/Apple_Inc.\>

The system will try to recognize entities in a query. If you know the DBPedia URI of an entity, like
the company Apple in this example, you can use that directly. Note that in the SPARQL URIs are
surrounded with angle bracket characters.

The application prints out automatically generated SPARQL queries. For the above listed example
query the following output will be generated (some editing to fit page width):

Trying to get entity by name = Steve Jobs using SPARQL with type:

select distinct ?s ?comment { ?s ?p "Steve Jobs"@en .

?s <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .

FILTER (lang (?comment) = 'en') .

?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Person> .

} LIMIT 15

Trying to get entity by name = San Francisco using SPARQL with type:

Knowledge Graph Navigator 215

select distinct ?s ?comment { ?s ?p "San Francisco"@en .

?s <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .

FILTER (lang (?comment) = 'en') .

?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/City> .

} LIMIT 15

SPARQL to get PERSON data for <http://dbpedia.org/resource/Steve_Jobs>:

SELECT DISTINCT ?label ?comment

(GROUP_CONCAT (DISTINCT ?birthplace ; SEPARATOR=' | ') AS ?birthplace)

(GROUP_CONCAT (DISTINCT ?almamater ; SEPARATOR=' | ') AS ?almamater)

(GROUP_CONCAT (DISTINCT ?spouse ; SEPARATOR=' | ') AS ?spouse) {

<http://dbpedia.org/resource/Steve_Jobs>

<http://www.w3.org/2000/01/rdf-schema#comment>

?comment .

FILTER (lang (?comment) = 'en') .

OPTIONAL { <http://dbpedia.org/resource/Steve_Jobs>

<http://dbpedia.org/ontology/birthPlace>

?birthplace } .

OPTIONAL { <http://dbpedia.org/resource/Steve_Jobs>

<http://dbpedia.org/ontology/almaMater>

?almamater } .

OPTIONAL { <http://dbpedia.org/resource/Steve_Jobs>

<http://dbpedia.org/ontology/spouse>

?spouse } .

OPTIONAL { <http://dbpedia.org/resource/Steve_Jobs>

<http://www.w3.org/2000/01/rdf-schema#label>

?label .

FILTER (lang (?label) = 'en') }

} LIMIT 10

SPARQL to get CITY data for <http://dbpedia.org/resource/San_Francisco>:

Knowledge Graph Navigator 216

SELECT DISTINCT ?label ?comment

(GROUP_CONCAT (DISTINCT ?latitude_longitude ; SEPARATOR=' | ')

AS ?latitude_longitude)

(GROUP_CONCAT (DISTINCT ?populationDensity ; SEPARATOR=' | ')

AS ?populationDensity)

(GROUP_CONCAT (DISTINCT ?country ; SEPARATOR=' | ')

AS ?country) {

<http://dbpedia.org/resource/San_Francisco>

<http://www.w3.org/2000/01/rdf-schema#comment>

?comment .

FILTER (lang (?comment) = 'en') .

OPTIONAL { <http://dbpedia.org/resource/San_Francisco>

<http://www.w3.org/2003/01/geo/wgs84_pos#geometry>

?latitude_longitude } .

OPTIONAL { <http://dbpedia.org/resource/San_Francisco>

<http://dbpedia.org/ontology/PopulatedPlace/populationDensity>

?populationDensity } .

OPTIONAL { <http://dbpedia.org/resource/San_Francisco>

<http://dbpedia.org/ontology/country>

?country } .

OPTIONAL { <http://dbpedia.org/resource/San_Francisco>

<http://www.w3.org/2000/01/rdf-schema#label>

?label . }

} LIMIT 30

SPARQL to get COMPANY data for <http://dbpedia.org/resource/Apple_Inc.>:

SELECT DISTINCT ?label ?comment (GROUP_CONCAT (DISTINCT ?industry ; SEPARATOR=' | \

')

AS ?industry)

(GROUP_CONCAT (DISTINCT ?netIncome ; SEPARATOR=' | ')

AS ?netIncome)

(GROUP_CONCAT (DISTINCT ?numberOfEmployees ; SEPARATOR=' | ')

AS ?numberOfEmployees) {

<http://dbpedia.org/resource/Apple_Inc.>

<http://www.w3.org/2000/01/rdf-schema#comment> ?comment .

FILTER (lang (?comment) = 'en') .

OPTIONAL { <http://dbpedia.org/resource/Apple_Inc.>

<http://dbpedia.org/ontology/industry>

?industry } .

OPTIONAL { <http://dbpedia.org/resource/Apple_Inc.>

Knowledge Graph Navigator 217

<http://dbpedia.org/ontology/netIncome> ?netIncome } .

OPTIONAL { <http://dbpedia.org/resource/Apple_Inc.>

<http://dbpedia.org/ontology/numberOfEmployees> ?numberOfEmployees } .

OPTIONAL { <http://dbpedia.org/resource/Apple_Inc.>

<http://www.w3.org/2000/01/rdf-schema#label> ?label .

FILTER (lang (?label) = 'en') }

} LIMIT 30

DISCOVERED RELATIONSHIP LINKS:

<http://dbpedia.org/resource/Steve_Jobs> ->

<http://dbpedia.org/ontology/birthPlace> ->

<http://dbpedia.org/resource/San_Francisco>

<http://dbpedia.org/resource/Steve_Jobs> ->

<http://dbpedia.org/ontology/occupation> ->

<http://dbpedia.org/resource/Apple_Inc.>

<http://dbpedia.org/resource/Steve_Jobs> ->

<http://dbpedia.org/ontology/board> ->

<http://dbpedia.org/resource/Apple_Inc.>

<http://dbpedia.org/resource/Steve_Jobs> ->

<http://www.w3.org/2000/01/rdf-schema#seeAlso> ->

<http://dbpedia.org/resource/Apple_Inc.>

<http://dbpedia.org/resource/Apple_Inc.> ->

<http://dbpedia.org/property/founders> ->

<http://dbpedia.org/resource/Steve_Jobs>

After listing the generated SPARQL for finding information for the entities in the query, KGN
searches for relationships between these entities. These discovered relationships can be seen at the
end of the last listing. Please note that this step makes SPARQL queries on O(n^2) where n is the
number of entities. Local caching of SPARQL queries to DBPedia helps make processing several
entities possible.

In addition to showing generated SPARQL and discovered relationships in the middle text pane of
the application, KGN also generates formatted results that are also displayed in the bottom text pane:

Knowledge Graph Navigator 218

- - - ENTITY TYPE: PEOPLE - - -

LABEL: Steve Jobs

COMMENT: Steven Paul "Steve" Jobs was an American information technology

entrepreneur and inventor. He was the co-founder, chairman, and chief

executive officer (CEO) of Apple Inc.; CEO and majority shareholder

of Pixar Animation Studios; a member of The Walt Disney Company's

board of directors following its acquisition of Pixar; and founder,

chairman, and CEO of NeXT Inc. Jobs is widely recognized as a pioneer of

the microcomputer revolution of the 1970s and 1980s, along with Apple

co-founder Steve Wozniak. Shortly after his death, Jobs's official

biographer, Walter Isaacson, described him as a "creative entrepreneur

whose passion for perfection and ferocious drive revolutionized six industries:

personal computers, animated movies, music, phones

BIRTHPLACE: http://dbpedia.org/resource/San_Francisco

ALMAMATER: http://dbpedia.org/resource/Reed_College

SPOUSE: http://dbpedia.org/resource/Laurene_Powell_Jobs

- - - ENTITY TYPE: CITIES - - -

LABEL: San Francisco

COMMENT: San Francisco, officially the City and County of San Francisco, is the

cultural, commercial, and financial center of Northern California and

the only consolidated city-county in California. San Francisco encompasses a

land area of about 46.9 square miles (121 km2) on the northern end of the

San Francisco Peninsula, which makes it the smallest county in the state.

It has a density of about 18,451 people per square mile (7,124 people per km2),

making it the most densely settled large city (population greater than

200,000) in the state of California and the second-most densely populated

major city in the United States after New York City. San Francisco is

the fourth-most populous city in California, after Los Angeles, San Diego, and

San Jose, and the 13th-most populous cit

LATITUDE--LONGITUDE: POINT(-122.41666412354 37.783332824707)

POPULATION-DENSITY: 7123.97092726667

COUNTRY: http://dbpedia.org/resource/United_States

Knowledge Graph Navigator 219

- - - ENTITY TYPE: COMPANIES - - -

LABEL: Apple Inc.

COMMENT: Apple Inc. is an American multinational technology company headquartered

in Cupertino,

California, that designs, develops, and sells consumer electronics,

computer software, and online services. Its hardware products include the

iPhone smartphone, the iPad tablet computer, the Mac personal computer, the

iPod portable media player, the Apple Watch smartwatch, and the Apple TV digital

media player. Apple's consumer software includes the macOS and iOS operating

systems, the iTunes media player, the Safari web browser, and the iLife and

iWork creativity and productivity suites. Its online services include the

iTunes Store, the iOS App Store and Mac App Store, Apple Music, and iCloud.

INDUSTRY: http://dbpedia.org/resource/Computer_hardware |

http://dbpedia.org/resource/Computer_software |

http://dbpedia.org/resource/Consumer_electronics |

http://dbpedia.org/resource/Corporate_Venture_Capital |

http://dbpedia.org/resource/Digital_distribution |

http://dbpedia.org/resource/Fabless_manufacturing

NET-INCOME: 5.3394E10

NUMBER-OF-EMPLOYEES: 115000

Hopefully after reading through sample output and seeing the screen shot of the application, you
now have a better ideawhat this example application does. Nowwewill look at project configuration
and then implementation.

