

 Practical Artificial Intelligence Programming With Java

 Fourth Edition

 Mark Watson

 This book is for sale at http://leanpub.com/javaai

 This version was published on 2017-11-24

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2013 - 2017 Mark Watson

 Table of Contents

 	
 Preface

 	
 Introduction

 	
 Other JVM Languages

 	
 Github Repository for Book Software

 	
 Use of Java Generics and Native Types

 	
 Notes on Java Coding Styles Used in this Book

 	
 Book Summary

 	
 Search

 	
 Representation of Search State Space and Search Operators

 	
 Finding Paths in Mazes

 	
 Finding Paths in Graphs

 	
 Adding Heuristics to Breadth First Search

 	
 Search and Game Playing: Tic-Tac-Toe and Chess

 	
 Reasoning

 	
 Logic

 	
 PowerLoom Overview

 	
 Running PowerLoom Interactively

 	
 Using the PowerLoom APIs in Java Programs

 	
 Suggestions for Further Study

 	
 Semantic Web

 	
 Relational Database Model Has Problems Dealing with Rapidly Changing Data Requirements

 	
 RDF: The Universal Data Format

 	
 Extending RDF with RDF Schema

 	
 The SPARQL Query Language

 	
 Using Sesame

 	
 OWL: The Web Ontology Language

 	
 Knowledge Representation and REST

 	
 Material for Further Study

 	
 Expert Systems

 	
 Production Systems

 	
 The Drools Rules Language

 	
 Using Drools in Java Applications

 	
 Example Drools Expert System: Blocks World

 	
 Example Drools Expert System: Help Desk System

 	
 Notes on the Craft of Building Expert Systems

 	
 Genetic Algorithms

 	
 Theory

 	
 Java Library for Genetic Algorithms

 	
 Finding the Maximum Value of a Function

 	
 Machine Learning with Weka

 	
 Using Weka’s Interactive GUI Application

 	
 Interactive Command Line Use of Weka

 	
 Embedding Weka in a Java Application

 	
 Suggestions for Further Study

 	
 Neural Networks

 	
 Hopfield Neural Networks

 	
 Java Classes for Hopfield Neural Networks

 	
 Testing the Hopfield Neural Network Class

 	
 Back Propagation Neural Networks

 	
 A Java Class Library for Back Propagation

 	
 Adding Momentum to Speed Up Back-Prop Training

 	
 Statistical Natural Language Processing

 	
 Tokenizing, Stemming, and Part of Speech Tagging Text

 	
 Named Entity Extraction From Text

 	
 Using the WordNet Linguistic Database

 	
 Automatically Assigning Tags to Text

 	
 Text Clustering

 	
 Spelling Correction

 	
 Hidden Markov Models

 	
 Wrapup

 	
 Information Gathering

 	
 Open Calais

 	
 Information Discovery in Relational Databases

 	
 Down to the Bare Metal: In-Memory Index and Search

 	
 Indexing and Search Using Embedded Lucene

 	
 Indexing and Search with Nutch Clients

 	
 Data Science Techniques

 	
 A Mix of Open Source and Proprietary Tools

 	
 Handling “small big data” in a Cost Effective Way

 	
 Writing and Testing MapReduce Applications

 	
 Example Application: MapReduce Application for Finding Proper Names in Text

 	
 Using Inexpensive Large Memory Leased Servers

 	
 Example Application Idea: Using the Google Book Project NGRAM Data Sets

 	
 Example Application Idea: Using Wikipedia Data Dumps

 	
 Conclusion

 	
 Conclusions

 Guide

 	
 Begin Reading

Preface

The latest edition of this book is always available on leanpub.com/javaai.

I have been developing commercial Artificial Intelligence (AI) tools and
applications since the 1980s.

 [image: Mark Watson]
 Mark Watson

I wrote this book for both professional programmers and home hobbyists
who already know how to program in Java and who want to learn practical
AI programming and information processing techniques. I have tried to
make this an enjoyable book to work through. In the style of a “cook
book,” the chapters can be studied in any order. Most chapters follow
the same pattern: a motivation for learning a technique, some theory for
the technique, and a Java example program that you can experiment with.
My Java example programs for this book can be found on github and can be used
under both the LGPL3 and Apache 2 licenses - choose whichever of these two
licenses that works best for you.

My goal is to teach you both the theory of common AI techniques and to
provide you with Java source code to save you some time and effort.
Because my example code is licensed under the LGPL you can use the code
for any purposes including commercial applications. Your only
responsibility for using my LGPL licensed code is that if you improve the
code, you should make your changes to my example code public, preferably
by sharing them with me so readers of future editions of this
book can benefit from your improvements.

I have been interested in AI since reading Bertram Raphael’s excellent
book Thinking Computer: Mind Inside Matter in the early 1980s. I have
also had the good fortune to work on many interesting AI projects
including the development of commercial expert system tools for the
Xerox LISP machines and the Apple Macintosh, development of commercial
neural network tools, application of natural language and expert systems
technology, medical information systems, application of AI technologies
to Nintendo and PC video games, and the application of AI technologies
to the financial markets. I have also applied statistical natural
language processing techniques to analyzing social media data from
Twitter and Facebook.

I enjoy AI programming, and hopefully this enthusiasm will also infect
you the reader.

 Software Licenses for example programs in this book

My example programs are licensed under the LGPL version 3 and/or Apache 2. I use several
open source libraries and their licenses are:

 	Drools Expert System Demos: Apache style license

 	PowerLoom Reasoning: LGPL

 	Sesame Semantic Web: LGPL

 Acknowledgements

I process the manuscript for this book using the leanpub.com publishing system and I recommend leanpub.com to other authors. Write one manuscript and use leanpub.com to generate assets for PDF, iPad/iPhone, and Kindle versions.

I would like to thank Kevin Knight for writing a flexible framework for
game search algorithms in Common LISP (Rich, Knight 1991) and for
giving me permission to reuse his framework, rewritten in Java for some
of the examples in the Chapter on Search. I would like to thank my
friend Tom Munnecke for my photo in this Preface. I have a library
full of books on AI and I would like to thank the authors of all of
these books for their influence on my professional life. I frequently
reference books in the text that have been especially useful to me and
that I recommend to my readers.

In particular, I would like to thank the authors of the following two
books that have had the most influence on me:

 	Stuart Russell and Peter Norvig’s Artificial Intelligence: A Modern
Approach which I consider to be the best single reference book for
AI theory

 	John Sowa’s book Knowledge Representation is a resource that I
frequently turn to for a holistic treatment of logic, philosophy,
and knowledge representation in general

 Book Editor:

Carol Watson

 Thanks to the following people who found typos in this and earlier book
editions:

Carol Watson, James Fysh, Joshua Cranmer, Jack Marsh, Jeremy Burt,
Jean-Marc Vanel

Introduction

This is not the latest edition of this book. The fifth edition is available on leanpub.com/javaai.

There are many fine books on Artificial Intelligence (AI) and good
tutorials and software on the web. This book is intended for programmers
who either already have an interest in AI or need to use specific AI
technologies at work.

The material is not intended as a complete reference for AI theory.
Instead, I provide enough theoretical background to understand the
example programs and to provide a launching point if you want or need to
delve deeper into any of the topics covered. I believe that we all learn
best when we are having fun and I have tried to make the example
programs easy to run and experiment with - so enjoy yourself!

In updating this book to the fourth edition I had hoped to add in addition to the
new chapters (on the Semantic Web, Information Gathering, and Data Science) more
material on machine learning and deep learning. I would like to recommend two free
online courses that cover these topics very well: Andrew Ng’s Coursera Machine Learning
class and also Geoffrey Hinton’s Coursera Machine Learning Using Neural Networks
class.

I wrote this book to provide a quick start for
Java programmers and I hope that the material in this book will
encourage you to dig deeper with available online courses.

Other JVM Languages

The Java language and JVM platform are very widely used so that
techniques that you learn can be broadly useful. There are other JVM
languages like JRuby, Clojure, Jython, and Scala that can use existing
Java classes. While the examples in this book are written in Java you
should have little trouble using my Java example classes and the open
source libraries with these alternative JVM languages.

I do provide “wrappers” written in Clojure and JRuby for a few of the
example programs in this book that are included in the the github repository for this book. Using the Java examples in JRuby and Clojure is covered in
Appendices A and B.

Github Repository for Book Software

The code for the example programs is available on github:

 https://github.com/mark-watson/Java-AI-Book-Code

All the example code that I have written is copyright Mark Watson and can be used under either of the LGPL 3 or Apache 2 licenses. Use either license, whichever works best for you.

The code examples usually consist of reusable (non GUI) libraries and
throwaway text-based test programs to solve a specific application
problem; in some cases, the test code will contain a test or
demonstration GUI.

Use of Java Generics and Native Types

In general I usually use Java generics and the new collection classes
for almost all of my Java programming. That is also the case for the
examples in this book except when using native types and arrays provides
a real performance advantage (for example, in the search examples).

Since arrays must contain reifiable types they play poorly with generics
so I prefer not to mix coding styles in the same code base. There are
some obvious cases where not using primitive types leads to excessive
object creation and boxing/unboxing. That said, I expect Java compilers,
Hotspot, and the JVM in general to keep getting better and this may be a
non-issue in the future.

Notes on Java Coding Styles Used in this Book

Many of the example programs do not strictly follow common Java
programming idioms – this is usually done for brevity. For example, when
a short example is all in one Java package I will save lines of code and
programing listing space by not declaring class data private with public
getters and setters; instead, I will sometimes simply use package
visibility as in this example:

 1 public static class Problem {
 2 // constants for appliance types:
 3 // enum Appliance {REFRIGERATOR, MICROWAVE, TV, DVD};
 4 // constants for problem types:
 5 // enum ProblemType {NOT_RUNNING, SMOKING, ON_FIRE,
 6 	// MAKES_NOISE};
 7 // constants for environmental data:
 8 // enum EnvironmentalDescription {CIRCUIT_BREAKER_OFF,
 9 	// LIGHTS_OFF_IN_ROOM};
10 Appliance applianceType;
11 List<ProblemType> problemTypes = new ArrayList<ProblemType>();
12 List<EnvironmentalDescription> environmentalData =
13 		 new ArrayList<EnvironmentalDescription>();
14 // etc.
15 }

Please understand that I do not advocate this style of programming in
large projects but one challenge in writing about software development
is the requirement to make the examples short and easily read and
understood. Many of the examples started as large code bases for my own
projects that I “whittled down” to a small size to show one or two
specific techniques. Forgoing the use of “getters and setters” in many
of the examples is just another way to shorten the examples.

Authors of programming books are faced with a problem in formatting
program snippets: limited page width. You will frequently see what would
be a single line in a Java source file split over two or three lines to
accommodate limited page width as seen in this example:

1 private static void createTestFacts(WorkingMemory workingMemory)
2 throws Exception { ... }

Book Summary

Chapter on Search deals with heuristic search in two domains:
two-dimensional grids (for example mazes) and graphs (defined by nodes
and edges connecting nodes).

Chapter on Reasoning covers logic, knowledge representation, and
reasoning using the PowerLoom system.

Chapter on Semantic Web covers the Semantic Web. You will learn
how to use RDF and RDFS data for knowledge representation and how to use
the popular Sesame open source Semantic Web system.

Chapter on Expert Systems introduces you to rule-based or
production systems. We will use the open source Drools system to
implement simple expert systems for solving “blocks world” problems and
to simulate a help desk system.

Chapter on Genetic Algorithms gives an overview of Genetic Algorithms, provides a
Java library, and solves a test problem. The chapter ends with
suggestions for projects you might want to try.

Chapter on Neural Networks introduces Hopfield and Back
Propagation Neural Networks. In addition to Java libraries you can use
in your own projects, we will use two Swing-based Java applications to
visualize how neural networks are trained.

Chapter on Machine Learning with Weka introduces you to the GPLed Weka project.
Weka is a best of breed toolkit for solving a wide range of machine
learning problems.

Chapter on Statistical Natural Language Processing covers several
Statistical NLP techniques that I often use in my own work:
processing text (tokenizing, stemming, and determining part of speech),
named entity extraction from text, using the WordNet lexical database,
automatically assigning tags to text, text clustering, three different
approaches to spelling correction, and a short tutorial on Markov
Models.

Chapter on Information Gathering provides useful techniques for
gathering and using information: using the Open Calais web services for
extracting semantic information from text, information discovery in
relational databases, and three different approaches to indexing and
searching text.

Chapter on Data Science discusses setting up your own Java environment for Data Science tasks.

Search

Early AI research emphasized the optimization of search algorithms. At this time in the 1950s and 1960s
this approach made sense because many AI tasks can be solved
effectively by defining state spaces and using search algorithms to
define and explore search trees in this state space. This approach for AI research
encountered some early success in game playing systems like checkers and chess
which reinforced confidence in viewing many AI problems as search problems.

I now consider search to be a well understood problem but that does not mean that we will not see exciting
improvements in search algorithms in the future.

TBD: add a reference to new Go playing search algorithms, and success in the last sentence.

We will cover depth first and breadth first search. The basic
implementation for depth first and breadth first search is the same with
one key difference. When searching from any location in state space we
start by calculating nearby locations that can be moved to in one search
cycle. For depth first search we store new locations to be searched in a
stack data structure and for breadth first search we store new locations
to search in a queue data structure. As we will shortly see this simple
change has a large impact on search quality (usually breadth first
search will produce better results) and computational resources (depth
first search requires less storage).

It is customary to cover search in AI books but to be honest I have only
used search techniques in one interactive planning system in the 1980s
and much later while doing the “game AI” in two Nintendo games and a PC
hovercraft racing game. Still, you should understand how to optimize
search.

What are the limitations of search? Early on, search applied to problems
like checkers and chess misled early researchers into underestimating
the extreme difficulty of writing software that performs tasks in
domains that require general world knowledge or deal with complex and
changing environments. These types of problems usually require the
understanding and then the implementation of domain specific knowledge.

In this chapter, we will use three search problem domains for studying
search algorithms: path finding in a maze, path finding in a graph, and
alpha-beta search in the games tic-tac-toe and chess.

Representation of Search State Space and Search Operators

We will use a single search tree representation in graph search and maze
search examples in this chapter. Search trees consist of nodes that
define locations in state space and links to other nodes. For some small
problems, the search tree can be pre-computed and cover all of the
search space. For most problems however it is impossible to completely
enumerate a search tree for a state space so we must define successor
node search operators that for a given node produce all nodes that can
be reached from the current node in one step. For example, in the game
of chess we can not possibly enumerate the search tree for all possible
games of chess, so we define a successor node search operator that given
a board position (represented by a node in the search tree) calculates
all possible moves for either the white or black pieces. The possible
chess moves are calculated by a successor node search operator and are
represented by newly calculated nodes that are linked to the previous
node. Note that even when it is simple to fully enumerate a search tree,
as in the game maze example, we still might want to generate the search
tree dynamically as we will do in this chapter.

For calculating a search tree we use a graph. We will represent graphs
as nodes with links between some of the nodes. For solving puzzles and
for game related search, we will represent positions in the search space
with Java objects called nodes. Nodes contain arrays of references to
child nodes and for some applications we also might store links back to
parent nodes. A search space using this node representation can be
viewed as a directed graph or a tree. The node that has no
parent nodes is the root node and all nodes that have no child nodes a
called leaf nodes.

Search operators are used to move from one point in the search space to
another. We deal with quantized search spaces in this chapter, but
search spaces can also be continuous in some applications. Often search
spaces are either very large or are infinite. In these cases, we
implicitly define a search space using some algorithm for extending the
space from our reference position in the space. The Figure showing Search Space Representations
shows representations of search space as both connected nodes in a graph
and as a two-dimensional grid with arrows indicating possible movement
from a reference point denoted by R.

 [image: Search Space Representations]
 Search Space Representations

When we specify a search space as a two-dimensional array, search
operators will move the point of reference in the search space from a
specific grid location to an adjoining grid location. For some
applications, search operators are limited to moving up/down/left/right
and in other applications operators can additionally move the reference
location diagonally.

When we specify a search space using node representation, search
operators can move the reference point down to any child node or up to
the parent node. For search spaces that are represented implicitly,
search operators are also responsible for determining legal child nodes,
if any, from the reference point.

Note that I use different libraries for the maze and graph search
examples.