Project Configuration and Running the Application

The following listing of kgn.asd shows the ten packages this example depends on (five of these are
also examples in this book, and five are in the public Quicklisp repository):

Knowledge Graph Navigator 220

1 ;;;; knowledgegraphnavigator.asd

2

3 (asdf:defsystem #:kgn

4 :description "Describe dbpedia here"

5 :author "Mark Watson <markw@markwatson.com>"

6 :license "Apache 2"

7 :depends-on (#:sqlite #:cl-json #:alexandria #:drakma #:myutils #:lw-grapher

8 #:trivial-open-browser #:entities #:entity-uris #:kbnlp)

9 :components ((:file "package")

10 (:file "ui-text")

11 (:file "utils")

12 (:file "sparql")

13 (:file "colorize")

14 (:file "user-interface")

15 (:file "option-pane")

16 (:file "kgn")

17 (:file "gui")

18 (:file "nlp")

19 (:file "sparql-results-to-english")

20 (:file "gen-output")))

You are probably aware of many of the dependency libraries used here but you may not have
seen trivial-open-browser which we will use to open a web browser to URIs for human readable
information on DBPedia.

Listing of package.lisp:

1 ;;;; package.lisp

2

3 (defpackage #:kgn

4 (:use #:cl #:alexandria #:myutils #:sqlite #:myutils

5 #:lw-grapher #:trivial-open-browser #:entities #:entity-uris

6 #:kbnlp #:CAPI)

7 (:export #:kgn))

The free personal edition of LispWorks does not support initialization files so you must manually
load Quicklisp from the Listener Window when you first start LispWorks Personal as seen in the
following repl listing (edited to remove some output for brevity). Once Quicklisp is loaded we then
use ql:quickload to load the example in this chapter (some output removed for brevity):

Knowledge Graph Navigator 221

CL-USER 1 > (load "~/quicklisp/setup.lisp")

; Loading text file /Users/markw/quicklisp/setup.lisp

; Loading /Applications/LispWorks Personal 7.1/...

;; Creating system "COMM"

#P"/Users/markw/quicklisp/setup.lisp"

CL-USER 2 > (ql:quickload "kgn")

To load "kgn":

Load 1 ASDF system:

kgn

; Loading "kgn"

.

"Starting to load data...."

"....done loading data."

"#P\"/Users/markw/GITHUB/common-lisp/entity-uris/entity-uris.lisp\""

"current directory:"

"/Users/markw/GITHUB/common-lisp/entity-uris"

"Starting to load data...."

"....done loading data."

[package kgn]

To load "sqlite":

Load 1 ASDF system:

sqlite

; Loading "sqlite"

To load "cl-json":

Load 1 ASDF system:

cl-json

; Loading "cl-json"

To load "drakma":

Load 1 ASDF system:

drakma

; Loading "drakma"

.To load "entity-uris":

Load 1 ASDF system:

entity-uris

; Loading "entity-uris"

("kgn")

CL-USER 3 > (kgn:kgn)

#<KGN::KGN-INTERFACE "Knowledge Graph Navigator" 40201E91DB>

Please note that I assume that you have configured all of the examples for this book for discover-
ability by Quicklisp as per the section Setup for Local Quicklisp Projects in Appendix A.

When the KGN application starts a sample query is randomly chosen. Queries with many entities

Knowledge Graph Navigator 222

can take a while to process, especially when you first start using this application. Every time KGN
makes a web service call to DBPedia the query and response are cached in a SQLite database in
∼/.kgn_cache.db which can greatly speed up the program, especially in development mode when
testing a set of queries. This caching also takes some load off of the public DBPedia endpoint, which
is a polite thing to do.

I use LispWorks Professional and add two utility functions to the bottom on my ∼/.lispworks
configuration file (you can’t do this with LispWorks Personal):

1 ;;; The following lines added by ql:add-to-init-file:

2 #-quicklisp

3 (let ((quicklisp-init

4 (merge-pathnames

5 "quicklisp/setup.lisp"

6 (user-homedir-pathname))))

7 (when (probe-file quicklisp-init)

8 (load quicklisp-init)))

9

10 (defun ql (x) (ql:quickload x))

11 (defun qlp (x)

12 (ql:quickload x)

13 (SYSTEM::%IN-PACKAGE (string-upcase x) :NEW T))

Function ql is just a short alias to avoid frequently typing ql:quickload and qlp loads a Quicklisp
project and then performs an in-package of the Common Lisp package with the same name as the
Quicklisp project.

Review of NLP Utilities Used in Application

Here is a quick review of NLP utilities we saw earlier:

• kbnlp:make-text-object
• kbnlp::text-human-names
• kbnlp::text-place-name
• entity-uris:find-entities-in-text
• entity-uris:pp-entities

The following code snippets show example calls to the relevant NLP functions and the generated
output:

Knowledge Graph Navigator 223

KGN 39 > (setf text "Bill Clinton went to Canada")

"Bill Clinton went to Canada"

KGN 40 > (setf txtobj (kbnlp:make-text-object text))

#S(TEXT :URL "" :TITLE "" :SUMMARY "<no summary>" :CATEGORY-TAGS (("computers_micros\

oft.txt" 0.00641) ("religion_islam.txt" 0.00357)) :KEY-WORDS NIL :KEY-PHRASES NIL :H\

UMAN-NAMES ("Bill Clinton") :PLACE-NAMES ("Canada") :COMPANY-NAMES NIL :TEXT #("Bill\

" "Clinton" "went" "to" "Canada") :TAGS #("NNP" "NNP" "VBD" "TO" "NNP"))

KGN 41 > (kbnlp::text-human-names txtobj)

("Bill Clinton")

KGN 42 >

(loop for key being the hash-keys of (entity-uris:find-entities-in-text text)

using (hash-value value)

do (format t "key: ~S value: ~S~%" key value))

key: "people" value: (("Bill Clinton" "<http://dbpedia.org/resource/Bill_Clinton>"))

key: "countries" value: (("Canada" "<http://dbpedia.org/resource/Canada>"))

NIL

The code using loop at the end of the last repl listing that prints keys and values of a hash table is
from the Common Lisp Cookbook web site⁸³ in the section “Traversing a Hash Table.”

Developing Low-Level SPARQL Utilities

I use the standard command line curl utility program with the Common Lisp package uiop to make
HTMLGET requests to the DBPedia public KnowledgeGraph and the packagedrakma to url-encode
parts of a query. The source code is in src/kgn/sparql.lisp. In lines 8, 24, 39, and 55 I use some caching
code that we will look at later. The nested replace-all statements in lines 12-13 are a kluge to remove
Unicode characters that occasionally caused runtime errors in the KGN application.

1 (in-package #:kgn)

2

3 (ql:quickload "cl-json")

4 (ql:quickload "drakma")

5

6 (defun sparql-dbpedia (query)

7 (let* (ret

8 (cr (fetch-result-dbpedia query))

9 (response

⁸³http://cl-cookbook.sourceforge.net/hashes.html

http://cl-cookbook.sourceforge.net/hashes.html
http://cl-cookbook.sourceforge.net/hashes.html

Knowledge Graph Navigator 224

10 (or

11 cr

12 (replace-all

13 (replace-all

14 (uiop:run-program

15 (list

16 "curl"

17 (concatenate 'string

18 "https://dbpedia.org/sparql?query="

19 (drakma:url-encode query :utf-8)

20 "&format=json"))

21 :output :string)

22 "\\u2013" " ")

23 "\\u" " "))))

24 (save-query-result-dbpedia query response)

25 (ignore-errors

26 (with-input-from-string

27 (s response)

28 (let ((json-as-list (json:decode-json s)))

29 (setf

30 ret

31 (mapcar #'(lambda (x)

32 ;;(pprint x)

33 (mapcar #'(lambda (y)

34 (list (car y) (cdr (assoc :value (cdr y))))) x))

35 (cdr (cadddr (cadr json-as-list))))))))

36 ret))

37

38 (defun sparql-ask-dbpedia (query)

39 (let* ((cr (fetch-result-dbpedia query))

40 (response

41 (or

42 cr

43 (replace-all

44 (replace-all

45 (uiop:run-program

46 (list

47 "curl"

48 (concatenate 'string

49 "https://dbpedia.org/sparql?query="

50 (drakma:url-encode query :utf-8)

51 "&format=json"))

52 :output :string)

Knowledge Graph Navigator 225

53 "\\u2013" " ")

54 "\\u" " "))))

55 (save-query-result-dbpedia query response)

56 (if (search "true" response)

57 t

58 nil)))

The code for replacing Unicode characters is messy but prevents problems later when we are using
the query results in the example application.

The code (json-as-list (json:decode-json s)) on line 28 converts a deeply nested JSON response
to nested Common Lisp lists. You may want to print out the list to better understand the mapcar
expression on lines 31-35. There is no magic to writing expressions like this, in a repl I set json-as-
list to the results of one query, and I spent a minute or two experimenting with the nestedmapcar
expression to get it to work with my test case.

The implementation for sparql-ask-dbpedia in lines 38-58 is simpler because we don’t have to fully
parse the returned SPARQL query results. A SPARQL ask type query returns a true/false answer
to a query. We will use this to determine the types of entities in query text. While our NLP library
identifies entity types, making additional ask queries to DBPedia to verify entity types will provide
better automated results.

Implementing the Caching Layer

While developing KGN and also using it as an end user, many SPARQL queries to DBPedia contain
repeated entity names so it makes sense to write a caching layer. We use a SQLite database “∼/.kgn_-
cache.db” to store queries and responses.

The caching layer is implemented in the file kgn/utils.lisp and some of the relevant code is listed
here:

1 ;;; SqList caching for SPARQL queries:

2

3 (defvar *db-path* (pathname "~/.kgn_cache.db"))

4

5 (defun create-dbpedia ()

6 (sqlite:with-open-database (d *db-path*)

7 (ignore-errors

8 (sqlite:execute-single d

9 "CREATE TABLE dbpedia (query string PRIMARY KEY ASC, result string)"))))

10

11 (defun save-query-result-dbpedia (query result)

12 (sqlite:with-open-database (d *db-path*)

Knowledge Graph Navigator 226

13 (ignore-errors

14 (sqlite:execute-to-list d

15 "insert into dbpedia (query, result) values (?, ?)"

16 query result))))

17 (defun fetch-result-dbpedia (query)

18 (sqlite:with-open-database (d *db-path*)

19 (cadar

20 (sqlite:execute-to-list d

21 "select * from dbpedia where query = ?" query))))

This caching layer greatly speeds up my own personal use of KGN. Without caching, queries that
contain many entity references simply take too long to run. The UI for the KGN application has a
menu option for clearing the local cache but I almost never use this option because growing a large
cache that is tailored for the types of information I search for makes the entire system much more
responsive.

Utilities to Colorize SPARQL and Generated Output

When I first had the basic functionality of KGN working, I was disappointed by how the application
looked as all black text on a white background. Every editor and IDE I use colorizes text in an
appropriate way so I took advantage of the function capi::write-string-with-properties to (fairly)
easily implement color hilting SPARQL queries.

The code in the following listing is in the file kgn/colorize.lisp. When I generate SPARQL queries
to show the user I use the characters “@@” as placeholders for end of lines in the generated output.
In line 5 I am ensuring that there are spaces around these characters so they get tokenized properly.
In the loop starting at line 7 I process the tokens checking each one to see if it should have a color
associated with it when it is written to the output stream.

1 (in-package #:kgn)

2

3 (defun colorize-sparql (s &key (stream nil))

4 (let ((tokens (tokenize-string-keep-uri

5 (replace-all s "@@" " @@ ")))

6 in-var)

7 (dolist (token tokens)

8 (if (> (length token) 0)

9 (if (or in-var (equal token "?"))

10 (capi::write-string-with-properties

11 token

12 '(:highlight :compiler-warning-highlight)

13 stream)

Knowledge Graph Navigator 227

14 (if (find token '("where" "select" "distinct" "option" "filter"

15 "FILTER" "OPTION" "DISTINCT"

16 "SELECT" "WHERE")

17 :test #'equal)

18 (capi::write-string-with-properties

19 token

20 '(:highlight :compiler-note-highlight)

21 stream)

22 (if (equal (subseq token 0 1) "<")

23 (capi::write-string-with-properties

24 token

25 '(:highlight :bold)

26 stream)

27 (if (equal token "@@")

28 (terpri stream)

29 (if (not (equal token "~")) (write-string token stream)))))))

30 (if (equal token "?")

31 (setf in-var t)

32 (setf in-var nil))

33 (if (and

34 (not in-var)

35 (not (equal token "?")))

36 (write-string " " stream)))

37 (terpri stream)))

Here is an example call to function colorize-sparql:

KGN 25 > (colorize-sparql "select ?s ?p where {@@ ?s ?p \"Microsoft\" } @@ FILTER\

(lang(?comment) = 'en')")

select ?s ?p where {

?s ?p "Microsoft" }

FILTER (lang (?comment) = 'en')

Text Utilities for Queries and Results

The utilities in the file kgn/ui-text.lisp contain no CAPI UI code but are used by the CAPI UI code.
The function display-entity-results is passed an output stream that during repl development is
passed as t to get output in the repl and in the application will be the output stream attached to a
text pane. The argument r-list is a list of results where each result is a list containing a result title
and a list of key/value pairs:

Knowledge Graph Navigator 228

1 (defun display-entity-results (output-stream r-list)

2 (dolist (r r-list)

3 (format output-stream "~%~%entity result:~%~S~%" r)

4 (dolist (val r)

5 (if (> (length (second val)) 0)

6 (format output-stream "~%~a: ~a~%" (first val) (second val))))))

7

8 (defun get-URIs-in-query (query) ;; URIs contain < > brackets

9 (let (ret

10 w

11 (ll (coerce query 'list))

12 in-uri)

13 (dolist (ch ll)

14 (if in-uri

15 (if (equal ch #\>)

16 (setf w (cons ch w)

17 ret (cons (coerce (reverse w) 'string) ret)

18 in-uri nil

19 w nil)

20 (setf w (cons ch w))))

21 (if (equal ch #\<) (setf in-uri t

22 w (cons #\< w))))

23 ret))

The function get-URIs-in-query in lines 8-23 simply looks for URIs and saves them in a list.

In SPARQL queries, URIs are surround by angle brackets. The following code remove the brackets
and embedded URIs. The function remove-uris-from-query simply looks for URIs in an input string
and removes them:

1 (defun remove-uris-from-query (query) ;; URIs contain < > brackets

2 (let (ret

3 (ll (coerce query 'list))

4 in-uri)

5 (dolist (ch ll)

6 (if (equal ch #\<) (setf in-uri t))

7 (if (not in-uri)

8 (setf ret (cons ch ret)))

9 (if (equal ch #\>) (setf in-uri nil)))

10 (coerce (reverse ret) 'string)))

Here is a test:

Knowledge Graph Navigator 229

KGN 26 >

(remove-uris-from-query

"<http://dbpedia.org/resource/Bill_Gates> visited <http://dbpedia.org/resource/Appl\

e_Inc.>")

" visited "

Given a list of URIs, the following function makes multiple SPARQL queries to DBPedia to get more
information using the function get-name-and-description-for-uri that we will look at later:

1 (defun handle-URIs-in-query (query)

2 (let* ((uris (get-URIs-in-query query))

3 (entity-names (map 'list #'get-name-and-description-for-uri uris)))

4 (mapcar #'list uris (map 'list #'second entity-names))))

The following repl show a call to handle-URIs-in-query:

KGN 30 > (pprint (handle-URIs-in-query "<http://dbpedia.org/resource/Bill_Gates> vis\

ited <http://dbpedia.org/resource/Apple_Inc.>"))

(("<http://dbpedia.org/resource/Apple_Inc.>"

"Apple Inc. is an American multinational technology company headquartered in Cuper\

tino, California, that designs, develops, and sells consumer electronics, computer s\

oftware, and online services. Its hardware products include the iPhone smartphone, t\

he iPad tablet computer, the Mac personal computer, the iPod portable media player, \

the Apple Watch smartwatch, and the Apple TV digital media player. Apple's consumer \

software includes the macOS and iOS operating systems, the iTunes media player, the \

Safari web browser, and the iLife and iWork creativity and productivity suites. Its \

online services include the iTunes Store, the iOS App Store and Mac App Store, Apple\

Music, and iCloud.")

("<http://dbpedia.org/resource/Bill_Gates>"

"William Henry \"Bill\" Gates III (born October 28, 1955) is an American business \

magnate, investor, author and philanthropist. In 1975, Gates and Paul Allen co-found\

ed Microsoft, which became the world's largest PC software company. During his caree\

r at Microsoft, Gates held the positions of chairman, CEO and chief software archite\

ct, and was the largest individual shareholder until May 2014. Gates has authored an\

d co-authored several books."))

The function get-entity-data-helper processes the user’s query and finds entities using both the
NLP utilities from earlier in this book and by using SPARQL queries to DBPedia. Something new are
calls to the function updater (lines 10-13, 17-20, and 29-31) that is defined as an optional argument.
As we will see later, we will pass in a function value in the application that updates the progress bar
at the bottom of the application window.

Knowledge Graph Navigator 230

1 (defun get-entity-data-helper (original-query

2 &key

3 (message-stream t)

4 (updater nil))

5 (let* ((uri-data (handle-URIs-in-query original-query))

6 (query (remove-uris-from-query original-query))

7 ret

8 (el (entities:text->entities query))

9 (people (entities:entities-people el)))

10 (if updater

11 (let ()

12 (setf *percent* (+ *percent* 2))

13 (funcall updater *percent*)))

14 (let* ((companies (entities:entities-companies el))

15 (countries (entities:entities-countries el))

16 (cities (entities:entities-cities el)))

17 (if updater

18 (let ()

19 (setf *percent* (+ *percent* 2))

20 (funcall updater *percent*)))

21 (let* ((products (entities:entities-products el))

22 places

23 companies-uri people-uri countries-uri cities-uri places-uri

24 (text-object (kbnlp:make-text-object query))

25 (to-place-names (kbnlp::text-place-names text-object))

26 (to-people (kbnlp::text-human-names text-object)))

27

28 (if updater

29 (let ()

30 (setf *percent* (+ *percent* 3))

31 (funcall updater *percent*)))

32

33 (dolist (ud uri-data)

34 (if (ask-is-type-of (first ud) "<http://dbpedia.org/ontology/Company>")

35 (setf companies-uri (cons ud companies-uri)))

36 (if (ask-is-type-of (first ud) "<http://dbpedia.org/ontology/Person>")

37 (setf people-uri (cons ud people-uri)))

38 (if (ask-is-type-of (first ud) "<http://dbpedia.org/ontology/Country>")

39 (setf countries-uri (cons ud countries-uri)))