Finding Paths in Mazes

The example program used in this section is MazeSearch.java in the
directory src/search/maze and I assume that the reader has downloaded
the entire example ZIP file for this book and placed the source files
for the examples in a convenient place. Figure showing UML Diagram for Search Classes shows an overview of
the maze search classes: depth first and
breadth first search. The abstract base class AbstractSearchEngine
contains common code and data that is required by both the classes
DepthFirstSearch and BreadthFirstSearch. The class Maze is used to
record the data for a two-dimensional maze, including which grid
locations contain walls or obstacles. The class Maze defines three
static short integer values used to indicate obstacles, the starting
location, and the ending location.

 [image: UML Diagram for Search Classes]
 UML Diagram for Search Classes

The Java class Maze defines the search space. This class allocates a
two-dimensional array of short integers to represent the state of any
grid location in the maze. Whenever we need to store a pair of integers,
we will use an instance of the standard Java class java.awt.Dimension,
which has two integer data components: width and height. Whenever we
need to store an x-y grid location, we create a new Dimension object (if
required), and store the x coordinate in Dimension.width and the y
coordinate in Dimension.height. As in the right-hand side of Figure
[fig:searchspace], the operator for moving through the search space from
given x-y coordinates allows a transition to any adjacent grid location
that is empty. The Maze class also contains the x-y location for the
starting location (startLoc) and goal location (goalLoc). Note that for
these examples, the class Maze sets the starting location to grid
coordinates 0-0 (upper left corner of the maze in the figures to follow)
and the goal node in (width - 1)-(height - 1) (lower right corner in the
following figures).

The abstract class AbstractSearchEngine is the base class for both the
depth first (uses a stack to store moves) search class
DepthFirstSearchEngine and the breadth first (uses a queue to store
moves) search class BreadthFirstSearchEngine. We will start by looking
at the common data and behavior defined in AbstractSearchEngine. The
class constructor has two required arguments: the width and height of
the maze, measured in grid cells. The constructor defines an instance of
the Maze class of the desired size and then calls the utility method
initSearch to allocate an array searchPath of Dimension objects,
which will be used to record the path traversed through the maze. The
abstract base class also defines other utility methods:

 	
equals(Dimension d1, Dimension d2) – checks to see if two
arguments of type Dimension are the same.

 	
getPossibleMoves(Dimension location) – returns an array of
Dimension objects that can be moved to from the specified
location. This implements the movement operator.

Now, we will look at the depth first search procedure. The constructor
for the derived class DepthFirstSearchEngine calls the base class
constructor and then solves the search problem by calling the method
iterateSearch. We will look at this method in some detail. The
arguments to iterateSearch specify the current location and the
current search depth:

1 private void iterateSearch(Dimension loc, int depth)

The class variable isSearching is used to halt search, avoiding more
solutions, once one path to the goal is found.

1 if (isSearching == false) return;

We set the maze value to the depth for display purposes only:

1 maze.setValue(loc.width, loc.height, (short)depth);

Here, we use the super class getPossibleMoves method to get an array
of possible neighboring squares that we could move to; we then loop over
the four possible moves (a null value in the array indicates an illegal
move):

1 Dimension [] moves = getPossibleMoves(loc);
2 for (int i=0; i<4; i++) {
3 if (moves[i] == null) break; // out of possible moves
4 // from this location

Record the next move in the search path array and check to see if we are
done:

1 searchPath[depth] = moves[i];
2 if (equals(moves[i], goalLoc)) {
3 System.out.println("Found the goal at " +
4 moves[i].width +
5 ``, " + moves[i].height);
6 isSearching = false;
7 maxDepth = depth;
8 return;
9 } else {

If the next possible move is not the goal move, we recursively call the
iterateSearch method again, but starting from this new location and
increasing the depth counter by one:

1 iterateSearch(moves[i], depth + 1);
2 if (isSearching == false) return;
3 }

The figure showing the depth first search in a maze shows how poor a path a depth first search
can find between the start and goal locations in the maze. The maze is a
10-by-10 grid. The letter S marks the starting location in the upper
left corner and the goal position is marked with a G in the lower right
corner of the grid. Blocked grid cells are painted light gray. The basic
problem with the depth first search is that the search engine will often
start searching in a bad direction, but still find a path eventually,
even given a poor start. The advantage of a depth first search over a
breadth first search is that the depth first search requires much less
memory. We will see that possible moves for depth first search are
stored on a stack (last in, first out data structure) and possible moves
for a breadth first search are stored in a queue (first in, first out
data structure).

 [image: Depth first search of a maze]
 Depth first search of a maze

The derived class BreadthFirstSearch is similar to the
DepthFirstSearch procedure with one major difference: from a specified
search location we calculate all possible moves, and make one possible
trial move at a time. We use a queue data structure for storing possible
moves, placing possible moves on the back of the queue as they are
calculated, and pulling test moves from the front of the queue. The
effect of a breadth first search is that it “fans out” uniformly from
the starting node until the goal node is found.

The class constructor for BreadthFirstSearch calls the super class
constructor to initialize the maze, and then uses the auxiliary method
doSearchOn2Dgrid for performing a breadth first search for the goal.
We will look at the class BreadthFirstSearch in some detail. Breadth
first search uses a queue instead of a stack (depth first search) to
store possible moves. The utility class DimensionQueue implements a
standard queue data structure that handles instances of the class
Dimension.

The method doSearchOn2Dgrid is not recursive, it uses a loop to add
new search positions to the end of an instance of class DimensionQueue
and to remove and test new locations from the front of the queue. The
two-dimensional array allReadyVisited keeps us from searching the same
location twice. To calculate the shortest path after the goal is found,
we use the predecessor array:

 1 private void doSearchOn2DGrid() {
 2 int width = maze.getWidth();
 3 int height = maze.getHeight();
 4 boolean alReadyVisitedFlag[][] =
 5 new boolean[width][height];
 6 Dimension predecessor[][] =
 7 new Dimension[width][height];
 8 DimensionQueue queue =
 9 new DimensionQueue();
10 for (int i=0; i<width; i++) {
11 for (int j=0; j<height; j++) {
12 alReadyVisitedFlag[i][j] = false;
13 predecessor[i][j] = null;
14 }
15 }

We start the search by setting the already visited flag for the starting
location to true value and adding the starting location to the back of
the queue:

1 alReadyVisitedFlag[startLoc.width][startLoc.height]
2 = true;
3 queue.addToBackOfQueue(startLoc);
4 boolean success = false;

This outer loop runs until either the queue is empty or the goal is
found:

1 outer:
2 while (queue.isEmpty() == false) {

We peek at the Dimension object at the front of the queue (but do not
remove it) and get the adjacent locations to the current position in the
maze:

1 Dimension head = queue.peekAtFrontOfQueue();
2 Dimension [] connected =
3 getPossibleMoves(head);

We loop over each possible move; if the possible move is valid (i.e.,
not null) and if we have not already visited the possible move location,
then we add the possible move to the back of the queue and set the
predecessor array for the new location to the last square visited (head
is the value from the front of the queue). If we find the goal, break
out of the loop:

 1 for (int i=0; i<4; i++) {
 2 if (connected[i] == null) break;
 3 int w = connected[i].width;
 4 int h = connected[i].height;
 5 if (alReadyVisitedFlag[w][h] == false) {
 6 alReadyVisitedFlag[w][h] = true;
 7 predecessor[w][h] = head;
 8 queue.addToBackOfQueue(connected[i]);
 9 if (equals(connected[i], goalLoc)) {
10 success = true;
11 break outer; // we are done
12 }
13 }
14 }

We have processed the location at the front of the queue (in the
variable head), so remove it:

1 queue.removeFromFrontOfQueue();
2 }

Now that we are out of the main loop, we need to use the predecessor
array to get the shortest path. Note that we fill in the searchPath
array in reverse order, starting with the goal location:

 1 maxDepth = 0;
 2 if (success) {
 3 searchPath[maxDepth++] = goalLoc;
 4 for (int i=0; i<100; i++) {
 5 searchPath[maxDepth] =
 6 predecessor[searchPath[maxDepth - 1].
 7 width][searchPath[maxDepth - 1].
 8 height];
 9 maxDepth++;
10 if (equals(searchPath[maxDepth - 1],
11 startLoc))
12 break; // back to starting node
13 }
14 }
15 }

The figure of breadth search of a maze shows a good path solution between starting
and goal nodes. Starting from the initial position, the breadth first
search engine adds all possible moves to the back of a queue data
structure. For each possible move added to this queue in one search
cycle, all possible moves are added to the queue for each new move
recorded. Visually, think of possible moves added to the queue as
“fanning out” like a wave from the starting location. The breadth first
search engine stops when this “wave” reaches the goal location. In
general, I prefer breadth first search techniques to depth first search
techniques when memory storage for the queue used in the search process
is not an issue. In general, the memory requirements for performing
depth first search is much less than breadth first search.

 [image: Beadth First Search of a Maze]
 Beadth First Search of a Maze

To run the two example programs from this section, change directory to
src/search/maze and type:

1 javac *.java
2 java MazeDepthFirstSearch
3 java MazeBreadthFirstSearch

Note that the classes MazeDepthFirstSearch and
MazeBreadthFirstSearch are simple Java JFC applications that produced
the figure showing the depth first search in a maze and
the figure of breadth search of a maze. The interested
reader can read through the source code for the GUI test programs, but
we will only cover the core AI code in this book. If you are interested
in the GUI test programs and you are not familiar with the Java JFC (or
Swing) classes, there are several good tutorials on JFC programming at
java.sun.com.

Finding Paths in Graphs

In the last section, we used both depth first and breadth first search
techniques to find a path between a starting location and a goal
location in a maze. Another common type of search space is represented
by a graph. A graph is a set of nodes and links. We characterize nodes
as containing the following data:

 	A name and/or other data

 	Zero or more links to other nodes

 	A position in space (this is optional, usually for display or
visualization purposes)

Links between nodes are often called edges. The algorithms used for
finding paths in graphs are very similar to finding paths in a
two-dimensional maze. The primary difference is the operators that allow
us to move from one node to another. In the last section we saw that in
a maze, an agent can move from one grid space to another if the target
space is empty. For graph search, a movement operator allows movement to
another node if there is a link to the target node.

The figure showing UML Diagram for Search Classes shows the UML class diagram for the graph
search Java classes that we will use in this section. The abstract class
AbstractGraphSearch class is the base class for both
DepthFirstSearch and BreadthFirstSearch. The classes
GraphDepthFirstSearch and GraphBreadthFirstSearch and test programs
also provide a Java Foundation Class (JFC) or Swing based user
interface. These two test programs produced Figures [fig:gsearch-depth-maze]
and [fig:gsearch-breadth-maze].

 [image: UML Diagram for Graphics Search Demo]
 UML Diagram for Graphics Search Demo

As seen in the previous figure, most of the data for the search
operations (i.e., nodes, links, etc.) is defined in the abstract class
AbstractGraphSearch. This abstract class is customized through
inheritance to use a stack for storing possible moves (i.e., the array
path) for depth first search and a queue for breadth first search.

The abstract class AbstractGraphSearch allocates data required by both
derived classes:

 1 final public static int MAX = 50;
 2 protected int [] path =
 3 new int[AbstractGraphSearch.MAX];
 4 protected int num_path = 0;
 5 // for nodes:
 6 protected String [] nodeNames =
 7 new String[MAX];
 8 protected int [] node_x = new int[MAX];
 9 protected int [] node_y = new int[MAX];
10 // for links between nodes:
11 protected int [] link_1 = new int[MAX];
12 protected int [] link_2 = new int[MAX];
13 protected int [] lengths = new int[MAX];
14 protected int numNodes = 0;
15 protected int numLinks = 0;
16 protected int goalNodeIndex = -1,
17 startNodeIndex = -1;

The abstract base class also provides several common utility methods:

 	addNode(String name, int x, int y) – adds a new node

 	addLink(int n1, int n2) – adds a bidirectional link between nodes
indexed by n1 and n2. Node indexes start at zero and are in the
order of calling addNode.

 	addLink(String n1, String n2) – adds a bidirectional link between
nodes specified by their names

 	getNumNodes() – returns the number of nodes

 	getNumLinks() – returns the number of links

 	getNodeName(int index) – returns a node’s name

 	getNodeX(), getNodeY() – return the coordinates of a node

 	getNodeIndex(String name) – gets the index of a node, given its name

The abstract base class defines an abstract method findPath that must
be overridden. We will start with the derived class DepthFirstSearch,
looking at its implementation of findPath. The findPath method returns
an array of node indices indicating the calculated path:

1 public int [] findPath(int start_node,
2 int goal_node) {

The class variable path is an array that is used for temporary storage;
we set the first element to the starting node index, and call the
utility method findPathHelper:

1 path[0] = start_node; // the starting node
2 return findPathHelper(path, 1, goal_node);
3 }

The method findPathHelper is the interesting method in this class that
actually performs the depth first search; we will look at it in some
detail:

The path array is used as a stack to keep track of which nodes are being
visited during the search. The argument num_path is the number of
locations in the path, which is also the search depth:

1 public int [] findPathHelper(int [] path,
2 int num_path,
3 int goal_node) {

First, re-check to see if we have reached the goal node; if we have,
make a new array of the current size and copy the path into it. This new
array is returned as the value of the method:

1 if (goal_node == path[num_path - 1]) {
2 int [] ret = new int[num_path];
3 for (int i=0; i<num_path; i++) {
4 ret[i] = path[i];
5 }
6 return ret; // we are done!
7 }

We have not found the goal node, so call the method connected_nodes
to find all nodes connected to the current node that are not already on
the search path (see the source code for the implementation of
connected_nodes):

1 int [] new_nodes = connected_nodes(path,
2 num_path);

If there are still connected nodes to search, add the next possible
“node to visit” to the top of the stack (variable path in the program)
and recursively call the method findPathHelper again:

 1 if (new_nodes != null) {
 2 for (int j=0; j<new_nodes.length; j++) {
 3 path[num_path] = new_nodes[j];
 4 int [] test = findPathHelper(new_path,
 5 num_path + 1,
 6 goal_node);
 7 if (test != null) {
 8 if (test[test.length-1] == goal_node) {
 9 return test;
10 }
11 }
12 }
13 }

If we have not found the goal node, return null, instead of an array of
node indices:

1 return null;
2 }

Derived class BreadthFirstSearch also must define abstract method
findPath. This method is very similar to the breadth first search
method used for finding a path in a maze: a queue is used to store
possible moves. For a maze, we used a queue class that stored instances
of the class Dimension, so for this problem, the queue only needs to
store integer node indices. The return value of findPath is an array
of node indices that make up the path from the starting node to the
goal.

1 public int [] findPath(int start_node,
2 int goal_node) {

We start by setting up a flag array alreadyVisited to prevent visiting
the same node twice, and allocating a predecessors array that we will
use to find the shortest path once the goal is reached:

1 // data structures for depth first search:
2 boolean [] alreadyVisitedFlag =
3 new boolean[numNodes];
4 int [] predecessor = new int[numNodes];

The class IntQueue is a private class defined in the file
BreadthFirstSearch.java; it implements a standard queue:

1 IntQueue queue = new IntQueue(numNodes + 2);

Before the main loop, we need to initialize the already visited
predecessor arrays, set the visited flag for the starting node to true,
and add the starting node index to the back of the queue:

1 for (int i=0; i<numNodes; i++) {
2 alreadyVisitedFlag[i] = false;
3 predecessor[i] = -1;
4 }
5 alreadyVisitedFlag[start_node] = true;
6 queue.addToBackOfQueue(start_node);

The main loop runs until we find the goal node or the search queue is
empty:

1 outer: while (queue.isEmpty() == false) {

We will read (without removing) the node index at the front of the queue
and calculate the nodes that are connected to the current node (but not
already on the visited list) using the connected_nodes method (the
interested reader can see the implementation in the source code for this
class):

1 int head = queue.peekAtFrontOfQueue();
2 int [] connected = connected_nodes(head);
3 if (connected != null) {

If each node connected by a link to the current node has not already
been visited, set the predecessor array and add the new node index to
the back of the search queue; we stop if the goal is found:

 1 for (int i=0; i<connected.length; i++) {
 2 if (alreadyVisitedFlag[connected[i]] == false) {
 3 predecessor[connected[i]] = head;
 4 queue.addToBackOfQueue(connected[i]);
 5 if (connected[i] == goal_node) break outer;
 6 }
 7 }
 8 alreadyVisitedFlag[head] = true;
 9 queue.removeFromQueue(); // ignore return value
10 }
11 }

Now that the goal node has been found, we can build a new array of
returned node indices for the calculated path using the predecessor
array:

 1 int [] ret = new int[numNodes + 1];
 2 int count = 0;
 3 ret[count++] = goal_node;
 4 for (int i=0; i<numNodes; i++) {
 5 ret[count] = predecessor[ret[count - 1]];
 6 count++;
 7 if (ret[count - 1] == start_node) break;
 8 }
 9 int [] ret2 = new int[count];
10 for (int i=0; i<count; i++) {
11 ret2[i] = ret[count - 1 - i];
12 }
13 return ret2;
14 }

In order to run both the depth first and breadth first graph search
examples, change directory to src-search-maze and type the following
commands:

1 javac *.java
2 java GraphDepthFirstSearch
3 java GraphBeadthFirstSearch

The following figure shows the results of finding a route from
node 1 to node 9 in the small test graph. Like the depth first results
seen in the maze search, this path is not optimal.