40 (if (ask-is-type-of (first ud) "<http://dbpedia.org/ontology/City>")

41 (setf cities-uri (cons ud cities-uri)))

42 (if (ask-is-type-of (first ud) "<http://dbpedia.org/ontology/Place>")

43 (setf places-uri (cons ud places-uri))))

Knowledge Graph Navigator 231

44 (dolist (place to-place-names)

45 (if (and

46 (not (member place countries :test #'equal))

47 (not (member place cities :test #'equal)))

48 (setf places (cons place places))))

49 (dolist (person to-people)

50 (if (not (member person people :test #'equal))

51 (setf people (cons person people))))

52 (let ((entity-list

53 (list

54 (cons :people

55 (append

56 (loop for person in people collect

57 (dbpedia-get-entities-by-name

58 person

59 "<http://dbpedia.org/ontology/Person>"

60 "<http://schema.org/Person>"

61 :message-stream message-stream))

62 (list people-uri)))

63 (cons :countries

64 (append

65 (loop for country in countries collect

66 (dbpedia-get-entities-by-name

67 country

68 "<http://dbpedia.org/ontology/Country>"

69 "<http://schema.org/Country>"

70 :message-stream message-stream))

71 (list countries-uri)))

72 (cons :cities

73 (append

74 (loop for city in cities collect

75 (dbpedia-get-entities-by-name

76 city

77 "<http://dbpedia.org/ontology/City>"

78 "<http://schema.org/City>"

79 :message-stream message-stream))

80 (list cities-uri)))

81 (cons :places

82 (append

83 (loop for place in places collect

84 (dbpedia-get-entities-by-name

85 place

86 "<http://dbpedia.org/ontology/Place>"

Knowledge Graph Navigator 232

87 "<http://schema.org/Place>"

88 :message-stream message-stream))

89 (list places-uri)))

90 (cons :products

91 (loop for product in products collect

92 (dbpedia-get-entities-by-name

93 product

94 "<http://dbpedia.org/ontology/Product>"

95 "<http://schema.org/Product>"

96 :message-stream message-stream)))

97 (cons :companies

98 (append

99 (loop for company in companies collect

100 (dbpedia-get-entities-by-name

101 company

102 "<http://dbpedia.org/ontology/Organization>"

103 "<http://schema.org/Organization>"

104 :message-stream message-stream))

105 (list companies-uri))))))

106 (setf ret (prompt-selection-list entity-list))

107 (format t "~%~%--------- ret:~%~%~S~%~%" ret)

108 ret)))))

This function presents a CAPI popup list selector to the user so the following listed output depends
on which possible entities are selected in this list. If you run the following repl example, you will see
a popup window that will ask you to verify discovered entities; the user needs to check all discovered
entities that are relevant to their interests.

1 KGN 33 > (pprint (get-entity-data-helper "Bill Gates at Microsoft"))

2 ((:PEOPLE

3 (("<http://dbpedia.org/resource/Bill_Gates>"

4 "William Henry \"Bill\" Gates III (born October 28, 1955) is an American busines\

5 s magnate, investor, author and philanthropist. In 1975, Gates and Paul Allen co-fou\

6 nded Microsoft, which became the world's largest PC software company. During his car\

7 eer at Microsoft, Gates held the positions of chairman, CEO and chief software archi\

8 tect, and was the largest individual shareholder until May 2014. Gates has authored \

9 and co-authored several books.")))

10 (:COMPANIES

11 (("<http://dbpedia.org/resource/Microsoft>"

12 "Microsoft Corporation / 02C8ma 026Akr 0259 02CCs 0252ft, -ro 028A-, - 02CCs 025\

13 4 02D0ft/ (commonly referred to as Microsoft or MS) is an American multinational tec\

14 hnology company headquartered in Redmond, Washington, that develops, manufactures, l\

15 icenses, supports and sells computer software, consumer electronics and personal com\

Knowledge Graph Navigator 233

16 puters and services. Its best known software products are the Microsoft Windows line\

17 of operating systems, Microsoft Office office suite, and Internet Explorer and Edge\

18 web browsers. Its flagship hardware products are the Xbox video game consoles and t\

19 he Microsoft Surface tablet lineup. As of 2011, it was the world's largest software \

20 maker by revenue, and one of the world's most valuable companies."))))

The popup list in the last example looks like:

Popup list shows the user possible entity resolutions for each entity found in the input query. The user selects the
resolved entities to use.

In this example there were two “Bill Gates” entities, one an early American frontiersman, the other
the founder of Microsoft and I chose the latter person to continue finding information about.

After identifying all of the entities that the user intended, the function entity-results->relationship-
link in the following listing is called to make additional SPARQL queries to discover possible
relationships between these entities. This function is defined in the file ui-text.lisp.

1 (defun entity-results->relationship-links (results

2 &key (message-stream t) (updater nil))

3 (let (all-uris

4 relationship-statements

5 (sep " -> "))

6 (dolist (r results)

7 (dolist (entity-data (cdr r))

8 (dolist (ed entity-data)

9 (setf all-uris (cons (first ed) all-uris)))))

10 (dolist (e1 all-uris)

11 (dolist (e2 all-uris)

12 (if updater

13 (let ()

14 (setf *percent* (+ *percent* 1))

Knowledge Graph Navigator 234

15 (funcall updater *percent*)))

16 (if (not (equal e1 e2))

17 (let ((l1 (dbpedia-get-relationships e1 e2))

18 (l2 (dbpedia-get-relationships e2 e1)))

19 (dolist (x l1)

20 (setf relationship-statements

21 (cons (list e1 e2 x) relationship-statements)))

22 (dolist (x l2)

23 (print (list "x l2:" x))

24 (setf relationship-statements

25 (cons (list e2 e1 x) relationship-statements)))))))

26 (setf relationship-statements

27 (remove-duplicates relationship-statements :test #'equal))

28 ;;(terpri message-stream)

29 (capi::write-string-with-properties

30 "DISCOVERED RELATIONSHIP LINKS:"

31 '(:highlight :compiler-warning-highlight) message-stream)

32 (terpri message-stream) (terpri message-stream)

33 (dolist (rs relationship-statements)

34 (format message-stream "~43A" (first rs))

35 (capi::write-string-with-properties

36 sep

37 '(:highlight :compiler-warning-highlight) message-stream)

38 (format message-stream "~43A" (third rs))

39 (capi::write-string-with-properties

40 sep

41 '(:highlight :compiler-warning-highlight) message-stream)

42 (format message-stream "~A" (second rs))

43 (terpri message-stream))

44 relationship-statements))

In the following repl listing we create some test data of the same form as we get from calling function
get-entity-data-helper seen in a previous listing and try calling entity-results->relationship-links
with this data:

Knowledge Graph Navigator 235

KGN 36 > (setf results '((:PEOPLE

(("<http://dbpedia.org/resource/Bill_Gates>"

"William Henry \"Bill\" Gates III (born October 28, 1955) is an American busines\

s magnate, investor, author and philanthropist. In 1975, Gates and Paul Allen co-fou\

nded Microsoft, which became the world's largest PC software company. During his car\

eer at Microsoft, Gates held the positions of chairman, CEO and chief software archi\

tect, and was the largest individual shareholder until May 2014. Gates has authored \

and co-authored several books.")))

(:COMPANIES

(("<http://dbpedia.org/resource/Microsoft>"

"Microsoft Corporation / 02C8ma 026Akr 0259 02CCs 0252ft, -ro 028A-, - 02CCs 025\

4 02D0ft/ (commonly referred to as Microsoft or MS) is an American multinational tec\

hnology company headquartered in Redmond, Washington, that develops, manufactures, l\

icenses, supports and sells computer software, consumer electronics and personal com\

puters and services. Its best known software products are the Microsoft Windows line\

of operating systems, Microsoft Office office suite, and Internet Explorer and Edge\

web browsers. Its flagship hardware products are the Xbox video game consoles and t\

he Microsoft Surface tablet lineup. As of 2011, it was the world's largest software \

maker by revenue, and one of the world's most valuable companies.")))))

KGN 37 > (pprint (entity-results->relationship-links results))

(("<http://dbpedia.org/resource/Bill_Gates>"

"<http://dbpedia.org/resource/Microsoft>"

"<http://dbpedia.org/ontology/board>")

("<http://dbpedia.org/resource/Microsoft>"

"<http://dbpedia.org/resource/Bill_Gates>"

"<http://dbpedia.org/property/founders>")

("<http://dbpedia.org/resource/Microsoft>"

"<http://dbpedia.org/resource/Bill_Gates>"

"<http://dbpedia.org/ontology/keyPerson>"))

Using LispWorks CAPI UI Toolkit

You can use the free LispWorks Personal Edition for running KGN. Using other Common Lisp
implementations like Clozure-CL and SBCL will not work because the CAPI user interface library
is proprietary to LispWorks. I would like to direct you to three online resources for learning CAPI:

• [LispWorks’ main web age introducing CAPI⁸⁴
• LispWorks’ comprehensive CAPI documentation⁸⁵ for LispWorks version 7.1
• An older web site (last updated in 2011 but I find it useful for ideas): CAPI Cookbook⁸⁶

⁸⁴http://www.lispworks.com/products/capi.html
⁸⁵http://www.lispworks.com/products/capi.html
⁸⁶http://capi.plasticki.com/show?O4

http://www.lispworks.com/products/capi.html
http://www.lispworks.com/products/capi.html
http://capi.plasticki.com/show?O4
http://www.lispworks.com/products/capi.html
http://www.lispworks.com/products/capi.html
http://capi.plasticki.com/show?O4

Knowledge Graph Navigator 236

I am not going to spend too much time in this chapter explaining my CAPI-based code. If you
use LispWorks (either the free Personal or the Professional editions) you are likely to use CAPI
and spending time on the official documentation and especially the included example programs is
strongly recommended.

In the next section I will review the KGN specific application parts of the CAPI-based UI.

Writing Utilities for the UI

The CAPI user interface code is in the file src/kgn/gui.lispwith some UI code in options-pane.lisp
and kgn.lisp.

When printing results in the bottom Results Pane of the KGN application, I like to highlight the first
line of each result using this function (first function in kgn.lisp):

1 (defun pprint-results (results &key (stream t))

2 (dolist (result (car results))

3 (terpri stream)

4 (capi::write-string-with-properties

5 (format nil "~A:" (first result))

6 '(:highlight :compiler-warning-highlight) stream)

7 (format stream " ~A~%" (second result))))

I default the value for the input named variable stream to t so during development in a repl the
output of this function goes to standard output. In the KGN app, I get an output stream for the
bottom results pane in the user interface and pass that as the value for stream so output is directly
written to the results pane.

CAPI allows you to define your own text highlight values. I use built-in ones like :compiler-
warning-highlight that are always available to CAPI applications.

The file kgn.lisp defines several other utility functions including a utility that makes multiple
SPARQL queries to get a name and description of an entity URI that removes end of line markers
“@@” from a SPARQL query for fetching entity data, makes the query and extracts results for
display:

Knowledge Graph Navigator 237

1 (defun get-name-and-description-for-uri (uri)

2 (let* ((sparql

3 (replace-all

4 (format nil "select distinct ?name ?comment { @@ ~

5 values ?nameProperty {<http://www.w3.org/2000/01/rdf-schema\

6 #label> <http://xmlns.com/foaf/0.1/name> } . @@ ~

7 ~A ?nameProperty ?name . @@ ~

8 ~A <http://www.w3.org/2000/01/rdf-schema#comment> ?comment\

9 . FILTER (lang(?comment) = 'en') . @@ ~

10 } LIMIT 1" uri uri)

11 "@@" " "))

12 (results (sparql-dbpedia sparql)))

13 (list

14 (second (assoc :name (car results)))

15 (second (assoc :comment (car results))))))

There are several other SPARQL query utility functions in the file kgn.lisp that I will not discuss but
they follow a similar pattern of using specific SPARQL queries to fetch information from DBPedia.

At the top of the file gui.lisp I set three parameters for the width of the application window and a
global flag used to toggle on and off showing the info-pane-grapher that you saw in the screen shot
at the beginning of this chapter and that is also shown below:

1 (defvar *width* 1370)

2 (defvar *best-width* 1020)

3 (defvar *show-info-pane* t)

Knowledge Graph Navigator 238

UI for info-pane-grapher

Since I just mentioned the info-pane-grapher this is a good time to digress to its implementation.
This is in a different package and you will find the source code in src/lw-grapher/info-pane-
grapher.lisp. I used the graph layout algorithm from ISI-Grapher Manual (by Gabriel Robbins)⁸⁷.
There is another utility in src/lw-grapher/lw-grapher.lisp that also displays a graphwithout mouse
support and an attached information pane that is not used here but you might prefer it for reuse in
your projects if you don’t need mouse interactions.

The graph nodes are derived from the class capi:pinboard-object:

1 (defclass text-node (capi:pinboard-object)

2 ((text :initarg :text :reader text-node-text)

3 (string-x-offset :accessor text-node-string-x-offset)

4 (string-y-offset :accessor text-node-string-y-offset)))

I customized how my graph nodes are drawn in a graph pane (this is derived from LispWorks
example code):

⁸⁷http://www.cs.virginia.edu/~robins/papers/The_ISI_Grapher_Manual.pdf

http://www.cs.virginia.edu/~robins/papers/The_ISI_Grapher_Manual.pdf
http://www.cs.virginia.edu/~robins/papers/The_ISI_Grapher_Manual.pdf

Knowledge Graph Navigator 239

1 (defmethod capi:draw-pinboard-object (pinboard (self text-node)

2 &key &allow-other-keys)

3 (multiple-value-bind (X Y width height)

4 (capi:static-layout-child-geometry self)

5 (let* ((half-width (floor (1- width) 2))

6 (half-height (floor (1- height) 2))

7 (circle-x (+ X half-width))

8 (circle-y (+ Y half-height))

9 (background :white)

10 (foreground (if background

11 :black

12 (capi:simple-pane-foreground pinboard)))

13 (text (text-node-text self)))

14 (gp:draw-ellipse pinboard

15 circle-x circle-y

16 half-width half-height

17 :filled t

18 :foreground background)

19 (gp:draw-ellipse pinboard

20 circle-x circle-y

21 half-width half-height

22 :foreground foreground)

23 (gp:draw-string pinboard

24 text

25 (+ X (text-node-string-x-offset self))

26 (+ Y (text-node-string-y-offset self))

27 :foreground foreground))))

Most of the work is done in the graph layout method that uses Gabriel Robbins’ algorithm. Here I
just show the signature and we won’t go into implementation. If you are interested in modifying
the layout code, I include a screen shot from ISI-Grapher manual showing the algorithm in a single
page, see the file src/lw-grapher/Algorithm from ISI-Grapher Manual.png.

The following code snippets shows the method signature for the layout algorithm function in the
file src/lw-grapher/grapher.lisp. I also include the call to capi:graph-pane-nodes that is the CLOS
reader method for getting the list of node objects in a graph pane:

1 (defun graph-layout (self &key force)

2 (declare (ignore force))

3 (let* ((nodes (capi:graph-pane-nodes self))

4 ...

The CAPI graph node model uses a function that is passed a node object and returns a list this node’s

Knowledge Graph Navigator 240

child node objects. There are several examples of this in the CAPI graph examples that are included
with LispWorks (see the CAPI documentation).

In src/lw-grapher/lw-grapher.lisp I wrote a function that builds a graph layout and instead of
passing in a “return children” function I found it more convenient to wrap this process, accepting a
list of graph nodes and graph edges as function arguments:

1 (in-package :lw-grapher)

2

3 ;; A Grapher (using the layout algorithm from the ISI-Grapher

4 ;; user guide) with an info panel

5

6 (defun make-info-panel-grapher (h-root-name-list h-edge-list

7 h-callback-function-click

8 h-callback-function-shift-click)

9 (let (edges roots last-selected-node node-callback-click

10 node-callback-click-shift output-pane)

11 (labels

12 ((handle-mouse-click-on-pane (pane x y)

13 (ignore-errors

14 (let ((object (capi:pinboard-object-at-position pane x y)))

15 (if object

16 (let ()

17 (if last-selected-node

18 (capi:unhighlight-pinboard-object pane

19 last-selected-node))

20 (setf last-selected-node object)

21 (capi:highlight-pinboard-object pane object)

22 (let ((c-stream (collector-pane-stream output-pane)))

23 (format c-stream

24 (funcall node-callback-click

25 (text-node-full-text object)))

26 (terpri c-stream)))))))

27 (handle-mouse-click-shift-on-pane (pane x y)

28 (ignore-errors

29 (let ((object

30 (capi:pinboard-object-at-position pane x y)))

31 (if object

32 (let ()

33 (if last-selected-node

34 (capi:unhighlight-pinboard-object

35 pane last-selected-node))

36 (setf last-selected-node object)

Knowledge Graph Navigator 241

37 (capi:highlight-pinboard-object pane object)

38 (let ((c-stream

39 (collector-pane-stream output-pane)))

40 (format c-stream

41 (funcall node-callback-click-shift

42 (text-node-full-text object)))

43 (terpri c-stream)))))))

44

45 (info-panel-node-children-helper (node-text)

46 (let (ret)

47 (dolist (e edges)

48 (if (equal (first e) node-text)

49 (setf ret (cons (second e) ret))))

50 (reverse ret)))

51

52 (make-info-panel-grapher-helper

53 (root-name-list edge-list callback-function-click

54 callback-function-click-shift)

55 ;; example: root-name-list: '("n1") edge-list:

56 ;; '(("n1" "n2") ("n1" "n3"))

57 (setf edges edge-list

58 roots root-name-list

59 node-callback-click callback-function-click

60 node-callback-click-shift callback-function-click-shift)

61 (capi:contain

62

63 (make-instance

64 'column-layout

65 :title "Entity Browser"

66 :description

67 (list

68 (make-instance 'capi:graph-pane

69 :min-height 330

70 :max-height 420

71 :roots roots

72 :layout-function 'graph-layout

73 :children-function #'info-panel-node-children-helper

74 :edge-pane-function

75 #'(lambda(self from to)

76 (declare (ignore self))

77 (let ((prop-name ""))

78 (dolist (edge edge-list)

79 (if (and

Knowledge Graph Navigator 242

80 (equal from (first edge))

81 (equal to (second edge)))

82 (if (and (> (length edge) 2) (third edge))

83 (let ((last-index

84 (search

85 "/" (third edge)

86 :from-end t)))

87 (if last-index

88 (setf prop-name

89 (subseq (third edge)

90 (1+ last-index)))

91 (setf prop-name (third edge)))))))

92 (make-instance

93 'capi:labelled-arrow-pinboard-object

94 :data (format nil "~A" prop-name))))

95 :node-pinboard-class 'text-node

96 :input-model `(((:button-1 :release)

97 ,#'(lambda (pane x y)

98 (handle-mouse-click-on-pane

99 pane x y)))

100 ((:button-1 :release :shift) ;; :press)

101 ,#'(lambda (pane x y)

102 (handle-mouse-click-shift-on-pane

103 pane x y))))

104 :node-pane-function 'make-text-node)

105 (setf

106 output-pane

107 (make-instance 'capi:collector-pane

108 :min-height 130

109 :max-height 220

110 :title "Message collection pane"

111 :text "..."