 [image: Depth First Search in a Graph]
 Depth First Search in a Graph

The next figure shows an optimal path found using a
breadth first search. As we saw in the maze search example, we find
optimal solutions using breadth first search at the cost of extra memory
required for the breadth first search.

 [image: Breadth First Search in a Graph]
 Breadth First Search in a Graph

Adding Heuristics to Breadth First Search

We can usually make breadth first search more efficient by ordering the
search order for all branches from a given position in the search space.
For example, when adding new nodes from a specified reference point in
the search space, we might want to add nodes to the search queue first
that are “in the direction” of the goal location: in a two-dimensional
search like our maze search, we might want to search connected grid
cells first that were closest to the goal grid space. In this case,
pre-sorting nodes (in order of closest distance to the goal) added to
the breadth first search queue could have a dramatic effect on search
efficiency. In the next chapter we will build a simple real-time
planning system around our breadth first maze search program; this new
program will use heuristics. The alpha-beta additions to breadth first
search are seen in in the next section.

Search and Game Playing: Tic-Tac-Toe and Chess

Now that a computer program has won a match against the human world
champion, perhaps people’s expectations of AI systems will be
prematurely optimistic. Game search techniques are not real AI, but
rather, standard programming techniques. A better platform for doing AI
research is the game of Go. There are so many possible moves in the game
of Go that brute force look ahead (as is used in Chess playing programs)
simply does not work.

That said, min-max type search algorithms with alpha-beta cutoff
optimizations are an important programming technique and will be covered
in some detail in the remainder of this chapter. We will design an
abstract Java class library for implementing alpha-beta enhanced min-max
search, and then use this framework to write programs to play
tic-tac-toe and chess.

Alpha-Beta Search

The first game that we will implement will be tic-tac-toe, so we will
use this simple game to explain how the min-max search (with alpha-beta
cutoffs) works.

The figure showing possible moves for tic-tac-toe shows some of the possible moves generated
from a tic-tac-toe position where X has made three moves and O has made
two moves; it is O’s turn to move. This is “level 0” in this figure. At level 0, O has four possible moves. How
do we assign a fitness value to each of O’s possible moves at level 0?
The basic min-max search algorithm provides a simple solution to this
problem: for each possible move by O in level 1, make the move and store
the resulting 4 board positions. Now, at level 1, it is X’s turn to
move. How do we assign values to each of X’s possible three moves in
the figure showing possible moves for tic-tac-toe? Simple, we continue to search by
making each of X’s possible moves and storing each possible board
position for level 2. We keep recursively applying this algorithm until
we either reach a maximum search depth, or there is a win, loss, or draw
detected in a generated move. We assume that there is a fitness function
available that rates a given board position relative to either side.
Note that the value of any board position for X is the negative of the
value for O.

 [image: Alpha Beta Search for Tic-Tac-Toe]
 Alpha Beta Search for Tic-Tac-Toe

To make the search more efficient, we maintain values for alpha and beta
for each search level. Alpha and beta determine the best possible/worst
possible move available at a given level. If we reach a situation like
the second position in level 2 where X has won, then we can immediately
determine that O’s last move in level 1 that produced this position (of
allowing X an instant win) is a low valued move for O (but a high valued
move for X). This allows us to immediately “prune” the search tree by
ignoring all other possible positions arising from the first O move in
level 1. This alpha-beta cutoff (or tree pruning) procedure can save a
large percentage of search time, especially if we can set the search
order at each level with “probably best” moves considered first.

While tree diagrams as seen in the figure showing possible moves for tic-tac-toe quickly
get complicated, it is easy for a computer program to generate possible
moves, calculate new possible board positions and temporarily store
them, and recursively apply the same procedure to the next search level
(but switching min-max “sides” in the board evaluation). We will see in
the next section that it only requires about 100 lines of Java code to
implement an abstract class framework for handling the details of
performing an alpha-beta enhanced search. The additional game specific
classes for tic-tac-toe require about an additional 150 lines of code to
implement; chess requires an additional 450 lines of code.

A Java Framework for Search and Game Playing

The general interface for the Java classes that we will develop in this
section was inspired by the Common LISP game-playing framework written
by Kevin Knight and described in (Rich, Knight 1991). The abstract class
GameSearch contains the code for running a two-player game and
performing an alpha-beta search. This class needs to be sub-classed to
provide the eight methods:

 1 public abstract boolean drawnPosition(Position p)
 2 public abstract boolean wonPosition(Position p,
 3 boolean player)
 4 positionEvaluation(Position p,
 5 boolean player)
 6 public abstract void printPosition(Position p)
 7 public abstract Position []
 8 possibleMoves(Position p,
 9 boolean player)
10 public abstract Position makeMove(Position p,
11 boolean player,
12 Move move)
13 public abstract boolean reachedMaxDepth(Position p,
14 int depth)
15 public abstract Move getMove()

The method drawnPosition should return a Boolean true value if the
given position evaluates to a draw situation. The method wonPosition
should return a true value if the input position is won for the
indicated player. By convention, I use a Boolean true value to represent
the computer and a Boolean false value to represent the human opponent.
The method positionEvaluation returns a position evaluation for a
specified board position and player. Note that if we call
positionEvaluation switching the player for the same board position,
then the value returned is the negative of the value calculated for the
opposing player. The method possibleMoves returns an array of objects
belonging to the class Position. In an actual game like chess, the
position objects will actually belong to a chess-specific refinement of
the Position class (e.g., for the chess program developed later in this
chapter, the method possibleMoves will return an array of
ChessPosition objects). The method makeMove will return a new
position object for a specified board position, side to move, and move.
The method reachedMaxDepth returns a Boolean true value if the search
process has reached a satisfactory depth. For the tic-tac-toe program,
the method reachedMaxDepth does not return true unless either side has
won the game or the board is full; for the chess program, the method
reachedMaxDepth returns true if the search has reached a depth of 4
half moves deep (this is not the best strategy, but it has the advantage
of making the example program short and easy to understand). The method
getMove returns an object of a class derived from the class Move
(e.g., TicTacToeMove or ChessMove).

The GameSearch class implements the following methods to perform game
search:

1 protected Vector alphaBeta(int depth, Position p,
2 boolean player)
3 protected Vector alphaBetaHelper(int depth,
4 Position p,
5 boolean player,
6 float alpha,
7 float beta)
8 public void playGame(Position startingPosition,
9 boolean humanPlayFirst)

The method alphaBeta is simple; it calls the helper method
alphaBetaHelper with initial search conditions; the method
alphaBetaHelper then calls itself recursively. The code for
alphaBeta is:

1 protected Vector alphaBeta(int depth,
2 Position p,
3 boolean player) {
4 Vector v = alphaBetaHelper(depth, p, player,
5 1000000.0f,
6 -1000000.0f);
7 return v;
8 }

It is important to understand what is in the vector returned by the
methods alphaBeta and alphaBetaHelper. The first element is a
floating point position evaluation for the point of view of the player
whose turn it is to move; the remaining values are the “best move” for
each side to the last search depth. As an example, if I let the
tic-tac-toe program play first, it places a marker at square index 0,
then I place my marker in the center of the board an index 4. At this
point, to calculate the next computer move, alphaBeta is called and
returns the following elements in a vector:

1 next element: 0.0
2 next element: [-1,0,0,0,1,0,0,0,0,]
3 next element: [-1,1,0,0,1,0,0,0,0,]
4 next element: [-1,1,0,0,1,0,0,-1,0,]
5 next element: [-1,1,0,1,1,0,0,-1,0,]
6 next element: [-1,1,0,1,1,-1,0,-1,0,]
7 next element: [-1,1,1,1,1,-1,0,-1,0,]
8 next element: [-1,1,1,1,1,-1,-1,-1,0,]
9 next element: [-1,1,1,1,1,-1,-1,-1,1,]

Here, the alpha-beta enhanced min-max search looked all the way to the
end of the game and these board positions represent what the search
procedure calculated as the best moves for each side. Note that the
class TicTacToePosition (derived from the abstract class Position)
has a toString method to print the board values to a string.

The same printout of the returned vector from alphaBeta for the chess
program is:

 1 next element: 5.4
 2 next element:
 3 [4,2,3,5,9,3,2,4,7,7,1,1,1,0,1,1,1,1,7,7,
 4 0,0,0,0,0,0,0,0,7,7,0,0,0,1,0,0,0,0,7,7,
 5 0,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,0,0,0,7,7,
 6 -1,-1,-1,-1,0,-1,-1,-1,7,7,-4,-2,-3,-5,-9,
 7 -3,-2,-4,]
 8 next element:
 9 [4,2,3,0,9,3,2,4,7,7,1,1,1,5,1,1,1,1,7,7,
10 0,0,0,0,0,0,0,0,7,7,0,0,0,1,0,0,0,0,7,7,
11 0,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,0,0,0,7,7,
12 -1,-1,-1,-1,0,-1,-1,-1,7,7,-4,-2,-3,-5,-9,
13 -3,-2,-4,]
14 next element:
15 [4,2,3,0,9,3,2,4,7,7,1,1,1,5,1,1,1,1,7,7,
16 0,0,0,0,0,0,0,0,7,7,0,0,0,1,0,0,0,0,7,7,
17 0,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,-5,0,0,7,7,
18 -1,-1,-1,-1,0,-1,-1,-1,7,7,-4,-2,-3,0,-9,
19 -3,-2,-4,]
20 next element:
21 [4,2,3,0,9,3,0,4,7,7,1,1,1,5,1,1,1,1,7,7,
22 0,0,0,0,0,2,0,0,7,7,0,0,0,1,0,0,0,0,7,7,
23 0,0,0,,0,0,0,0,0,7,7,0,0,0,0,-1,-5,0,0,7,7,
24 -1,-1,-1,-1,0,-1,-1,-1,7,7,-4,-2,-3,0,-9,
25 -3,-2,-4,]
26 next element:
27 [4,2,3,0,9,3,0,4,7,7,1,1,1,5,1,1,1,1,7,7,
28 0,0,0,0,0,2,0,0,7,7,0,0,0,1,0,0,0,0,7,7,
29 -1,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,-5,0,0,7,7,
30 0,-1,-1,-1,0,-1,-1,-1,7,7,-4,-2,-3,0,-9,
31 -3,-2,-4,]

Here, the search procedure assigned the side to move (the computer) a
position evaluation score of 5.4; this is an artifact of searching to a
fixed depth. Notice that the board representation is different for
chess, but because the GameSearch class manipulates objects derived
from the classes Position and Move, the GameSearch class does not
need to have any knowledge of the rules for a specific game. We will
discuss the format of the chess position class ChessPosition in more
detail when we develop the chess program.

The classes Move and Position contain no data and methods at all. The
classes Move and Position are used as placeholders for derived classes
for specific games. The search methods in the abstract GameSearch class
manipulate objects derived from the classes Move and Position.

Now that we have seen the debug printout of the contents of the vector
returned from the methods alphaBeta and alphaBetaHelper, it will be
easier to understand how the method alphaBetaHelper works. The
following text shows code fragments from the alphaBetaHelper method
interspersed with book text:

1 protected Vector alphaBetaHelper(int depth,
2 Position p,
3 boolean player,
4 float alpha,
5 float beta) {

Here, we notice that the method signature is the same as for
alphaBeta, except that we pass floating point alpha and beta values.
The important point in understanding min-max search is that most of the
evaluation work is done while “backing up” the search tree; that is, the
search proceeds to a leaf node (a node is a leaf if the method
reachedMaxDepth return a Boolean true value), and then a return vector
for the leaf node is created by making a new vector and setting its
first element to the position evaluation of the position at the leaf
node and setting the second element of the return vector to the board
position at the leaf node:

1 if (reachedMaxDepth(p, depth)) {
2 Vector v = new Vector(2);
3 float value = positionEvaluation(p, player);
4 v.addElement(new Float(value));
5 v.addElement(p);
6 return v;
7 }

If we have not reached the maximum search depth (i.e., we are not yet at
a leaf node in the search tree), then we enumerate all possible moves
from the current position using the method possibleMoves and
recursively call alphaBetaHelper for each new generated board
position. In terms of the figure showing possible moves for tic-tac-toe, at this point
we are moving down to another search level (e.g., from level 1 to level
2; the level in the figure showing possible moves for tic-tac-toe corresponds to depth
argument in alphaBetaHelper):

 1 Vector best = new Vector();
 2 Position [] moves = possibleMoves(p, player);
 3 for (int i=0; i<moves.length; i++) {
 4 Vector v2 = alphaBetaHelper(depth + 1, moves[i],
 5 !player,
 6 -beta, -alpha);
 7 float value = -((Float)v2.elementAt(0)).floatValue();
 8 if (value > beta) {
 9 if(GameSearch.DEBUG)
10 System.out.println(" ! ! ! value="+
11 value+
12 ",beta="+beta);
13 beta = value;
14 best = new Vector();
15 best.addElement(moves[i]);
16 Enumeration enum = v2.elements();
17 enum.nextElement(); // skip previous value
18 while (enum.hasMoreElements()) {
19 Object o = enum.nextElement();
20 if (o != null) best.addElement(o);
21 }
22 }
23 /**
24 * Use the alpha-beta cutoff test to abort
25 * search if we found a move that proves that
26 * the previous move in the move chain was dubious
27 */
28 if (beta >= alpha) {
29 break;
30 }
31 }

Notice that when we recursively call alphaBetaHelper, we are
“flipping” the player argument to the opposite Boolean value. After
calculating the best move at this depth (or level), we add it to the end
of the return vector:

1 Vector v3 = new Vector();
2 v3.addElement(new Float(beta));
3 Enumeration enum = best.elements();
4 while (enum.hasMoreElements()) {
5 v3.addElement(enum.nextElement());
6 }
7 return v3;

When the recursive calls back up and the first call to alphaBetaHelper
returns a vector to the method alphaBeta, all of the “best” moves for
each side are stored in the return vector, along with the evaluation of
the board position for the side to move.

The class GameSearch method playGame is fairly simple; the following
code fragment is a partial listing of playGame showing how to call
alphaBeta, getMove, and makeMove:

 1 public void playGame(Position startingPosition,
 2 boolean humanPlayFirst) {
 3 System.out.println("Your move:");
 4 Move move = getMove();
 5 startingPosition = makeMove(startingPosition,
 6 HUMAN, move);
 7 printPosition(startingPosition);
 8 Vector v = alphaBeta(0, startingPosition, PROGRAM);
 9 startingPosition = (Position)v.elementAt(1);
10 }
11 }

The debug printout of the vector returned from the method alphaBeta
seen earlier in this section was printed using the following code
immediately after the call to the method alphaBeta:

1 Enumeration enum = v.elements();
2 while (enum.hasMoreElements()) {
3 System.out.println(" next element: " +
4 enum.nextElement());
5 }

In the next few sections, we will implement a tic-tac-toe program and a
chess-playing program using this Java class framework.

Tic-Tac-Toe Using the Alpha-Beta Search Algorithm

Using the Java class framework of GameSearch, Position, and Move,
it is simple to write a basic tic-tac-toe program by writing three new
derived classes (as seen in the next figure showing a UML Class Diagram)
TicTacToe (derived from GameSearch), TicTacToeMove (derived from
Move), and TicTacToePosition (derived from Position).