112 :vertical-scroll t

113 :horizontal-scroll t))))

114 :title

115 "Info Pane Browser: mouse click for info, mouse click + shift for web br\

116 owser"

117

118 :best-width 550 :best-height 450)))

119 (make-info-panel-grapher-helper h-root-name-list

120 h-edge-list h-callback-function-click

121 h-callback-function-shift-click))))

Knowledge Graph Navigator 243

Writing the UI

Returning to the file src/kgn/gui.lisp, we need to implement callback functions for handling mouse
clicks on the info-pane-panel, showing the options popup panel, and handling the callback when
the user wants to delete the local SQLite query cache:

1 (defun test-callback-click (selected-node-name)

2 (ignore-errors

3 (format nil "* user clicked on node: ~A~%" selected-node-name)))

4

5 (defun test-callback-click-shift (selected-node-name)

6 (ignore-errors

7 (if (equal (subseq selected-node-name 0 5) "<http")

8 (trivial-open-browser:open-browser

9 (subseq selected-node-name 1

10 (- (length selected-node-name) 1))))

11 (format

12 nil

13 "* user shift-clicked on node: ~A - OPEN WEB BROWSER~%"

14 selected-node-name)))

15

16 (defun cache-callback (&rest x) (declare (ignore x))

17 (if *USE-CACHING*

18 (capi:display

19 (make-instance 'options-panel-interface))))

20

21 (defun website-callback (&rest x)

22 (declare (ignore x))

23 (trivial-open-browser:open-browser

24 "http://www.knowledgegraphnavigator.com/"))

In lines 8-10 I am using a third party package trivial-open-browser:open-browser to open the
default browser on your laptop. URIs in KGN have angle bracket characters around the URI so here
we remove these characters. I also use this same function in lines 21-24 to show the user a web site
that I built for this example application.

Again from gui.lisp, the following listing shows how to define the CAPI user interface and I refer
you to the CAPI documentation for details:

Knowledge Graph Navigator 244

1 (capi:define-interface kgn-interface ()

2 ()

3 (:menus

4 (action-menu

5 "Actions"

6 (

7 ("Copy generated SPARQL to clipboard"

8 :callback

9 #'(lambda (&rest x) (declare (ignore x))

10 (let ((messages (capi:editor-pane-text text-pane2)))

11 (capi::set-clipboard text-pane2

12 (format nil "---- Generated SPARQL and comments:~%~%~A~%~%" messages)

13 nil))))

14 ("Copy results to clipboard"

15 :callback

16 #'(lambda (&rest x) (declare (ignore x))

17 (let ((results (capi:editor-pane-text text-pane3)))

18 (capi::set-clipboard text-pane2

19 (format nil "---- Results:~%~%~A~%" results) nil))))

20 ("Copy generated SPARQL and results to clipboard"

21 :callback

22 #'(lambda (&rest x) (declare (ignore x))

23 (let ((messages (capi:editor-pane-text text-pane2))

24 (results (capi:editor-pane-text text-pane3)))

25 (capi::set-clipboard

26 text-pane2

27 (format nil

28 "---- Generated SPARQL and comments:~%~%~A~%~%---- Results:~%~%~A~%"

29 messages results) nil))))

30 ("Visit Knowledge Graph Navigator Web Site" :callback 'website-callback)

31 ("Clear query cache" :callback 'cache-callback)

32 ((if *show-info-pane*

33 "Stop showing Grapher window for new results"

34 "Start showing Grapher window for new results")

35 :callback 'toggle-grapher-visibility)

36)))

37 (:menu-bar action-menu)

38 (:panes

39 (text-pane1

40 capi:text-input-pane

41 :text (nth (random (length *examples*)) *examples*)

42 :title "Query"

43 :min-height 80

Knowledge Graph Navigator 245

44 :max-height 100

45 :max-width *width*

46 ;;:min-width (- *width* 480)

47 :width *best-width*

48 :callback 'start-progress-bar-test-from-background-thread)

49

50 (progress-bar

51 capi:progress-bar

52 :start 0

53 :end 100

54)

55

56 (text-pane2

57 capi:collector-pane

58 :font "Courier"

59 :min-height 210

60 :max-height 250

61 :title "Generated SPARQL queries to get results"

62 :text "Note: to answer queries, this app makes multipe SPARQL queries to DBPedia\

63 . These SPARQL queries will be shown here."

64 :vertical-scroll t

65 :create-callback #'(lambda (&rest x)

66 (declare (ignore x))

67 (setf (capi:editor-pane-text text-pane2) *pane2-message*))

68 :max-width *width*

69 :width *best-width*

70 :horizontal-scroll t)

71

72 (text-pane3

73 capi:collector-pane ;; capi:display-pane ;; capi:text-input-pane

74 :text *pane3-message*

75 :font "Courier"

76 :line-wrap-marker nil

77 :wrap-style :split-on-space

78 :vertical-scroll :with-bar

79 :title "Results"

80 :horizontal-scroll t

81 :min-height 220

82 :width *best-width*

83 :create-callback #'(lambda (&rest x)

84 (declare (ignore x))

85 (setf (capi:editor-pane-text text-pane3) *pane3-message*))

86 :max-height 240

Knowledge Graph Navigator 246

87 :max-width *width*)

88 (info

89 capi:title-pane

90 :text "Use natural language queries to generate SPARQL"))

91 (:layouts

92 (main-layout

93 capi:grid-layout

94 '(nil info

95 nil text-pane1

96 nil text-pane2

97 nil text-pane3

98 nil progress-bar)

99 :x-ratios '(1 99)

100 :has-title-column-p t))

101 (:default-initargs

102 :layout 'main-layout

103 :title "Knowledge Graph Navigator"

104 :best-width *best-width*

105 :max-width *width*))

I showed you how to run the KGN example application earlier and I suggest that you leave the
application open when reading through the user interface code.

For most of the development of KGN, the code layout and control flow was fairly simple. After the
application was complete however, I noticed a bad user interface problem: making many calls to
the DBPedia service took time and the application and except for streaming output to the generated
SPARQL pane the application does nothing for a while which could confuse users. I decided to
add a progress bar at the bottom of the main window and extracted much of the query processing
functionality to a work thread, as implemented in the following listing, and pass a “update progress
bar” callback function to many of the helper functions that create the SPARQL queries, make the web
calls, and process the results. This callback function moves the progress bar. This complexity makes
the KGN code is not as good a book example, but makes the application much better. The following
function is derived from amulti-processing LispWorks example program. The local function update-
progress-bar defined in the special operator flet in lines 4-8 is the function updater passed into
functions we have seen earlier. This function updates the progress bar and is called during long
running function calls. flet is like a let that additionally allows definitions of functions that inherit
the local content of any variables defined in the flet.

Knowledge Graph Navigator 247

1 (defun start-progress-bar-test-from-background-thread (query-text self)

2 (with-slots (text-pane2 text-pane3 progress-bar) self

3 (print text-pane2)

4 (flet ((update-progress-bar (percent)

5 (capi:execute-with-interface

6 self

7 #'(lambda ()

8 (setf (capi:range-slug-start progress-bar) percent)))))

9 (mp:process-run-function "progress-bar-test-from-background-thread"

10 '()

11 'run-and-monitor-progress-background-thread

12 #'update-progress-bar

13 query-text text-pane2 text-pane3

14))))

15

16 (defvar *percent*)

17

18 (defun run-and-monitor-progress-background-thread

19 (updater text text-pane2 text-pane3)

20 (setf *percent* 0)

21 (unwind-protect

22 (setf (capi:editor-pane-text text-pane2) "")

23 (setf (capi:editor-pane-text text-pane3) "")

24 ;;(capi:display-message "done")

25 (let ((message-stream (collector-pane-stream text-pane2))

26 (results-stream (collector-pane-stream text-pane3)))

27 (format message-stream "# Starting to process query....~%")

28 (format results-stream *pane3-message*)

29 (let ((user-selections

30 (get-entity-data-helper text

31 :updater updater

32 :message-stream message-stream)))

33 (setf *percent* (+ *percent* 2))

34 (funcall updater *percent*)

35 (setf (capi:editor-pane-text text-pane3) "")

36 (dolist (ev user-selections)

37 (if (> (length (cadr ev)) 0)

38 (let ()

39 (terpri results-stream)

40 (capi::write-string-with-properties

41 (format nil "- - - ENTITY TYPE: ~A - - -" (car ev))

42 '(:highlight :compiler-error-highlight) results-stream)

43 (terpri results-stream)

Knowledge Graph Navigator 248

44 (dolist (uri (cadr ev))

45 (setf uri (car uri))

46 (case (car ev)

47 (:people

48 (pprint-results

49 (dbpedia-get-person-detail uri :message-stream message-stream)

50 :stream results-stream))

51 (:companies

52 (pprint-results

53 (dbpedia-get-company-detail uri :message-stream message-stream)

54 :stream results-stream))

55 (:countries

56 (pprint-results

57 (dbpedia-get-country-detail uri :message-stream message-stream)

58 :stream results-stream))

59 (:cities

60 (pprint-results

61 (dbpedia-get-city-detail uri :message-stream message-stream)

62 :stream results-stream))

63 (:products

64 (pprint-results

65 (dbpedia-get-product-detail uri :message-stream message-stream)

66 :stream results-stream))))))

67 (setf *percent* (+ *percent* 1))

68 (funcall updater *percent*))

69

70 (let (links x)

71 (dolist (ev user-selections)

72 (dolist (uri (second ev))

73 (setf uri (car uri))

74 (if (> (length ev) 2)

75 (setf x (caddr ev)))

76 (setf links (cons (list (symbol-name (first ev)) uri x) links))

77 (setf *percent* (+ *percent* 1))

78 (funcall updater *percent*)))

79

80 (setf

81 links

82 (append

83 links

84 (entity-results->relationship-links

85 user-selections

86 :message-stream message-stream

Knowledge Graph Navigator 249

87 :updater updater)))

88 (setf *percent* (+ *percent* 2))

89 (funcall updater *percent*)

90

91 (if

92 *show-info-pane*

93 (lw-grapher:make-info-panel-grapher

94 '("PEOPLE" "COMPANIES" "COUNTRIES" "CITIES"

95 "PRODUCTS" "PLACES")

96 links 'test-callback-click

97 'test-callback-click-shift)))))

98 (funcall updater 0)))

We call the callback function updater at the end to remove the progress bar to let the user know
that they can now enter another query.