 [image: UML Diagram for Tic-Tac-Toe Classes]
 UML Diagram for Tic-Tac-Toe Classes

I assume that the reader has the book example code installed and
available for viewing. In this section, I will only discuss the most
interesting details of the tic-tac-toe class refinements; I assume that
the reader can look at the source code. We will start by looking at the
refinements for the position and move classes. The TicTacToeMove class
is trivial, adding a single integer value to record the square index for
the new move:

1 public class TicTacToeMove extends Move {
2 public int moveIndex;
3 }

The board position indices are in the range of [0..8] and can be
considered to be in the following order:

1 0 1 2
2 3 4 5
3 6 7 8

The class TicTacToePosition is also simple:

 1 public class TicTacToePosition extends Position {
 2 final static public int BLANK = 0;
 3 final static public int HUMAN = 1;
 4 final static public int PROGRAM = -1;
 5 int [] board = new int[9];
 6 public String toString() {
 7 StringBuffer sb = new StringBuffer("[");
 8 for (int i=0; i<9; i++)
 9 sb.append(""+board[i]+",");
10 sb.append("]");
11 return sb.toString();
12 }
13 }

This class allocates an array of nine integers to represent the board,
defines constant values for blank, human, and computer squares, and
defines a toString method to print out the board representation to a
string.

The TicTacToe class must define the following abstract methods from
the base class GameSearch:

 1 public abstract boolean drawnPosition(Position p)
 2 public abstract boolean wonPosition(Position p,
 3 boolean player)
 4 public abstract float positionEvaluation(Position p,
 5 boolean player)
 6 public abstract void printPosition(Position p)
 7 public abstract Position [] possibleMoves(Position p,
 8 boolean player)
 9 public abstract Position makeMove(Position p,
10 boolean player,
11 Move move)
12 public abstract boolean reachedMaxDepth(Position p,
13 int depth)
14 public abstract Move getMove()

The implementation of these methods uses the refined classes
TicTacToeMove and TicTacToePosition. For example, consider the
method drawnPosition that is responsible for selecting a drawn (or
tied) position:

 1 public boolean drawnPosition(Position p) {
 2 boolean ret = true;
 3 TicTacToePosition pos = (TicTacToePosition)p;
 4 for (int i=0; i<9; i++) {
 5 if (pos.board[i] == TicTacToePosition.BLANK){
 6 ret = false;
 7 break;
 8 }
 9 }
10 return ret;
11 }

The overridden methods from the GameSearch base class must always cast
arguments of type Position and Move to TicTacToePosition and
TicTacToeMove. Note that in the method drawnPosition, the argument
of class Position is cast to the class TicTacToePosition. A position
is considered to be a draw if all of the squares are full. We will see
that checks for a won position are always made before checks for a drawn
position, so that the method drawnPosition does not need to make a
redundant check for a won position. The method wonPosition is also
simple; it uses a private helper method winCheck to test for all
possible winning patterns in tic-tac-toe. The method
positionEvaluation uses the following board features to assign a
fitness value from the point of view of either player:

 	The number of blank squares on the board

 	If the position is won by either side

 	If the center square is taken

The method positionEvaluation is simple, and is a good place for the
interested reader to start modifying both the tic-tac-toe and chess
programs:

 1 public float positionEvaluation(Position p,
 2 boolean player) {
 3 int count = 0;
 4 TicTacToePosition pos = (TicTacToePosition)p;
 5 for (int i=0; i<9; i++) {
 6 if (pos.board[i] == 0) count++;
 7 }
 8 count = 10 - count;
 9 // prefer the center square:
10 float base = 1.0f;
11 if (pos.board[4] == TicTacToePosition.HUMAN &&
12 player) {
13 base += 0.4f;
14 }
15 if (pos.board[4] == TicTacToePosition.PROGRAM &&
16 !player) {
17 base -= 0.4f;
18 }
19 float ret = (base - 1.0f);
20 if (wonPosition(p, player)) {
21 return base + (1.0f / count);
22 }
23 if (wonPosition(p, !player)) {
24 return -(base + (1.0f / count));
25 }
26 return ret;
27 }

The only other method that we will look at here is possibleMoves; the
interested reader can look at the implementation of the other (very
simple) methods in the source code. The method possibleMoves is called
with a current position, and the side to move (i.e., program or human):

 1 public Position [] possibleMoves(Position p,
 2 boolean player) {
 3 TicTacToePosition pos = (TicTacToePosition)p;
 4 int count = 0;
 5 for (int i=0; i<9; i++) {
 6 if (pos.board[i] == 0) count++;
 7 }
 8 if (count == 0) return null;
 9 Position [] ret = new Position[count];
10 count = 0;
11 for (int i=0; i<9; i++) {
12 if (pos.board[i] == 0) {
13 TicTacToePosition pos2 =
14 new TicTacToePosition();
15 for (int j=0; j<9; j++)
16 pos2.board[j] = pos.board[j];
17 if (player) pos2.board[i] = 1;
18 else pos2.board[i] = -1;
19 ret[count++] = pos2;
20 }
21 }
22 return ret;
23 }

It is very simple to generate possible moves: every blank square is a
legal move. (This method will not be as straightforward in the example
chess program!)

It is simple to compile and run the example tic-tac-toe program: change
directory to src-search-game and type:

1 javac *.java
2 java TicTacToe

When asked to enter moves, enter an integer between 0 and 8 for a square
that is currently blank (i.e., has a zero value). The following shows
this labeling of squares on the tic-tac-toe board:

1 0 1 2
2 3 4 5
3 6 7 8

Chess Using the Alpha-Beta Search Algorithm

Using the Java class framework of GameSearch, Position, and Move,
it is reasonably easy to write a simple chess program by writing three
new derived classes (see the figure showing a UML diagram for the chess game casses) Chess
(derived from GameSearch), ChessMove (derived from Move), and
ChessPosition (derived from Position). The chess program developed
in this section is intended to be an easy to understand example of using
alpha-beta min-max search; as such, it ignores several details that a
fully implemented chess program would implement:

 	Allow the computer to play either side (computer always plays black
in this example).

 	Allow en-passant pawn captures.

 	Allow the player to take back a move after making a mistake.

The reader is assumed to have read the last section on implementing the
tic-tac-toe game; details of refining the GameSearch, Move, and Position
classes are not repeated in this section.

The following figure showing a UML diagram for the chess game casses shows the UML class diagram for
both the general purpose GameSearch framework and the classes derived to
implement chess specific data and behavior.

 [image: UML Diagram for Chess Game Classes]
 UML Diagram for Chess Game Classes

The class ChessMove contains data for recording from and to square
indices:

1 public class ChessMove extends Move {
2 public int from;
3 public int to;
4 }

The board is represented as an integer array with 120 elements. A
chessboard only has 64 squares; the remaining board values are set to a
special value of 7, which indicates an “off board” square. The initial
board setup is defined statically in the Chess class and the off-board
squares have a value of “7”:

 1 private static int [] initialBoard = {
 2 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 3 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 4 4, 2, 3, 5, 9, 3, 2, 4, 7, 7, // white pieces
 5 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, // white pawns
 6 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares
 7 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares
 8 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares
 9 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares
10 -1,-1,-1,-1,-1,-1,-1,-1, 7, 7, // black pawns
11 -4,-2,-3,-5,-9,-3,-2,-4, 7, 7, // black pieces
12 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
13 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
14 };

 [image: First example chess board]
 First example chess board

It is difficult to see from this listing of the board square values but
in effect a regular chess board if padded on all sides with two rows and
columns of ``7” values.

We see the start of a sample chess game in the previous figure and
the continuation of this same game in the next figure.The
lookahead is limited to 2 moves (4 ply).

 [image: Second example chess board]
 Second example chess board

The class ChessPosition contains data for this representation and
defines constant values for playing sides and piece types:

 1 public class ChessPosition extends Position {
 2 final static public int BLANK = 0;
 3 final static public int HUMAN = 1;
 4 final static public int PROGRAM = -1;
 5 final static public int PAWN = 1;
 6 final static public int KNIGHT = 2;
 7 final static public int BISHOP = 3;
 8 final static public int ROOK = 4;
 9 final static public int QUEEN = 5;
10 final static public int KING = 6;
11 int [] board = new int[120];
12 public String toString() {
13 StringBuffer sb = new StringBuffer("[");
14 for (int i=22; i<100; i++) {
15 sb.append(""+board[i]+",");
16 }
17 sb.append("]");
18 return sb.toString();
19 }
20 }

The class Chess also defines other static data. The following array is
used to encode the values assigned to each piece type (e.g., pawns are
worth one point, knights and bishops are worth 3 points, etc.):

1 private static int [] value = {
2 0, 1, 3, 3, 5, 9, 0, 0, 0, 12
3 };

The following array is used to codify the possible incremental moves for
pieces:

1 private static int [] pieceMovementTable = {
2 0, -1, 1, 10, -10, 0, -1, 1, 10, -10, -9, -11, 9,
3 11, 0, 8, -8, 12, -12, 19, -19, 21, -21, 0, 10, 20,
4 0, 0, 0, 0, 0, 0, 0, 0
5 };

The starting index into the pieceMovementTable array is calculated by
indexing the following array with the piece type index (e.g., pawns are
piece type 1, knights are piece type 2, bishops are piece type 3, rooks
are piece type 4, etc.:

1 private static int [] index = {
2 0, 12, 15, 10, 1, 6, 0, 0, 0, 6
3 };

When we implement the method possibleMoves for the class Chess, we
will see that except for pawn moves, all other possible piece type moves
are very easy to calculate using this static data. The method
possibleMoves is simple because it uses a private helper method
calcPieceMoves to do the real work. The method possibleMoves
calculates all possible moves for a given board position and side to
move by calling calcPieceMove for each square index that references a
piece for the side to move.

We need to perform similar actions for calculating possible moves and
squares that are controlled by each side. In the first version of the
class Chess that I wrote, I used a single method for calculating both
possible move squares and controlled squares. However, the code was
difficult to read, so I split this initial move generating method out
into three methods:

 	possibleMoves – required because this was an abstract method in
GameSearch. This method calls calcPieceMoves for all squares
containing pieces for the side to move, and collects all possible
moves.

 	calcPieceMoves – responsible to calculating pawn moves and other
piece type moves for a specified square index.

 	setControlData – sets the global array computerControl and
humanControl. This method is similar to a combination of
possibleMoves and calcPieceMoves, but takes into effect “moves” onto
squares that belong to the same side for calculating the effect of
one piece guarding another. This control data is used in the board
position evaluation method positionEvaluation.

We will discuss calcPieceMoves here, and leave it as an exercise to
carefully read the similar method setControlData in the source code.
This method places the calculated piece movement data in static storage
(the array piece_moves) to avoid creating a new Java object whenever
this method is called; method calcPieceMoves returns an integer count
of the number of items placed in the static array piece_moves. The
method calcPieceMoves is called with a position and a square index;
first, the piece type and side are determined for the square index:

 1 private int calcPieceMoves(ChessPosition pos,
 2 int square_index) {
 3 int [] b = pos.board;
 4 int piece = b[square_index];
 5 int piece_type = piece;
 6 if (piece_type < 0) piece_type = -piece_type;
 7 int piece_index = index[piece_type];
 8 int move_index = pieceMovementTable[piece_index];
 9 if (piece < 0) side_index = -1;
10 else side_index = 1;

Then, a switch statement controls move generation for each type of chess
piece (movement generation code is not shown – see the file Chess.java):

 1 switch (piece_type) {
 2 case ChessPosition.PAWN:
 3 break;
 4 case ChessPosition.KNIGHT:
 5 case ChessPosition.BISHOP:
 6 case ChessPosition.ROOK:
 7 case ChessPosition.KING:
 8 case ChessPosition.QUEEN:
 9 break;
10 }

The logic for pawn moves is a little complex but the implementation is
simple. We start by checking for pawn captures of pieces of the opposite
color. Then check for initial pawn moves of two squares forward, and
finally, normal pawn moves of one square forward. Generated possible
moves are placed in the static array piece_moves and a possible move
count is incremented. The move logic for knights, bishops, rooks,
queens, and kings is very simple since it is all table driven. First, we
use the piece type as an index into the static array index; this value
is then used as an index into the static array pieceMovementTable.
There are two loops: an outer loop fetches the next piece movement delta
from the pieceMovementTable array and the inner loop applies the piece
movement delta set in the outer loop until the new square index is off
the board or “runs into” a piece on the same side. Note that for kings
and knights, the inner loop is only executed one time per iteration
through the outer loop:

 1 move_index = piece;
 2 if (move_index < 0) move_index = -move_index;
 3 move_index = index[move_index];
 4 //System.out.println("move_index="+move_index);
 5 next_square =
 6 square_index + pieceMovementTable[move_index];
 7 outer:
 8 while (true) {
 9 inner:
10 while (true) {
11 if (next_square > 99) break inner;
12 if (next_square < 22) break inner;
13 if (b[next_square] == 7) break inner;
14
15 // check for piece on the same side:
16 if (side_index < 0 && b[next_square] < 0)
17 break inner;
18 if (side_index >0 && b[next_square] > 0)
19 break inner;
20
21 piece_moves[count++] = next_square;
22 if (b[next_square] != 0) break inner;
23 if (piece_type == ChessPosition.KNIGHT)
24 break inner;
25 if (piece_type == ChessPosition.KING)
26 break inner;
27 next_square += pieceMovementTable[move_index];
28 }
29 move_index += 1;
30 if (pieceMovementTable[move_index] == 0)
31 break outer;
32 next_square = square_index +
33 pieceMovementTable[move_index];
34 }

The figures show the start of a second example game. The
computer was making too many trivial mistakes in the first game so here
I increased the lookahead to 2 1/2 moves. Now the computer takes one to
two seconds per move and plays a better game. Increasing the lookahead
to 3 full moves yields a better game but then the program can take up to
about ten seconds per move.

 [image: After 1 d4 e6 2 e4 Qh4 Black (the computer) increases the mobility of its pieces by bringing out the queen early but we will see that this soon gets black in trouble.]
 After 1 d4 e6 2 e4 Qh4 Black (the computer) increases the mobility of its pieces by bringing out the queen early but we will see that this soon gets black in trouble.

 [image: After 3 Nc3 Nf6 4 Bd3 Bb4 5 Nf3 Qh5 Black continues to develop pieces and puts pressure on the pawn on E4 but the vulnerable queen makes this a weak position for black.]
 After 3 Nc3 Nf6 4 Bd3 Bb4 5 Nf3 Qh5 Black continues to develop pieces and puts pressure on the pawn on E4 but the vulnerable queen makes this a weak position for black.

The method setControlData is very similar to this method; I leave it
as an exercise to the reader to read through the source code. Method
setControlData differs in also considering moves that protect pieces
of the same color; calculated square control data is stored in the
static arrays computerControl and humanControl. This square control
data is used in the method positionEvaluation that assigns a numerical
rating to a specified chessboard position on either the computer or
human side. The following aspects of a chessboard position are used for
the evaluation:

 	material count (pawns count 1 point, knights and bishops 3 points,
etc.)

 	count of which squares are controlled by each side

 	extra credit for control of the center of the board

 	credit for attacked enemy pieces

Notice that the evaluation is calculated initially assuming the
computer’s side to move. If the position if evaluated from the human
player’s perspective, the evaluation value is multiplied by minus one.
The implementation of positionEvaluation is:

 1 public float positionEvaluation(Position p,
 2 boolean player) {
 3 ChessPosition pos = (ChessPosition)p;
 4 int [] b = pos.board;
 5 float ret = 0.0f;
 6 // adjust for material:
 7 for (int i=22; i<100; i++) {
 8 if (b[i] != 0 && b[i] != 7) ret += b[i];
 9 }
10
11 // adjust for positional advantages:
12 setControlData(pos);
13 int control = 0;
14 for (int i=22; i<100; i++) {
15 control += humanControl[i];
16 control -= computerControl[i];
17 }
18 // Count center squares extra:
19 control += humanControl[55] - computerControl[55];
20 control += humanControl[56] - computerControl[56];
21 control += humanControl[65] - computerControl[65];
22 control += humanControl[66] - computerControl[66];
23
24 control /= 10.0f;
25 ret += control;
26
27 // credit for attacked pieces:
28 for (int i=22; i<100; i++) {
29 if (b[i] == 0 || b[i] == 7) continue;
30 if (b[i] < 0) {
31 if (humanControl[i] > computerControl[i]) {
32 ret += 0.9f * value[-b[i]];
33 }
34 }
35 if (b[i] > 0) {
36 if (humanControl[i] < computerControl[i]) {
37 ret -= 0.9f * value[b[i]];
38 }
39 }
40 }
41 // adjust if computer side to move:
42 if (!player) ret = -ret;
43 return ret;
44 }

It is simple to compile and run the example chess program by changing
directory to src-search-game and typing:

1 javac *.java
2 java Chess

When asked to enter moves, enter string like “d2d4” to enter a move in
chess algebraic notation. Here is sample output from the program:

 1 Board position:
 2
 3 BR BN BB . BK BB BN BR
 4 BP BP BP BP . BP BP BP
 5 . . BP BQ .
 6
 7 . WP . .
 8 . . . WN .
 9 WP WP WP . WP WP WP WP
10 WR WN WB WQ WK WB . WR
11 Your move:
12 c2c4

The example chess program plays in general good moves, but its play
could be greatly enhanced with an “opening book” of common chess opening
move sequences. If you run the example chess program, depending on the
speed of your computer and your Java runtime system, the program takes a
while to move (about 5 seconds per move on my PC). Where is the time
spent in the chess program? The following table shows the
total runtime (i.e., time for a method and recursively all called
methods) and method-only time for the most time consuming methods.
Methods that show zero percent method only time used less than 0.1
percent of the time so they print as zero values.