If you have not already done so I hope you will take some time to download the LispWorks Personal
Edition and try this application.

Wrap-up

This is a long example application for a book so I did not discuss all of the code in the project. If you
enjoy running and experimenting with this example and want to modify it for your own projects
then I hope that I provided a sufficient road map for you to do so.

I got the idea for the KGN application because I was spending quite a bit of time manually setting up
SPARQL queries for DBPedia (and other public sources like WikiData) and I wanted to experiment
with partially automating this process. I wrote the CAPI user interface for fun since this example
application could have had similar functionality as a command line tool. In fact, my first cut
implementation was a command line tool with the user interface in the file ui-text that we looked
at earlier. I decided to remove the command line interface and replace it using CAPI.

Most of the Common Lisp development I do has no user interface or implements a web application.
When I do need to write an application with a user interface, the LispWorks CAPI library makes
writing user interfaces fairly easy to do.

If you are using an open source Common Lisp like SBCL or CCL and you want to add a user interface
then you might want to also try LTK⁸⁸ and McClim⁸⁹. McClim works well on Linux and also works
on macOS with XQuartz but with fuzzy fonts. I also like Radiance⁹⁰ that spawns a web browser so
you can package web applications as desktop applications.

⁸⁸http://www.peter-herth.de/ltk/
⁸⁹https://www.cliki.net/McCLIM
⁹⁰https://github.com/Shirakumo/radiance

http://www.peter-herth.de/ltk/
https://www.cliki.net/McCLIM
https://github.com/Shirakumo/radiance
http://www.peter-herth.de/ltk/
https://www.cliki.net/McCLIM
https://github.com/Shirakumo/radiance

Knowledge Graph Navigator 250

If you are using CCL (Clojure Common Lisp) on macOS you can try the supported COCOA-
APPLICATION package. This is only recommended if you already know the Cocoa APIs, otherwise
this route has a very steep learning curve.

Using Common Lisp With
Wolfram/One
If you useWolfram/One⁹¹ then the material in this short chapter may interest you. The interface that
I wrote is simple: I use uiop:run-program to spawn a new process to run the Wolfram Language
command line tool that writes results to a temporary file. I then use uiop:read-file-string to read
the results and parse them into a convenient form for use.

Before we build and use an interface to Wolfram/One, let’s look at two screen shots of the
Wolfram/One interface with examples that we will later run in Common Lisp. The first example
finds entities in text:

Using Wolfram/One to find entities in text

The second example uses a deep learning model to answer a question given text containing the
answer to the question:

Using Wolfram/One to answer natural language questions

Here is the package.lisp file for this example:

⁹¹https://www.wolfram.com/wolfram-one/

https://www.wolfram.com/wolfram-one/
https://www.wolfram.com/wolfram-one/

Using Common Lisp With Wolfram/One 252

1 (defpackage #:wolfram

2 (:use #:cl #:uiop)

3 (:export #:wolfram #:cleanup-lists

4 #:find-answer-in-text #:entities))

And the wolfram.asd file:

1 (asdf:defsystem #:wolfram

2 :description "Wolfram Language interface experiments"

3 :author "Mark Watson <markw@markwatson.com>"

4 :license "Apache 2"

5 :depends-on (#:uiop #:cl-json #:myutils)

6 :components ((:file "package")

7 (:file "wolfram")))

The implementation in Wolfram.lisp is simple enough. In lines 6-8 I create a Common Lisp path
object in /tmp (and absolute pathname is required) and then use file-namestring to get just the file
name as a string. In lines 8-10 we are creating an operating system shell and running the Wolfram
Language command line tool with arguments to execute the query and write the results to the
temporary file. In lines 11-15 we read the contents of the temporary file, delete the file, and decode
the returned string as JSON data.

The Data returned form calling the Wolfram Language command line tool contains excess structure
that we don’t need (a sample of the raw returned data is shown later) so the function cleanup-lists
shown in lines 17-19 discards heads of lists when the first value in a list or sublist is Rule or List. The
function recursive-remove seen in lines 20-24 will remove all occurrences of an item from a nested
list.

1 (in-package #:wolfram)

2

3 ;; General query utilities

4

5 (defun wolfram (statement)

6 (let ((temp-file-path

7 (file-namestring (uiop:tmpize-pathname "/tmp/wolfram"))))

8 (uiop:run-program (concatenate 'string "wolframscript -code 'Export[\""

9 temp-file-path "\"," statement

10 ",\"ExpressionJSON\"]'"))

11 (let* ((ret (uiop:read-file-string temp-file-path)))

12 (delete-file temp-file-path)

13 (with-input-from-string (s (myutils:replace-all

14 (myutils:replace-all ret "\"'" "\"") "'\"" "\""))

15 (json:decode-json s)))))

Using Common Lisp With Wolfram/One 253

16

17 (defun cleanup-lists (r)

18 (cdr (recursive-remove "Rule" (recursive-remove "List" r))))

19

20 (defun recursive-remove (item tree)

21 (if (atom tree)

22 tree

23 (mapcar (lambda (nested-list) (recursive-remove item nested-list))

24 (remove item tree :test #'equal))))

25

26 ;; Higher level utilities for specific types of queries

27

28 (defun entities (text)

29 (let* ((noquotes (myutils:replace-all (myutils:replace-all text "\"" " ") "'" " "))

30 (query2

31 (concatenate

32 'string "TextCases['" noquotes

33 "', {'City', 'Country', 'Date', 'Person'} ->"

34 " {'String', 'Interpretation', 'Probability'}]"))

35 (query (myutils:replace-all query2 "'" "\"")))

36 (remove-if #'(lambda (a) (null (cadr a)))

37 (cleanup-lists (wolfram query)))))

38

39 (defun find-answer-in-text (text question)

40 (let* ((nqtext (myutils:replace-all (myutils:replace-all text "\"" " ") "'" " "))

41 (nqquestion (myutils:replace-all

42 (myutils:replace-all question "\"" " ") "'" " "))

43 (query2 (concatenate 'string "FindTextualAnswer['" nqtext

44 "', '" nqquestion "']"))

45 (query (myutils:replace-all query2 "'" "\"")))

46 (wolfram query)))

The last two functions in the last code listing, entities and find-answer-in-text are higher level
functions intended to work with the Wolfram Language procedures TextCases (see Wolfram
documentation for TextCases⁹²) and FindTextualAnswer (see Wolfram documentation for Find-
TextualAnswer⁹³).

The functions cleanup-lists and recursive-remove can be used to clean up results. First, we will
just call function wolfram and show the raw results:

⁹²https://reference.wolfram.com/language/ref/TextCases.html
⁹³https://reference.wolfram.com/language/ref/FindTextualAnswer.html

https://reference.wolfram.com/language/ref/TextCases.html
https://reference.wolfram.com/language/ref/TextCases.html
https://reference.wolfram.com/language/ref/FindTextualAnswer.html
https://reference.wolfram.com/language/ref/FindTextualAnswer.html
https://reference.wolfram.com/language/ref/TextCases.html
https://reference.wolfram.com/language/ref/FindTextualAnswer.html

Using Common Lisp With Wolfram/One 254

1 $ sbcl

2 * (ql:quickload "wolfram")

3 To load "wolfram":

4 Load 1 ASDF system:

5 wolfram

6 ; Loading "wolfram"

7 [package myutils].................................