 1 Class.method name % of total runtime % in this method
 2 ---------------------------- ------------------------ ----------------
 3 Chess.main 97.7 0.0
 4 GameSearch.playGame 96.5 0.0
 5 GameSearch.alphaBeta 82.6 0.0
 6 GameSearch.alphaBetaHelper 82.6 0.0
 7 Chess.positionEvaluate 42.9 13.9
 8 Chess.setControlData 29.1 29.1
 9 Chess.possibleMoves 23.2 11.3
10 Chess.calcPossibleMoves 1.7 0.8
11 Chess.calcPieceMoves 1.7 0.8

The interested reader is encouraged to choose a simple two-player game,
and using the game search class framework, implement your own
game-playing program.

Reasoning

Reasoning is a broad topic. In this chapter we will concentrate on the
use of the PowerLoom descriptive logic reasoning system. PowerLoom is
available with a Java runtime and Java API – this is what I will use for
the examples in this chapter. PowerLoom can also be used with JRuby.
PowerLoom is available in Common Lisp and C++ versions.

Additionally, we will look briefly at different kinds of reasoning
systems in Chapter on Semantic Web on the Semantic Web.

While the material in this chapter will get you started with development
using a powerful reasoning system and embedding this reasoning system in
Java applications, you will likely want to dig deeper and I suggest
sources for further study at the end of this chapter.

PowerLoom is a newer version of the classic Loom Descriptive Logic
reasoning system written at ISI. The required JAR files for PowerLoom
are included in the ZIP file for this book but at some point you will
probably want to download the entire PowerLoom distribution to get more
examples and access to documentation; the PowerLoom web site can be
found at http://www.isi.edu/isd/LOOM/PowerLoom/.

While we will look at an example of embedding the PowerLoom runtime and
a PowerLoom model in a Java example program, I want to make a general
comment on PowerLoom development: you will spend most of your time
interactively running PowerLoom in an interactive shell that lets you
type in concepts, relations, rules, and queries and immediately see the
results. If you have ever programmed in Lisp, then this mode of
interactive programming will be familiar to you. As seen in Figure
[fig:reasoning~overview] after interactive development you can deploy
in a Java application. This style of development supports entering facts
and trying rules and relations interactively and as you get things
working you can paste what works into a PowerLoom source file. If you
have only worked with compiled langauges like Java and C++ this
development style may take a while to get used to and appreciate. As
seen in Figure [fig:reasoning~overview] the PowerLoom runtime system,
with relations and rules, can be embedded in Java applications that
typically clear PowerLoom data memory, assert facts from other live data
sources, and then use PowerLoom for inferencing.

 [image: Reasoning Overview]
 Reasoning Overview

Logic

We will look at different types of logic and reasoning systems in this
section and then get into PowerLoom specific examples in Section
[powerloom-overview]. Logic is the basis for both Knowledge
Representation and for reasoning about knowledge. We will encode
knowledge using logic and see that we can then infer new facts that are
not explicitly asserted.

First Order Logic was invented by the philosophers Frege and Peirce and
is the most widely studied logic system. Unfortunately, full First Order
Logic is not computationally tractable for most non-trivial problems so
we use more restricted logics. We will use two reasoning systems in this
book that support more limited logics:

 	We use PowerLoom in this chapter. PowerLoom supports a combination
of limited first order predicate logic and features of description
logic. PowerLoom is able to classify objects, use rules to infer
facts from existing facts and to perform subsumption (determining
class membership of instances).

 	We will use RDF Schema (RDFS) reasoning in
Chapter on Semantic Web. RDFS supports more limited reasoning than
descriptive logic reasoners like PowerLoom and OWL Description Logic
reasoners.

History of Logic

The Greek philosopher Aristotle studied forms of logic as part of his
desire to improve the representation of knowledge. He started a study of
logic and the definition of both terms (e.g., subjects, predicates,
nouns, verbs) and types of logical deduction. Much later the philosopher
Frege defined predicate logic (for example: All birds have feathers.
Brady is a bird, therefore Brady has feathers) that forms the basis for
the modern Prolog programming language.

Examples of Different Logic Types

Propositional logic is limited to atomic statements that can be either
true or false:

1 Brady-is-a-bird
2 Brady-has-feathers

First Order Predicate Logic allows access to the structure of logic
statements dealing with predicates that operate on atoms. To use a
Prolog notation:

1 feathers(X) :- bird(X).
2 bird(brady).

Here “feathers” and “bird” are predicates and “brady” is an atom. The
first example states that for all X, if X is a bird, then X has
feathers. In the second example we state that Brady is a bird. Notice
that in the Prolog notation that we are using, variables are capitalized
and predicate names and literal atoms are lower case.

Here is a query that asks who has feathers:

1 ?- feathers(X).
2 X = brady

In this example through inference we have determined a new fact, that
Brady has feathers because we know that Brady is a bird and we have the
rule (or predicate) stating that all birds have feathers. Prolog is not
strictly a pure logic programming language since the order in which
rules (predicates) are defined changes the inference results. Prolog is
a great language for some types of projects (I have used Prolog in both
natural language processing and in planning projects). We will see that
PowerLoom is considerably more flexible than Prolog but does have a
steep learning curve.

Description Logic deals with descriptions of concepts and how these
descriptions define the domain of concepts. In terms used in object
oriented programming languages: membership in a class is determined
implicitly by the description of the object and not by explicitly
stating something like “Brady is a member of the bird class.”
Description logics divide statements into relations (historically
refered to as TBox) and concepts (historically called ABox). We would
say that a statement like “All birds have feathers” is stored in the
TBox while a specific assertion like “Brady is a bird” is stored in the
ABox.

PowerLoom Overview

PowerLoom is designed to be an expressive language for knowledge
representation and reasoning. As a result, PowerLoom is not a complete
reasoning system but makes tradeoffs for completeness of inferences and
expressivity vs. computational efficiency. It is interesting to note
that Loom and PowerLoom were designed and implemented to solve real
world problems and the tradeoffs to make these problems computationally
tractable have informed the design and implementation of these systems.
PowerLoom does not make all posible inferences from concepts that it
operates on.

The PowerLoom distribution contains two very detailed examples for
representing relationships between companies and for information dealing
with airplanes. These examples are more detailed than the simpler
example of data from news stories used in this chapter. We will look one
of these examples (business rules and relations) and after working
through this chapter, I encourage you to interactively experiment with
the two examples that ship with PowerLoom.

We will start by defining some terms used in PowerLoom:

 	concept – the Java equivalent would be an instance of a class

 	relation – specifies a link between two concepts

 	function – functional mapping of one concept to another

 	rule – allows new concepts to be deduced without explicitly
asserting them

A relation can specify the types of concepts that a relation connects.
An example will make this clear and introduce the Lisp-like syntax of
PowerLoom statements:

1 ;;; Concepts:
2 (defconcept person)
3 (defconcept parent (?p person))
4
5 ;;; Relation:
6 (defrelation parent-of ((?p1 parent) (?p2 person)))

Here I have defined two concepts: person and parent. Note that we have a
hierarchy of concept types here: the parent is a more specific concept
type than the person concept. All instances that are parents are also of
type person. The relation parent-of links a parent concept to a person
concept.

We will learn more about basic PowerLoom functionality in the next two
sections as we use PowerLoom in an interactive session and when we embed
PowerLoom in a Java example program.

Running PowerLoom Interactively

We will experiment with PowerLoom concepts, relations, and rules in this
section in an interactive command shell. I will introduce more examples
of PowerLoom functionality for asserting instances of concepts,
performing queries, loading PowerLoom source files, defining relations,
using separate modules, and asking PowerLoom to explain the inference
process that it used for query processing.

You can run PowerLoom using the command line interface by changing
directory to the lib subdirectory from the ZIP file for this book and
trying:

1 java -cp powerloom.jar:stella.jar \\
2 edu.isi.powerloom.PowerLoom

This starts the PowerLoom standalone system and prints a prompt that
includes the name of the current module. The default module name is
“PL-USER”. In the first example, when I enter the person concept at the
interactive prompt then PowerLoom prints the result of the expression
that just entered.

 1 PL-USER |= (defconcept person)
 2 |c|PERSON
 3 PL-USER |= (defconcept parent (?p person))
 4 |c|PARENT
 5 PL-USER |= (defrelation parent-of
 6 ((?p1 parent) (?p2 person)))
 7 |r|PARENT-OF
 8 PL-USER |= (assert (person Ken))
 9 |P|(PERSON KEN)
10 PL-USER |= (assert (person Mark))
11 |P|(PERSON MARK)
12 PL-USER |= (assert (parent-of Ken Mark))
13 |P|(PARENT-OF KEN MARK)

Now that we have entered two concepts, a test relation, and asserted a
few facts, we can look at an example of PowerLoom’s query language:

1 PL-USER |= (retrieve all ?p (person ?p))
2 There are 2 solutions:
3 #1: ?P=MARK
4 #2: ?P=KEN
5 PL-USER |= (retrieve all ?p (parent ?p))
6 There is 1 solution:
7 #1: ?P=KEN
8 PL-USER |=

The obvious point to note from this example is that we never specified
that Ken was a parent; rather, PowerLoom deduced this from the parent-of
relation.

PowerLoom’s command line system prompts you with the string ``PL-USER
|=`` and you can type any definition or query. Like Lisp, PowerLoom
uses a prefix notation and expressions are contained in parenthesis.
PowerLoom supports a module system for partitioning concepts, relations,
functions, and rules into different sets and as previously mentioned
“PL-USER” is the default module. PowerLoom modules can form a hierarchy,
inheriting concepts, relations, and rules from parent modules.

The subdirectory test_data contains the demo file business.plm written
by Robert MacGregor that is supplied with the full PowerLoom
distribution. You can load his complete example using:

1 PL-USER |= (load "../test_data/business.plm")

This is a good example because it demonstrates most of the available
functionality of PowerLoom in a short 200 lines. When you are done
reading this chapter, please take a few minutes to read through this
example file since I do not list it here. There are a few things to
notice in this example. Here we see a rule used to make the relation
“contains” transitive:

1 (defrelation contains (
2 (?l1 geographic-location)
3 (?l2 geographic-location)))
4
5 (defrule transitive-contains
6 (=> (and (contains ?l1 ?l2)
7 (contains ?l2 ?l3))
8 (contains ?l1 ?l3)))

The operator => means that if the first clause is true then so is the
second. In English, this rule could be stated ``if an instance i1
contains i2 and if instance i2 contains i3 then we can infer that i1
also contains i3.” To see how this rule works in practice, we can switch
to the example module “BUSINESS” and find all locations contained inside
another location:

 1 PL-USER |= (in-module "BUSINESS")
 2 BUSINESS |= (retrieve all
 3 (?location1 ?location2)
 4 (contains ?location1 ?location2))
 5 There are 15 solutions:
 6 #1: ?LOCATION1=SOUTHERN-US, ?LOCATION2=TEXAS
 7 #2: ?LOCATION1=TEXAS, ?LOCATION2=AUSTIN
 8 #3: ?LOCATION1=TEXAS, ?LOCATION2=DALLAS
 9 #4: ?LOCATION1=UNITED-STATES, ?LOCATION2=SOUTHERN-US
10 #5: ?LOCATION1=GEORGIA, ?LOCATION2=ATLANTA
11 #6: ?LOCATION1=EASTERN-US, ?LOCATION2=GEORGIA
12 #7: ?LOCATION1=UNITED-STATES, ?LOCATION2=EASTERN-US
13 #8: ?LOCATION1=SOUTHERN-US, ?LOCATION2=DALLAS
14 #9: ?LOCATION1=SOUTHERN-US, ?LOCATION2=AUSTIN
15 #10: ?LOCATION1=UNITED-STATES, ?LOCATION2=DALLAS
16 #11: ?LOCATION1=UNITED-STATES, ?LOCATION2=TEXAS
17 #12: ?LOCATION1=UNITED-STATES, ?LOCATION2=AUSTIN
18 #13: ?LOCATION1=EASTERN-US, ?LOCATION2=ATLANTA
19 #14: ?LOCATION1=UNITED-STATES, ?LOCATION2=GEORGIA
20 #15: ?LOCATION1=UNITED-STATES, ?LOCATION2=ATLANTA
21 BUSINESS |=

Here we have fifteen solutions even though there are only seven
“contains” relations asserted in the business.plm file – the other eight
solutions were inferred. In addition to the “retrieve” function that
finds solutions matching a query you can also use the “ask” function to
determine if a specified relation is true; for example:

1 BUSINESS |= (ask (contains UNITED-STATES DALLAS))
2 TRUE
3 BUSINESS |=

For complex queries you can use the “why” function to see how PowerLoom
solved the last query:

 1 BUSINESS |= (ask (contains southern-us dallas))
 2 TRUE
 3 BUSINESS |= (why)
 4 1 (CONTAINS ?location1 ?location2)
 5 follows by Modus Ponens
 6 with substitution {?l1/SOUTHERN-US, ?l3/DALLAS,
 7 ?l2/TEXAS}
 8 since 1.1 ! (FORALL (?l1 ?l3)
 9 (<= (CONTAINS ?l1 ?l3)
10 (EXISTS (?l2)
11 (AND (CONTAINS ?l1 ?l2)
12 (CONTAINS ?l2 ?l3)))))
13 and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
14 and 1.3 ! (CONTAINS TEXAS DALLAS)
15 BUSINESS |=

By default the explanation facility is turned off because it causes
PowerLoom to run more slowly; it was turned on in the file business.plm
using the statement:

1 (set-feature justifications)

Using the PowerLoom APIs in Java Programs

Once you interactively develop concepts, rules and relations then it is
likely that you may want to use them with PowerLoom in an embedded mode,
making PowerLoom a part of your application. I will get you started with
a few Java example programs. The source code for this chapter is in the
subdirectory src-powerloom-reasoning.

If you download the PowerLoom manual (a PDF file) from the PowerLoom web
site, you will have the complete Java API documentation for the Java
version of PowerLoom (there are also C++ and Common Lisp versions with
separate documentation). I have found that I usually use just a small
subset of the Java PowerLoom APIs and I have “wrapped” this subset in a
wrapper class in the file PowerLoomUtils.java. We will use my wrapper
class for the examples in the rest of this chapter.

My wrapper class has the follow public methods:

 	PowerLoomUtils() – constructor initializes the Java PowerLoom
runtime system.

 	load(String fpath) – load a source *.plm file.

 	changeModule(String workingModule) – set the current PowerLoom
working module (“PL-USER” is the default module).

 	assertProposition(String proposition) – asserts a new proposition;
for example: “(and (company c3) (company-name c3 \“Moms
Grocery\”))”. Note that quotation marks are escaped with a
backslash character. You can also use single quote characters like:
“(and (company c3) (company-name c3 ’Moms Grocery’))” because I
convert single quotes in my wrapper code.

 	createRelation(String relation, int arity) – create a new relation
with a specified arity (number of “arguments”). For example you
could create a relation “owns” with arity 2 and then assert “(owns
Elaine ’Moms Grocery’)” – I usually do not use this API since I
prefer to place relations (with rules) in a source code file ending
in the extention *.plm.

 	doQuery(String query) – returns a list of results from a query. Each
result in the list is itself a list.

You will always want to work in an interactive PowerLoom console for
writing and debugging PowerLoom models. I built the model in test.plm
(in the subdirectory test_data) interactively and we will use it here
in an embedded Java example:

 1 PowerLoomUtils plu = new PowerLoomUtils();
 2 plu.load("test_data/test.plm");
 3 plu.changeModule("BUSINESS");
 4 plu.assertProposition(
 5 "(and (company c1)" +
 6 " (company-name c1 \"Moms Grocery\"))");
 7 plu.assertProposition(
 8 "(and (company c2)" +
 9 " (company-name c2 \"IBM\"))");
10 plu.assertProposition(
11 "(and (company c3)" +
12 " (company-name c3 \"Apple\"))");
13 List answers = plu.doQuery("all ?x (company ?x)");
14 System.out.println(answers);
15 // answers: [[C3], [C2], [C1]]
16 answers = plu.doQuery(
17 "all (?x ?name)" +
18 " (and" +
19 " (company ?x)" +
20 " (company-name ?x ?name))");
21 System.out.println(answers);
22 // answers:
23 // [[C3, "Apple"],
24 // [C2, "IBM"],
25 // [C1, "Moms Grocery"]]
26 plu.createRelation("CEO", 2);
27 plu.assertProposition(
28 "(CEO \"Apple\" \"SteveJobs\")");
29 answers = plu.doQuery(
30 "all (?x ?name ?ceo)" +
31 " (and" +
32 " (company-name ?x ?name)" +
33 " (CEO ?name ?ceo))");
34 System.out.println(answers);
35 // answers: [[C3, "Apple", "SteveJobs"]]

I have added the program output produced by printing the value of the
list variable “answers” as comments after each System.out.println call.
In the wrapper API calls that take a string argument, I broke long
strings over several lines for formatting to the width of a page; you
would not do this in your own programs because of the cost of the extra
string concatenation.

We will not look at the implementation of the PowerLoomUtils class –
you can read the code if you are interested. That said, I will make a
few commments on the Java PowerLoom APIs. The class PLI contains
static methods for initializing the system, loading PowerLoom source
files. Here are a few examples:

1 PLI.initialize();
2 PLI.load("test.plm", null);
3 PLI.sChangeModule("BUSINESS", null);

Suggestions for Further Study

This chapter has provided a brief introduction to PowerLoom, one of my
favorite AI tools. I also showed you how to go about embedding the
PowerLoom knowledge representation and reasoning systems in your Java
programs. Assuming that you see benefit to further study I recommend
reading through the PowerLoom manual and the presentations (PDF files)
on the PowerLoom web site. As you read through this material it is best
to have an interactive PowerLoom session open to try the examples as you
read them.

Knowledge Representation and Logic are huge subjects and I will close
out this chapter by recommending a few books that have been the most
helpful to me:

 	
Knowledge Representation by John Sowa. This has always been my
favorite reference for knowledge representation, logic, and
ontologies.

 	
Artificial Intelligence, A Modern Approach by Stuart Russell and
Peter Norvig. A very good theoretical treatment of logic and
knowledge representation.

 	
The Art of Prolog by Leon Sterling and Ehud Shapiro. Prolog
implements a form of predicate logic that is less expressive than
the descriptive logics supported by PowerLoom and
OWL (Chapter on Semantic Web). That said, Prolog is very efficient and
fairly easy to learn and so is sometimes a better choice. This book
is one of my favorite general Prolog references.

The Prolog language is a powerful AI development tool. Both the open
source SWI-Prolog and the commercial Amzi Prolog systems have good Java
interfaces. I don’t cover Prolog in this book but there are several very
good tutorials on the web if you decide to experiment with Prolog.

We will continue Chapter on Semantic Web with our study of
logic-based reasoning systems in the context of the Semantic Web.

Semantic Web

The Semantic Web is intended to provide a massive linked set of data for
use by software systems just as the World Wide Web provides a massive
collection of linked web pages for human reading and browsing. The
Semantic Web is like the web in that anyone can generate any content
that they want. This freedom to publish anything works for the web
because we use our ability to understand natural language to interpret
what we read – and often to dismiss material that based upon our own
knowledge we consider to be incorrect.

The core concept for the Semantic Web is data integration and use from
different sources. As we will soon see, the tools for implementing the
Semantic Web are designed for encoding data and sharing data from many
different sources.

I cover the semantic web in this book because I believe that semantic web technologies are complementary to AI systems for gathering and processing data on the web. As more web web pages are generated by applications (as opposed to simply showing static HTML files) it becomes easier to produce both HTML for human readers and semantic data for software agents.

There are several very good Semantic Web toolkits for the Java language
and platform. I will use Sesame because it is what I often use in my own
work and I believe that it is a good starting technology for your first
experiments with Semantic Web technologies. This chapter provides an
incomplete coverage of Semantic Web technologies and is intended merely
as a gentle introduction to a few useful techniques and how to implement
those techniques in Java. The Jena library is also widely used.

Figure [fig:semantic-web-data-models] shows a layered set of data models that
are used to implement Semantic Web applications. To design and implement
these applications we need to think in terms of physical models (storage
and access of RDF, RDFS, and perhaps OWL data), logical models (how we
use RDF and RDFS to define relationships between data represented as
unique URIs and string literals and how we logically combine data from
different sources) and conceptual modeling (higher level knowledge
representation using OWL).

 [image: Semantic Web Data Models]
 Semantic Web Data Models

I wrote a separate book Practical Semantic Web
Programming in Java that goes into much more detail on the use of
Sesame, Jena, Protege, OwlApis, RDF/RDFS/OWL modeling, and Descriptive
Logic Reasoners. This chapter is meant to get you interested in this
technology but is not intended as a detailed guide. You can get a free PDF of Practical Semantic Web Programming in Java on my web site. There is also a version for the Common Lisp language that is also available as a free PDF file.

Relational Database Model Has Problems Dealing with Rapidly Changing Data Requirements

When people are first introduced to Semantic Web technologies their
first reaction is often something like, “I can just do that with a
database.” The relational database model is an efficient way to express
and work with slowly changing data models. There are some clever tools
for dealing with data change requirements in the database world
(ActiveRecord and migrations being a good example) but it is awkward to
have end users and even developers tagging on new data attributes to
relational database tables.

This same limitation also applies to object oriented programming and
object modeling. Even with dynamic languages that facilitate modifying
classes at runtime, the options for adding attributes to existing models
is just too limiting. The same argument can be made against the use of
XML constrained by conformance to either DTDs or XML Schemas. It is true
that RDF and RDFS can be serialized to XML using many pre-existing XML
namespaces for different knowledge sources and their schemas but it
turns out that this is done in a way that does not reduce the
flexibility for extending data models. XML storage is really only a
serialization of RDF and many developers who are just starting to use
Semantic Web technologies initially get confused trying to read XML
serialization of RDF – almost like trying to read a PDF file with a
plain text editor and something to be avoided.

A major goal for the rest of this chapter is convincing you that
modeling data with RDF and RDFS facilitates freely extending data models
and also allows fairly easy integration of data from different sources
using different schemas without explicitly converting data from one
schema to another for reuse.

RDF: The Universal Data Format

The Resource Description Framework (RDF) is used to encode information
and the RDF Schema (RDFS) facilitates using data with different RDF
encodings without the need to convert data formats.

RDF data was originally encoded as XML and intended for automated
processing. In this chapter we will use two simple to read formats
called “N-Triples” and “N3.” Sesame can be used to convert between all
RDF formats so we might as well use formats that are easier to read and
understand. RDF data consists of a set of triple values:

 	subject

 	predicate

 	object

Some of my work with Semantic Web technologies deals with processing
news stories, extracting semantic information from the text, and storing
it in RDF. I will use this application domain for the examples in this
chapter. I deal with triples like:

 	subject: a URL (or URI) of a news article

 	predicate: a relation like “containsPerson”

 	object: a value like “Bill Clinton”

As previously mentioned, we will use either URIs or string literals as
values for subjects and objects. We will always use URIs for the values
of predicates. In any case URIs are usually preferred to string literals
because they are unique. We will see an example of this preferred use
but first we need to learn the N-Triple and N3 RDF formats.

In Section [sec:rdms-problems] I proposed the idea that RDF was more
flexible than Object Modeling in programming languages, relational
databases, and XML with schemas. If we can tag new attributes on the fly
to existing data, how do we prevent what I might call “data chaos” as we
modify existing data sources? It turns out that the solution to this
problem is also the solution for encoding real semantics (or meaning)
with data: we usually use unique URIs for RDF subjects, predicates, and
objects, and usually with a preference for not using string literals. I
will try to make this idea more clear with some examples.

Any part of a triple (subject, predicate, or object) is either a URI or
a string literal. URIs encode namespaces. For example, the
containsPerson predicate in the last example could properly be written
as:

1 http://knowledgebooks.com/ontology/#containsPerson

The first part of this URI is considered to be the namespace for (what
we will use as a predicate) “containsPerson.” When different RDF triples
use this same predicate, this is some assurance to us that all users of
this predicate subscribe to the same meaning. Furthermore, we will see
in Section on RDFS that we can use RDFS to state equivalency between
this predicate (in the namespace http://knowledgebooks.com/ontology/)
with predicates represented by different URIs used in other data
sources. In an “artificial intelligence” sense, software that we write
does not understand a predicate like “containsPerson” in the way that a
human reader can by combining understood common meanings for the words
“contains” and “person” but for many interesting and useful types of
applications that is fine as long as the predicate is used consistently.
We will see shortly that we can define abbreviation prefixes for
namespaces which makes RDF and RDFS files shorter and easier to read.

A statement in N-Triple format consists of three URIs (or string
literals – any combination) followed by a period to end the statement.
While statements are often written one per line in a source file they
can be broken across lines; it is the ending period which marks the end
of a statement. The standard file extension for N-Triple format files is
*.nt and the standard format for N3 format files is *.n3.

My preference is to use N-Triple format files as output from programs
that I write to save data as RDF. I often use Sesame to convert N-Triple
files to N3 if I will be reading them or even hand editing them. You
will see why I prefer the N3 format when we look at an example:

1 @prefix kb: <http://knowledgebooks.com/ontology#> .
2 <http://news.com/201234 /> kb:containsCountry "China" .

Here we see the use of an abbreviation prefix “kb:” for the namespace
for my company KnowledgeBooks.com ontologies. The first term in the RDF
statement (the subject) is the URI of a news article. The second term
(the predicate) is “containsCountry” in the “kb:” namespace. The last
item in the statement (the object) is a string literal “China.” I would
describe this RDF statement in English as, “The news article at URI
http://news.com/201234 mentions the country China.”

This was a very simple N3 example which we will expand to show
additional features of the N3 notation. As another example, suppose that
this news article also mentions the USA. Instead of adding a whole new
statement like this:

1 @prefix kb: <http://knowledgebooks.com/ontology#> .
2 <http://news.com/201234 /> kb:containsCountry "China" .
3 <http://news.com/201234 /> kb:containsCountry "USA" .

we can combine them using N3 notation. N3 allows us to collapse multiple
RDF statements that share the same subject and optionally the same
predicate:

1 @prefix kb: <http://knowledgebooks.com/ontology#> .
2 <http://news.com/201234 /> kb:containsCountry "China" ,
3 "USA" .

We can also add in additional predicates that use the same subject:

 1 @prefix kb: <http://knowledgebooks.com/ontology#> .
 2
 3 <http://news.com/201234 /> kb:containsCountry "China" ,
 4 "USA" .
 5 kb:containsOrganization "United Nations" ;
 6 kb:containsPerson "Ban Ki-moon" , "Gordon Brown" ,
 7 "Hu Jintao" , "George W. Bush" ,
 8 "Pervez Musharraf" ,
 9 "Vladimir Putin" ,
10 "Mahmoud Ahmadinejad" .

This single N3 statement represents ten individual RDF triples. Each
section defining triples with the same subject and predicate have
objects separated by commas and ending with a period. Please note that
whatever RDF storage system we use (we will be using Sesame) it makes no
difference if we load RDF as XML, N-Triple, of N3 format files:
internally subject, predicate, and object triples are stored in the same
way and are used in the same way.

I promised you that the data in RDF data stores was easy to extend. As
an example, let us assume that we have written software that is able to
read online news articles and create RDF data that captures some of the
semantics in the articles. If we extend our program to also recognize
dates when the articles are published, we can simply reprocess articles
and for each article add a triple to our RDF data store using a form
like:

1 <http://news.com/201234 /> kb:datePublished
2 "2008-05-11" .

Furthermore, if we do not have dates for all news articles that is often
acceptable depending on the application.

Extending RDF with RDF Schema

RDFS supports the definition of classes and properties based on set
inclusion. In RDFS classes and properties are orthogonal. We will not
simply be using properties to define data attributes for classes – this
is different than object modeling and object oriented programming
languages like Java. RDFS is encoded as RDF – the same syntax.

Because the Semantic Web is intended to be processed automatically by
software systems it is encoded as RDF. There is a problem that must be
solved in implementing and using the Semantic Web: everyone who
publishes Semantic Web data is free to create their own RDF schemas for
storing data; for example, there is usually no single standard RDF
schema definition for topics like news stories and stock market data.
Understanding the difficulty of integrating different data sources in
different formats helps to understand the design decisions behind the
Semantic Web.

We will start with an example that is an extension of the example in the
last section that also uses RDFS. We add a few additional RDF statements
(that are RDFS):

1 @prefix kb: <http://knowledgebooks.com/ontology#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3
4 kb:containsCity rdfs:subPropertyOf kb:containsPlace .
5 kb:containsCountry rdfs:subPropertyOf kb:containsPlace .
6 kb:containsState rdfs:subPropertyOf kb:containsPlace .

The last three lines declare that:

 	The property containsCity is a subproperty of containsPlace.

 	The property containsCountry is a subproperty of containsPlace.

 	The property containsState is a subproperty of containsPlace.

Why is this useful? For at least two reasons:

 	You can query an RDF data store for all triples that use property
containsPlace and also match triples with property equal to
containsCity, containsCountry, or containsState. There may not even
be any triples that explicitly use the property containsPlace.

 	Consider a hypothetical case where you are using two different RDF
data stores that use different properties for naming cities:
“cityName” and “city.” You can define “cityName” to be a subproperty
of “city” and then write all queries against the single property
name “city.” This removes the necessity to convert data from
different sources to use the same Schema.

In addition to providing a vocabulary for describing properties and
class membership by properties, RDFS is also used for logical inference
to infer new triples, combine data from different RDF data sources, and
to allow effective querying of RDF data stores. We will see examples of
all of these features of RDFS when we start using the Sesame libraries
in the next section to perform SPARQL queries.

The SPARQL Query Language

SPARQL is a query language used to query RDF data stores. While SPARQL
may initially look like SQL, we will see that there are some important
differences like support for RDFS and OWL inferencing (see Section
[section:owl]) and graph-based instead of relational matching
operations. We will cover the basics of SPARQL in this section and then
see more examples in Section [section:sesame] when we learn how to embed
Sesame in Java applications.

We will use the N3 format RDF file test_data/news.n3 for the examples
in this section and in Section [section:sesame]. This file was created
automatically by spidering Reuters news stories on the news.yahoo.com
web site and automatically extracting named entities from the text of
the articles. We will see techniques for extracting named entities from
text in the Chapter on Statistical Natural Language Processing and
Chapter on Information Gathering. In this chapter we use these sample
RDF files that I have created as input from another source.