8 [package wolfram]

9 ("wolfram")

10 * (setf example "TextCases['NYC, Los Angeles, and Chicago are the largest cities in \

11 the USA in 2018 according to Pete Wilson.', {'City', 'Country', 'Date', 'Person'} ->\

12 {'String', 'Interpretation', 'Probability'}]")

13 "TextCases['NYC, Los Angeles, and Chicago are the largest cities in the USA in 2018 \

14 according to Pete Wilson.', {'City', 'Country', 'Date', 'Person'} -> {'String', 'Int\

15 erpretation', 'Probability'}]"

16 * (setf example-str (myutils:replace-all example "'" "\""))

17 "TextCases[\"NYC, Los Angeles, and Chicago are the largest cities in the USA in 2018\

18 according to Pete Wilson.\", {\"City\", \"Country\", \"Date\", \"Person\"} -> {\"St\

19 ring\", \"Interpretation\", \"Probability\"}]"

20 * (setf results (wolfram:wolfram example-str))

21 * (pprint results)

22

23 ("Association"

24 ("Rule" "City"

25 ("List"

26 ("List" "NYC" ("Entity" "City" ("List" "NewYork" "NewYork" "UnitedStates"))

27 0.75583166)

28 ("List" "Los Angeles"

29 ("Entity" "City" ("List" "LosAngeles" "California" "UnitedStates"))

30 0.84206486)

31 ("List" "Chicago"

32 ("Entity" "City" ("List" "Chicago" "Illinois" "UnitedStates"))

33 0.91092855)))

34 ("Rule" "Country"

35 ("List" ("List" "USA" ("Entity" "Country" "UnitedStates") 0.9285077)))

36 ("Rule" "Date"

37 ("List"

38 ("List" "2018" ("DateObject" ("List" 2018) "Year" "Gregorian" -7.0)

39 0.8364356)))

40 ("Rule" "Person"

41 ("List"

42 ("List" "Pete Wilson" ("Entity" "Person" "PeteWilson::s7259") 0.9274548))))

43 *

Using Common Lisp With Wolfram/One 255

Now we clean up the output:

1 * (defvar results-cleaned (wolfram:cleanup-lists results))

2 * (pprint results-cleaned)

3

4 (("City"

5 (("NYC" ("Entity" "City" ("NewYork" "NewYork" "UnitedStates")) 0.75583166)

6 ("Los Angeles" ("Entity" "City" ("LosAngeles" "California" "UnitedStates"))

7 0.84206486)

8 ("Chicago" ("Entity" "City" ("Chicago" "Illinois" "UnitedStates"))

9 0.91092855)))

10 ("Country" (("USA" ("Entity" "Country" "UnitedStates") 0.9285077)))

11 ("Date" (("2018" ("DateObject" (2018) "Year" "Gregorian" -7.0) 0.8364356)))

12 ("Person" (("Pete Wilson" ("Entity" "Person" "PeteWilson::s7259") 0.9274548))))

13 *

Next we will try the two higher-level utility functions. The first example shows finding entities in
text:

1 CL-USER 21 > (pprint

2 (wolfram:entities "Sedona Arizona is home to Mark Louis Watson"))

3

4 (("City"

5 (("Sedona" ("Entity" "City" ("Sedona" "Arizona" "UnitedStates")) 0.8392784)))

6 ("Person" (("Mark Louis Watson" "Mark Louis Watson" 0.9023427))))

The second example uses a Wolfram pre-trained deep learning model for question answering:

1 CL-USER 22 > (pprint

2 (wolfram::find-answer-in-text "International Business Machines Corpor\

3 ation (IBM) is an American multinational technology company headquartered in Armonk,\

4 New York, with operations in over 170 countries. The company began in 1911, founded\

5 in Endicott, New York, as the Computing-Tabulating-Recording Company (CTR) and was \

6 renamed \"International Business Machines\" in 1924. IBM is incorporated in New York\

7 ."

8 "where is IBM is headquartered?"))

9

10 "Armonk, New York"

If you use Wolfram/One then these examples should get you started wrapping other Wolfram
Language functionality for use in your Common Lisp applications.

Book Wrapup
Congratulations for finishing this book!

I love programming in Lisp languages with concise code and a bottom-up approach to development.
I hope you now also share this enthusiasm with me.

Common Lisp is sometimes criticised as not having asmany useful libraries as some newer languages
like Python and Java, and this is a valid criticism. That said, I hope the wide variety of examples
in this book will convince you that Common Lisp is a good choice for many types of programming
projects.

I would like to thank you for reading my book and I hope that you enjoyed it. As I mentioned in the
Introduction I have been using Common Lisp since the mid-1980s, and other Lisp dialects for longer
than that. I have always found something almost magical developing in Lisp. Being able to extend
the language with macros and using the development technique of building a mini-language in Lisp
customized for an application enables programmers to be very efficient in their work. I have usually
found that this bottom-up development style helps me deal with software complexity because the
lower level functions tend to get well tested while the overall system being developed is not yet
too complex to fully understand. Later in the development process these lower level functions and
utilities almost become part of the programming language and the higher level application logic is
easier to understand because you have fewer lines of code to fit inside your head during development.

I think that unless a programmerworks in very constrained application domains, it oftenmakes sense
to be a polyglot programmer. I have tried, especially in the new material for this fourth edition, to
give you confidence that Common Lisp is good for both general software development language and
also as “glue” to tie different systems together.

Thank you for buying and reading my book!

Mark Watson

	Table of Contents
	Cover Material, Copyright, and License
	Preface
	Notes on the Seventh Edition Published March 2021
	Notes on the Sixth Edition Published June 2020
	Notes on the Fifth Edition Published September 2019
	Why Use Common Lisp?
	A Request from the Author
	Older Book Editions
	Acknowledgments
	Setting Up Your Common Lisp Development System and Quicklisp
	List of Quicklisp Projects and Small Examples in this Book

	Introduction
	Why Did I Write this Book?
	Free Software Tools for Common Lisp Programming
	How is Lisp Different from Languages like Java and C++?
	Advantages of Working in a Lisp Environment

	Common Lisp Basics
	Getting Started with SBCL
	Making the repl Nicer using rlwrap
	The Basics of Lisp Programming
	Symbols
	Operations on Lists
	Using Arrays and Vectors
	Using Strings
	Using Hash Tables
	Using Eval to Evaluate Lisp Forms
	Using a Text Editor to Edit Lisp Source Files
	Recovering from Errors
	Garbage Collection
	Loading your Working Environment Quickly
	Functional Programming Concepts

	Quicklisp
	Using Quicklisp to Find Packages
	Using Quicklisp to Configure Emacs and Slime

	Defining Lisp Functions
	Using Lambda Forms
	Using Recursion
	Closures
	Using the Function eval

	Defining Common Lisp Macros
	Example Macro
	Using the Splicing Operator
	Using macroexpand-1

	Using Common Lisp Loop Macros
	dolist
	dotimes
	do
	Using the loop Special Form to Iterate Over Vectors or Arrays

	Common Lisp Package System
	Input and Output
	The Lisp read and read-line Functions
	Lisp Printing Functions

	Plotting Data
	Implementing the Library
	Packaging as a Quicklisp Project

	Common Lisp Object System - CLOS
	Example of Using a CLOS Class
	Implementation of the HTMLstream Class
	Using Defstruct or CLOS

	Heuristically Guided Search
	Network Programming
	An introduction to Drakma
	An introduction to Hunchentoot
	Complete REST Client Server Example Using JSON for Data Serialization
	Network Programming Wrap Up

	Using the Microsoft Bing Search APIs
	Getting an Access Key for Microsoft Bing Search APIs
	Example Search Script
	Wrap-up

	Accessing Relational Databases
	Database Wrap Up

	Using MongoDB, Solr NoSQL Data Stores
	MongoDB
	A Common Lisp Solr Client
	NoSQL Wrapup

	Natural Language Processing
	Loading and Running the NLP Library
	Part of Speech Tagging
	Categorizing Text
	Detecting People's Names and Place Names
	Summarizing Text
	Text Mining

	Information Gathering
	DBPedia Lookup Service
	Web Spiders
	Using Apache Nutch
	Wrap Up

	Using The CL Machine-Learning Library
	Using the CLML Data Loading and Access APIs
	K-Means Clustering of Cancer Data Set
	SVM Classification of Cancer Data Set
	CLML Wrap Up

	Backpropagation Neural Networks
	Hopfield Neural Networks
	Using Python Deep Learning Models In Common Lisp With a Web Services Interface
	Setting up the Python Web Services Used in this Chapter
	Installing the spaCY NLP Services
	Installing the Coreference NLP Services
	Common Lisp Client for the spaCy NLP Web Services
	Common Lisp Client for the Coreference NLP Web Services
	Trouble Shooting Possible Problems - Skip if this Example Works on Your System
	Python Interop Wrap-up

	Using the PY4CL Library to Embed Python in Common Lisp
	Project Structure, Building the Python Wrapper, and Running an Example
	Implementation of spacy-py4cl
	Trouble Shooting Possible Problems - Skip if this Example Works on Your System
	Wrap-up for Using Py4CL

	Semantic Web and Linked Data
	Resource Description Framework (RDF) Data Model
	Extending RDF with RDF Schema
	The SPARQL Query Language
	Case Study: Using SPARQL to Find Information about Board of Directors Members of Corporations and Organizations
	Installing the Apache Jena Fuseki RDF Server
	Common Lisp Client Examples for the Apache Jena Fuseki RDF Server

	Automatically Generating Data for Knowledge Graphs
	Implementation Notes
	Generating RDF Data
	Generating Data for the Neo4j Graph Database
	Implementing the Top Level Application APIs
	Implementing The Web Interface
	Creating a Standalone Application Using SBCL
	Augmenting RDF Triples in a Knowledge Graph Using DBPedia
	KGCreator Wrap Up

	Knowledge Graph Sampler for Creating Small Custom Knowledge Graphs
	Knowledge Graph Navigator
	Example Output
	Project Configuration and Running the Application
	Review of NLP Utilities Used in Application
	Developing Low-Level SPARQL Utilities
	Implementing the Caching Layer
	Utilities to Colorize SPARQL and Generated Output
	Text Utilities for Queries and Results
	Using LispWorks CAPI UI Toolkit
	Writing Utilities for the UI
	Writing the UI
	Wrap-up

	Using Common Lisp With Wolfram/One
	Book Wrapup