You have already seen snippets of this file in Section [section:rdfs]
and I list the entire file here for reference (edited to fit line width:
you may find the file news.n3 easier to read if you are at your computer
and open the file in a text editor so you will not be limited to what
fits on a book page):

 1 @prefix kb: <http://knowledgebooks.com/ontology#> .
 2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 3
 4 kb:containsCity rdfs:subPropertyOf kb:containsPlace .
 5
 6 kb:containsCountry rdfs:subPropertyOf kb:containsPlace .
 7
 8 kb:containsState rdfs:subPropertyOf kb:containsPlace .
 9
10 <http://yahoo.com/20080616/usa_flooding_dc_16 />
11 kb:containsCity "Burlington" , "Denver" ,
12 "St. Paul" ," Chicago" ,
13 "Quincy" , "CHICAGO" ,
14 "Iowa City" ;
15 kb:containsRegion "U.S. Midwest" , "Midwest" ;
16 kb:containsCountry "United States" , "Japan" ;
17 kb:containsState "Minnesota" , "Illinois" ,
18 "Mississippi" , "Iowa" ;
19 kb:containsOrganization "National Guard" ,
20 "U.S. Department of Agriculture" ,
21 "White House" ,
22 "Chicago Board of Trade" ,
23 "Department of Transportation" ;
24 kb:containsPerson "Dena Gray-Fisher" ,
25 "Donald Miller" ,
26 "Glenn Hollander" ,
27 "Rich Feltes" ,
28 "George W. Bush" ;
29 kb:containsIndustryTerm "food inflation" , "food" ,
30 "finance ministers" ,
31 "oil" .
32
33 <http://yahoo.com/78325/ts_nm/usa_politics_dc_2 />
34 kb:containsCity "Washington" , "Baghdad" ,
35 "Arlington" , "Flint" ;
36 kb:containsCountry "United States" ,
37 "Afghanistan" ,
38 "Iraq" ;
39 kb:containsState "Illinois" , "Virginia" ,
40 "Arizona" , "Michigan" ;
41 kb:containsOrganization "White House" ,
42 "Obama administration" ,
43 "Iraqi government" ;
44 kb:containsPerson "David Petraeus" ,
45 "John McCain" ,
46 "Hoshiyar Zebari" ,
47 "Barack Obama" ,
48 "George W. Bush" ,
49 "Carly Fiorina" ;
50 kb:containsIndustryTerm "oil prices" .
51
52 <http://yahoo.com/10944/ts_nm/worldleaders_dc_1 />
53 kb:containsCity "WASHINGTON" ;
54 kb:containsCountry "United States" , "Pakistan" ,
55 "Islamic Republic of Iran" ;
56 kb:containsState "Maryland" ;
57 kb:containsOrganization "University of Maryland" ,
58 "United Nations" ;
59 kb:containsPerson "Ban Ki-moon" , "Gordon Brown" ,
60 "Hu Jintao" , "George W. Bush" ,
61 "Pervez Musharraf" ,
62 "Vladimir Putin" ,
63 "Steven Kull" ,
64 "Mahmoud Ahmadinejad" .
65
66 <http://yahoo.com/10622/global_economy_dc_4 />
67 kb:containsCity "Sao Paulo" , "Kuala Lumpur" ;
68 kb:containsRegion "Midwest" ;
69 kb:containsCountry "United States" , "Britain" ,
70 "Saudi Arabia" , "Spain" ,
71 "Italy" , India" ,
72 ""France" , "Canada" ,
73 "Russia" , "Germany" , "China" ,
74 "Japan" , "South Korea" ;
75 kb:containsOrganization "Federal Reserve Bank" ,
76 "European Union" ,
77 "European Central Bank" ,
78 "European Commission" ;
79 kb:containsPerson "Lee Myung-bak" , "Rajat Nag" ,
80 "Luiz Inacio Lula da Silva" ,
81 "Jeffrey Lacker" ;
82 kb:containsCompany "Development Bank Managing" ,
83 "Reuters" ,
84 "Richmond Federal Reserve Bank" ;
85 kb:containsIndustryTerm "central bank" , "food" ,
86 "energy costs" ,
87 "finance ministers" ,
88 "crude oil prices" ,
89 "oil prices" ,
90 "oil shock" ,
91 "food prices" ,
92 "Finance ministers" ,
93 "Oil prices" , "oil" .

In the following examples, we will look at queries but not the results.
Please be patient: these same queries are used in the embedded Java
examples in the next section so it makes sense to only list the query
return values in one place. Besides that, you will enjoy running the
example programs yourself and experiment with modifying the queries.

We will start with a simple SPARQL query for subjects (news article
URLs) and objects (matching countries) with the value for the predicate
equal to $containsCountry$:

1 SELECT ?subject ?object
2 WHERE {
3 ?subject
4 http://knowledgebooks.com/ontology#containsCountry>
5 ?object .
6 }

Variables in queries start with a question mark character and can have
any names. We can make this query easier and reduce the chance of
misspelling errors by using a namespace prefix:

1 PREFIX kb: <http://knowledgebooks.com/ontology#>
2 SELECT ?subject ?object
3 WHERE {
4 ?subject kb:containsCountry ?object .
5 }

We could have filtered on any other predicate, for instance
$containsPlace$. Here is another example using a match against a string
literal to find all articles exactly matching the text “Maryland.” The
following queries were copied from Java source files and were embedded
as string literals so you will see quotation marks backslash escaped in
these examples. If you were entering these queries into a query form you
would not escape the quotation marks.

1 PREFIX kb: <http://knowledgebooks.com/ontology#>
2 SELECT ?subject
3 WHERE { ?subject kb:containsState \"Maryland\" . }

We can also match partial string literals against regular expressions:

1 PREFIX kb:
2 SELECT ?subject ?object
3 WHERE {
4 ?subject
5 kb:containsOrganization
6 ?object FILTER regex(?object, \"University\") .
7 }

Prior to this last example query we only requested that the query return
values for subject and predicate for triples that matched the query.
However, we might want to return all triples whose subject (in this case
a news article URI) is in one of the matched triples. Note that there
are two matching triples, each terminated with a period:

 1 PREFIX kb: <http://knowledgebooks.com/ontology#>
 2 SELECT ?subject ?a_predicate ?an_object
 3 WHERE {
 4 ?subject
 5 kb:containsOrganization
 6 ?object FILTER regex(?object, \"University\") .
 7
 8 ?subject ?a_predicate ?an_object .
 9 }
10 DISTINCT
11 ORDER BY ?a_predicate ?an_object
12 LIMIT 10
13 OFFSET 5

When WHERE clauses contain more than one triple pattern to match, this
is equivalent to a Boolean “and” operation. The DISTINCT clause removes
duplicate results. The ORDER BY clause sorts the output in alphabetical
order: in this case first by predicate (containsCity, containsCountry,
etc.) and then by object. The LIMIT modifier limits the number of
results returned and the OFFSET modifier sets the number of matching
results to skip.

We are finished with our quick tutorial on using the SELECT query form.
There are three other query forms that I am not covering in this
chapter:

 	CONSTRUCT – returns a new RDF graph of query results

 	ASK – returns Boolean true or false indicating if a query matches
any triples

 	DESCRIBE – returns a new RDF graph containing matched resources

Using Sesame

Sesame is a complete Java library for developing RDF/RDFS applications
and we will use it in this chapter. Currently Sesame’s support for OWL
(see Section [section:owl]) is limited. Other Java libraries I have used
that more fully support OWL are Jena, OWLAPI, and the Protege library.

Figure [fig:SPARQL-util-UML] shows a UML diagram for the wrapper
classes and interface that I wrote for Sesame to make it easier for you
to get started. My wrapper uses an in-memory RDF repository that
supports inference, loading RDF/RDFS/OWL files, and performing queries.
If you decide to use Semantic Web technologies in your development you
will eventually want to use the full Sesame APIs for programatically
creating new RDF triples, finer control of the type of repository
(options are in-memory, disk based, and database) and inferencing, and
programatically using query results. That said, using my wrapper library
is a good place for you to start to start experimenting.

The class constructor $TripleStoreSesameManager$ opens a new in-memory
RDF triple store. I will not cover the internal implementation of the
classes and interface seen in Figure [fig:SPARQL-util-UML] but you can
read the source code in the subdirectory src-semantic-web.

 [image: UML Class Diagram for Sesame Wrapper Classes]
 UML Class Diagram for Sesame Wrapper Classes

We will look in some detail at an example program that uses Sesame and
my wrapper library for Sesame. The source code for this example is in
the file ExampleSparqlQueries.java. This example class implements the
$ISparqlProcessResults$ interface:

1 public class ExampleSparqlQueries
2 implements ISparqlProcessResults {

and does this by defining the method:

1 public void processResult(List<String> data) {
2 System.out.print("next result: ");
3 for (String s : data)
4 System.out.print("|"+s+"|" + "\t ");
5 System.out.println(" . ");
6 }

that simply prints out the subject, predicate, and object of each
matched triple. The class $TripleStoreSesameManager$ method

1 public String doSparqlQuery(String sparql_query,
2 ISparqlProcessResults
3 handler) {

calls a defined $processResult$ method once for each triple that matches
a query. The $ExampleSparqlQueries$ class makes several SPARQL queries
and prints the results. These queries are the example queries from the
last section. Here is an example query with the program output:

1 TripleStoreSesameManager ts =
2 new TripleStoreSesameManager();
3 ts.loadRDF("test_data/news.n3");
4 sparql_query =
5 "PREFIX kb: <http://knowledgebooks.com/ontology#>" +
6 "SELECT ?subject "+
7 "WHERE { ?subject kb:containsState \"Maryland\" . }";
8 ts.doSparqlQuery(sparql_query, this);

Here is the single line of output (Sesame debug printout is not shown
and the long line is split into two lines to fit the page width):

1 next result: |http://news.yahoo.com/s/nm/ \\
2 20080616/ts_nm/worldleaders_trust_dc_1 /|

Other queries in the last section return two or three values per result;
this example only returns the subject (article URL). You can run the
text program implemented in the class $ExampleSparqlQueries$ to see all
of the query results for the examples in the last section.

There is a lot more to RDFS than what I have covered so far in this
chapter but I believe you have a sufficient introduction in order to use
the example programs to experiment with using RDF and RDFS to define
data and use Sesame in an imbedded mode in your java applications.

OWL: The Web Ontology Language

We have already seen a few examples of using RDFS to define
sub-properties in the this chapter. The Web Ontology Language (OWL)
extends the expressive power of RDFS. We will not cover OWL programming
examples in this book but this section will provide some background
material. Sesame version 2.1 included in the ZIP file for this book does
not support OWL DL reasoning “out of the box.” When I need to use OWL DL
reasoning in Java applications I use one or more of the following:

 	ProtegeOwlApis – compatible with the Protege Ontology editor

 	Pellet – DL reasoner

 	Owlim – OWL DL reasoner compatible with some versions of Sesame

 	Jena – General purpose library

 	OWLAPI – a simpler API using many other libraries

 	Stardog - a commercial OWL and RDF reasoning system and datastore

 	Allegrograph - a commercial RDF+ and RDF reasoning system and datastore

OWL is more expressive than RDFS in that it supports cardinality, richer
class relationships, and Descriptive Logic (DL) reasoning. OWL treats
the idea of classes very differently than object oriented programming
languages like Java and Smalltalk, but similar to the way PowerLoom
(see Chapter on Reasoning) uses concepts (PowerLoom’s rough
equivalent to a class). In OWL instances of a class are referred to as
individuals and class membership is determined by a set of properties
that allow a DL reasoner to infer class membership of an individual
(this is called entailment.)

We saw an example of expressing transitive relationships when we were
using PowerLoom in Section [section:running~p~owerloom] where we defined
a PowerLoom rule to express that the relation “contains” is transitive.
We will now look at a similar example using OWL.

We have been using the RDF file news.n3 in previous examples and we will
layer new examples by adding new triples that represent RDF, RDFS, and
OWL. We saw in news.n3 the definition of three triples using
rdfs:subPropertyOf properties to create a more general kb:containsPlace
property:

1 kb:containsCity rdfs:subPropertyOf kb:containsPlace .
2 kb:containsCountry rdfs:subPropertyOf kb:containsPlace .
3 kb:containsState rdfs:subPropertyOf kb:containsPlace .
4
5 kb:containsPlace rdf:type owl:transitiveProperty .
6
7 kbplace:UnitedStates kb:containsState kbplace:Illinois .
8 kbplace:Illinois kb:containsCity kbplace:Chicago .

We can also infer that:

1 kbplace:UnitedStates kb:containsPlace kbplace:Chicago .

We can also model inverse properties in OWL. For example, here we add an
inverse property kb:containedIn, adding it to the example in the last
listing:

1 kb:containedIn owl:inverseOf kb:containsPlace .

Given an RDF container that supported extended OWL DL SPARQL queries, we
can now execute SPARQL queries matching the property kb:containedIn and
“match” triples in the RDF triple store that have never been asserted.

OWL DL is a very large subject and OWL is an even larger subject. From
reading Chapter [chapter:reasoning] and the very light coverage of OWL
in this section, you should understand the concept of class membership
not by explicitly stating that an object (or individual) is a member of
a class, but rather because an individual has properties that can be
used to infer class membership.

The World Wide Web Consortium has defined three versions of the OWL
language that are in increasing order of complexity: OWL Lite, OWL DL,
and OWL Full. OWL DL (supports Description Logic) is the most widely
used (and recommended) version of OWL. OWL Full is not computationally
decidable since it supports full logic, multiple class inheritance, and
other things that probably make it computationally intractable for all
but small problems.

Knowledge Representation and REST

A theme in this book is representing knowledge using logic, expert
system rules, relational databases (supporting at the physical model
level conceptual models like entity relation), and in flexible data
models like RDF and RDFS (supporting higher level conceptual models in
OWL).

I want to make some comments about the REST architectural style and how
it is complementary to distributed knowledge representation on the web.
The REST model implies that resource providers have some internal model
for the storage and maintenance of data but use a possibly different
representation of their internal data model to transfer their internal
data to clients.

I would argue that RDF is often a good representation for resource
providers to use for transferring data in their internal data formats to
REST clients because of its flexibility in describing both data and
relations between data. RDF is inherently a rich notation because RDFS
and OWL are themselves expressed as RDF data.

I expect that conventional data sources like relational databases and
conventional data-rich web sites will benefit from publishing REST style
interfaces using RDF as the external representation of data. We are
already seeing interesting and useful projects that utilize a data
source to publish data as RDF embedded as RDFa (an XHTML notation for
embedding RDF in XHTML web pages) and I see this as a growth area for
publishing information resources that are useful for both humans and
software agents.

Material for Further Study

Writing Semantic Web applications in Java is a very large topic, worthy
of an entire book. I have covered in this chapter what for my work have
been the most useful Semantic Web techniques: storing and querying RDF
and RDFS for a specific application. We will see in the
Chapter on Information Gathering some useful techniques for gathering
semantic information from the web. Specifically, in Section
[section:open~c~alais] I briefly talk about entering semantic data from
the Open Calais system into a Sesame RDF repository.

I have already mentioned several Java libraries that support OWL
Descriptive Logic reasoning in Section [section:owl]. When the
expressive power of RDF and RDFS become insufficient for your
application you will then need to use a library supporting the OWL
language and OWL Description Logic reasoning. The combination of RDF and
RDFS is sufficient for many applications and using this simpler
technology is the right way to get started developing semantic web
applications. Because RDF and RDFS (with very few OWL features, commonly
referred to as RDFS-Plus) are easier to implement and have a smaller
learning curve, I believe that the adoption of OWL DL will be slow.

I concentrated on using Sesame in an embedded mode in Java applications
in this chapter but another common use is as an RDF repository web
service. In either case, the basic ideas of converting data to RDF,
storing RDF, and allowing SPARQL queries are the same.

Expert Systems

We will be using the Drools Java expert system language and libraries in
this chapter. Earlier editions of this book used the Jess expert system
tool but due to the new more restrictive Jess licensing terms I decided
to switch to Drools because it is released under the Apache 2.0 license.
The primary web site for Drools is www.jboss.org/drools where you can
download the source code and documentation. Both Jess and Drools are
forward chaining inference engines that use the Rete algorithm and are
derived from Charles Forgy’s OPS5 language. One thing to keep in mind
whenever you are building a system based on the Rete algorithm is that
Rete scales very well to large numbers of rules but scales at O(N2)
where N is the number of facts in the system. I have a long history with OPS5,
porting it to Xerox Lisp Machines (1982) and the Apple Macintosh (1984)
as well as building custom versions supporting multiple “worlds” of data
and rule spaces. One thing that I would like to make clear: Drools is
the only technology that I am covering in this book that I have not used
professionally. That said, I spent some effort getting up to speed on
Drools as a replacement for Jess on future projects.

While there is some interest in using packages like Drools for “business
rules” to capture business process knowledge, often as embedded
components in large systems, expert systems have historically been built
to approach human level expertise for very specific tasks like
configuring computer systems and medical diagnosis. The examples in this
chapter are very simple and are intended to show you how to embed Drools
in your Java applications and to show you a few tricks for using forward
chaining rule-based systems. Drools is a Domain Specific Language (DSL)
that attempts to provide a syntax that is easier to use than a general
purpose programming language.

I do not usually recommend Java IDEs (a personal choice!) but if you
already use Eclipse then I suggest that you use the Drools plugins for
Eclipse (the “Eclipse Drools Workbench”) which help setting up projects
and understand the Drools rule language syntax.

The Eclipse Drools Workbench can automatically generate a small demo
which I will go over in some detail in the next two sections. I then
design and implement two simple example rule systems for solving block
world type problems and for answering help desk questions.

The material in this chapter exclusively covers forward chaining
production systems (also called “expert systems”). Forward chaining
systems start with a set of known facts, and apply rules to work towards
solving one or more goals. An alternative approach, often used in Prolog
programs, is to use backward chaining. Backward chaining systems start
with a final goal and attempt to work backwards towards currently known
facts.

 [image: Expert Systems Overview]
 Expert Systems Overview

The phrase, expert systems, was almost synonymous with artificial
intelligence in the early and mid 1980s. The application of expert
system techniques to real problems, like configuring DEC VAX
minicomputers, medical diagnosis, and evaluating seismic data for
planning oil exploration had everyone very excited. Unfortunately,
expert systems were over hyped and there was an eventual backlash that
affected the entire field of AI. Still, the knowledge of how to write
expert systems is a useful skill. This chapter contains a tutorial for
using the Drools system and also shows how to use machine learning to
help generate rules when training data is available.

As seen in the Figure on Expertsystems Overview, Drools development is
interactive: you will work in an environment where you can quickly add
and change rules and re-run test cases. This interactive style of
development is similar to using PowerLoom as we saw in the Chapter on Reasoning.

Production Systems

I like to refer to expert systems by a more precise name: production
systems. Productions are rules for transforming state. For example,
given the three production rules:

1 a => b
2 b => c
3 c => d

then if a production system is initialized with the state a, the state d
can be derived by applying these three production rules in order. The
form of these production rules is:

1 <left-hand side> => <right-hand side>

or:

1 LHS => RHS

Like the PowerLoom reasoning system used in Chapter on Reasoning,
much of the power of a rule-based system comes from the ability to use
variables so that the left-hand side (LHS) patterns can match a variety
of known facts (called working memory in Drools). The values of these
variables set in the LHS matching process are substituted for the
variables on the right-hand side (RHS) patterns.

Production rule systems are much less expressive than Description Logic
style reasoners like PowerLoom. The benefits of production rule systems
is that they should have better runtime efficiency and are easier to use
– a smaller learning curve. Good advice is to use production systems
when they are adequate, and if not, use a more expressive knowledge
representation and reasoning system like PowerLoom.

The Drools Rules Language

The basic syntax (leaving out optional components) of a Drools rule is:

1 rule "a name for the rule"
2 when
3 LHS
4 then
5 RHS
6 end

What might sample LHS and RHS statements look like? There are plugins for
both the IntelliJ and Eclipse Java IDEs for working with Drools. We will use the
Eclipse plugin in this chapter. Drools rules
reference POJOs (“Plain Old Java Objects”) in both the LHS matching
expressions and RHS actions. If you use the Eclipse Drools Workbench and
create a new demo project, the Workbench will automatically create for
you:

 	Sample.drl – a sample rule file.

 	com.sample.DroolsTest.java – defines: a simple Java POJO class
Message that is used in the Sample.drl rule file, a utility method
for loading rules, and a main method that loads rules and creates an
instance of the Message class that “fires” the first rule in
Sample.drl.

Even if you decide not to use the Eclipse Drools Workbench, I include
these two auto-generated files in the ZIP file for this book and we will
use these files to introduce both the syntax of rues and using rules and
Drools in Java applications in the next section.

Here is the Sample.drl file:

 1 package com.sample
 2
 3 import com.sample.DroolsTest.Message;
 4
 5 rule "Hello World"
 6 when
 7 m : Message(status == Message.HELLO,
 8 message : message)
 9 then
10 System.out.println(message);
11 m.setMessage("Goodbye cruel world");
12 m.setStatus(Message.GOODBYE);
13 update(m);
14 end
15
16 rule "GoodBye"
17 no-loop true
18 when
19 m : Message(status == Message.GOODBYE,
20 message : message)
21 then
22 System.out.println(message);
23 m.setMessage(message);
24 end

This example rule file defines which Java package it has visibility in;
we will see in the next section that the Java code that defines the POJO
Message class and code that uses these rules will be in the same Java
package. This class has private data (with public accessor methods using
Java Bean protocol) for attributes “status” and “message.”

Another thing that might surprise you in this example is the direct
calls to the static Java method System.out.println: this is a hint
that Drools will end up compiling these rules into Java byte code. When
Drools sees a reference to the class Message, since there are no Java
import statements in this example rule file, the class Message must be
in the package com.sample.

On the LHS of both rules, any instance of class Message that matches
and thus allows the rule to “fire” sets a reference to the matched
object to the local variable m that can then be used on the RHS of the
rule. In the first rule, the attribute message is also stored in a
local variable (perhaps confusingly) also called message. Note that
the public attribute accessor methods like setMessage are used to
change the state of a matched Message object.

We will see later that the first step in writing a Drools based expert
system is modeling (as Java classes) the data required to represent
problem states. After you have defined these POJO classes you can then
proceed with defining some initial test cases and start writing rules to
handle the test cases. Drools development of non-trivial projects will
involve an iterative process of adding new test cases, writing new rules
or generalizing previously written rules, and making sure that both the
original and newer test cases work.

There is a complete reference description of the Drools rule syntax on
the Drools documentation wiki. The material in this chapter is tutorial
in nature: new features of the rule language and how to use Drools will
be introduced as needed for the examples.

Using Drools in Java Applications

We looked at the sample rules file Sample.drl in the last section which
is generated automatically when creating a demo project with the Eclipse
Drools Workbench. We will use the other generated file DroolsTest.java
as an illustrative example in this section. The file DroolsTest.java is
almost 100 lines long so I will list it in small fragments followed by
an explanation of each code fragment. The first thing to note is that
the Java client code is in the same package as the rules file:

 1 package com.sample;
 2
 3 import java.io.InputStreamReader;
 4 import java.io.Reader;
 5
 6 import org.drools.RuleBase;
 7 import org.drools.RuleBaseFactory;
 8 import org.drools.WorkingMemory;
 9 import org.drools.compiler.PackageBuilder;
10 import org.drools.rule.Package;

This main function is an example showing how to use a rule package
defined in a rule source file. We will see the definition of the utility
method readRule that opens a rule file and returns an instance of
class RuleBase shortly. After creating an instance of RuleBase we
create an instance of the Message class and add it to open memory:

 1 public class DroolsTest {
 2
 3 public static final void main(String[] args) {
 4 try {
 5 RuleBase ruleBase = readRule();
 6 WorkingMemory workingMemory =
 7 ruleBase.newStatefulSession();
 8 Message message = new Message();
 9 message.setMessage("Hello World");
10 message.setStatus(Message.HELLO);
11 workingMemory.insert(message);
12 workingMemory.fireAllRules();
13 } catch (Throwable t) {
14 t.printStackTrace();
15 }
16 }

The main method creates a new rule base and working memory. Working
memory is responsible for maintaining the “facts” in the system – in
this case facts are Plain Old Java Objects (POJOs) that are maintained
in a collection.

An instance of class Message is created and its status is set to the
constant value Message.HELLO. We saw in the last section how the first
example rule has a condition that allows the rule to “fire” if there is
any instance of class Message that has its status attribute set to
this value.

The method fireAllRules will keep identifying rules that are eligible
to fire, choosing a rule from this active set using algorithms we will
discuss later, and then repeating this process until no more rules are
eligible to fire. There are other fireAllRules methods that have
arguments for a maximum number of rules to fire and a filter to allow
only some eligible rules to execute.

 1 /**
 2 * Please note that this is the "low level" rule
 3 * assembly API.
 4 */
 5 private static RuleBase readRule()
 6 throws Exception {
 7 //read in the source
 8 Reader source =
 9 new InputStreamReader(
10 DroolsTest.class.
11 getResourceAsStream("/Sample.drl"));
12
13 // optionally read in the DSL if you are using one:
14 // Reader dsl =
15 // new InputStreamReader(
16 // DroolsTest.class.
17 // getResourceAsStream("/mylang.dsl"));

The method readRule is a utility for reading and compiling a rule file
that was generated automatically by the Eclipse Drools Workbench; in
general your projects will have one or more rules files that you will
load as in this example. In method readRule we opened an input stream
reader on the source code for the example Drools rule file Sample.drl.
Drools has the ability to modify the rule syntax to create Domain
Specific Languages (DSLs) that match your application or business
domain. This can be very useful if you want domain experts to create
rules since they can “use their own language.” We will not cover custom
DSLs in this chapter but the Drools documentation covers this in detail.
Here is the rest of the definition of method readRule:

 1 // Use package builder to build up a rule package:
 2 PackageBuilder builder = new PackageBuilder();
 3
 4 // This will parse and compile in one step:
 5 builder.addPackageFromDrl(source);
 6
 7 // Use the following instead of above if you are
 8 // using a custom DSL:
 9 //builder.addPackageFromDrl(source, dsl);
10
11 // get the compiled package (which is serializable)
12 Package pkg = builder.getPackage();
13
14 // add the package to a rulebase (deploy the
15 // rule package).
16 RuleBase ruleBase = RuleBaseFactory.newRuleBase();
17 ruleBase.addPackage(pkg);
18 return ruleBase;
19 }

The readRule utility method can be copied to new rule projects that
are not created using the Eclipse Drools Workbench and modified as
appropriate to get you started with the Java “boilerplate” required by
Drools. This implementation uses Drools defaults, the most important
being the ``conflict resolution strategy” that defaults to first
checking the most recently modified working memory POJO objects to see
which rules can fire. This produces a depth first search behavior. We
will modify the readRule utility method later in Section
[section:expertsystems-blocks-example] when we will need to change this
default Drools reasoning behavior from depth first to breadth first
search.

We will need a Plain Old Java Object (POJO) class to represent messages
in the example rule set. This demo class was generated by the Eclipse
Drools Workbench:

 1 public static class Message {
 2 public static final int HELLO = 0;
 3 public static final int GOODBYE = 1;
 4
 5 private String message;
 6
 7 private int status;
 8
 9 public String getMessage() {
10 return this.message;
11 }
12
13 public void setMessage(String message) {
14 this.message = message;
15 }
16
17 public int getStatus() {
18 return this.status;
19 }
20
21 public void setStatus(int status) {
22 this.status = status;
23 }
24 }
25 }

You might want to review the example rules using this POJO Message class
in Section on Drools Rules Language. Here is the sample
output from running this example code and rule set:

1 Hello World
2 Goodbye cruel world

A simple example, but it serves to introduce you the Drools rule syntax
and required Java code. This is also a good example to understand
because when you use the Eclipse Drools Workbench to create a new Drools
rule project, it generates this example automatically as a template for
you to modify and re-use.

In the next two sections I will develop two more complicated examples:
solving blocks world problems and supporting a help desk system.

Example Drools Expert System: Blocks World

The example in this section solved simple “blocks world” problems; see
the Figures showing the blocks example: for a very simple example problem.

I like this example because it introduces the topic of “conflict
resolution” and (unfortunately) shows you that even solving simple
problems with rule-based systems can be difficult. Because of the
difficulty of developing and debugging rule-based systems, they are best
for applications that have both high business value and offer an
opportunity to encode business or application knowledge of experts in
rules. So, the example in the next section is a more real-life example
of good application of expert systems, but you will learn valuable
techniques in this example. In the interest of intellectual honesty, I
should say that general blocks world problems like the “Towers of Hanoi”
problem and block world problems as the one in this section are usually
easily solved using breadth-first search techniques.

 [image: Blocks example 1]
 Blocks example 1

The Java source code and Drools rule files for this example are in the
files BlockWorld.drl and DroolsBockWorld.java.

 [image: Blocks example 1]
 Blocks example 1

POJO Object Models for Blocks World Example

We will use the following three POJO classes (defined in the file
DroolsBockWorld.java as static inner classes). The first POJO class
Block represents the state of one block:

 1 public static class Block {
 2 protected String name;
 3 protected String onTopOf;
 4 protected String supporting;
 5
 6 public Block(String name, String onTopOf,
 7 String supporting) {
 8 this.name = name;
 9 this.onTopOf = onTopOf;
10 this.supporting = supporting;
11 }
12 public String toString() {
13 return "[Block_" + this.hashCode() + " " +
14 name + " on top of: " + onTopOf +
15 " supporting: " + supporting+"]";
16 }
17 public String getName() {
18 return this.name;
19 }
20 public void setName(String name) {
21 this.name = name;
22 }
23
24 public String getOnTopOf() {
25 return this.onTopOf;
26 }
27 public void setOnTopOf(String onTopOf) {
28 this.onTopOf = onTopOf;
29 }
30
31 public String getSupporting() {
32 return this.supporting;
33 }
34 public void setSupporting(String supporting) {
35 this.supporting = supporting;
36 }
37 }

The next POJO class OldBlockState is used to represent previous states
of blocks as they are being moved as the rules in this example “fire.”
We will later see rules that will not put a block into a state that it
previously existed in:

 1 public static class OldBlockState extends Block {
 2 public OldBlockState(String name,
 3 String onTopOf,
 4 String supporting) {
 5 super(name, onTopOf, supporting);
 6 }
 7 public String toString() {
 8 return "[OldBlockState_" + this.hashCode() +
 9 " " + name + " on top of: " + onTopOf +
10 " supporting: " + supporting+"]";
11 }
12 }

The next POJO class Goal is used to represent a goal state for the
blocks that we are trying to reach:

 1 public static class Goal {
 2 private String supportingBlock;
 3 private String supportedBlock;
 4 public Goal(String supporting, String supported) {
 5 this.supportingBlock = supporting;
 6 this.supportedBlock = supported;
 7 }
 8 public String toString() {
 9 return "[Goal_" + this.hashCode() +
10 " Goal: supporting block: " +
11 supportingBlock +
12 " and supported block: " +
13 supportedBlock +"]";
14 }
15 public void setSupportingBlock(
16 String supportingBlock) {
17 this.supportingBlock = supportingBlock;
18 }
19 public String getSupportingBlock() {
20 return supportingBlock;
21 }
22 public void setSupportedBlock(
23 String supportedBlock) {
24 this.supportedBlock = supportedBlock;
25 }
26 public String getSupportedBlock() {
27 return supportedBlock;
28 }
29 }

Each block object has three string attributes: a name, the name of the
block that this block is on top of, and the block that this block
supports (is under). We will also define a block instance with the name
“table.”

 [image: Blocks example 1]
 Blocks example 1

We need the POJO class OldBlockState that is a subclass of Block to
avoid cycles in the reasoning process.

 [image: Blocks example 1]
 Blocks example 1

Drools Rules for Blocks World Example

We need four rules for this example and they are listed below with
comments as appropriate:

1 package com.markwatson.examples.drool
2
3 import com.markwatson.examples.drool.DroolsBlockWorld.Goal;
4 import com.markwatson.examples.drool.DroolsBlockWorld.Block;
5 import com.markwatson.examples.drool.DroolsBlockWorld.OldBlockState;

We place the rules in the same Java package as the Java support code
seen in the next section and the POJO model classes that we saw in the
last section.

The first rule has no preconditions so it can always fire. We use the
special rule condition “no-loop true” to let the Drools system know that
we only want this rule to fire one time. This rule inserts facts into
working memory for the simple problem seen in Figures
[fig:expertsystems-blocks-example-1] through [fig:expertsystems-blocks-example~4~]:

 1 rule "Startup Rule"
 2 no-loop true
 3 when
 4 then
 5 //insert(new Goal("C", "B")); // test 1
 6 insert(new Goal("C", "A")); // test 2
 7 // Block(String name, String onTopOf,
 8 // String supporting)
 9 insert(new Block("A", "table", "B"));
10 insert(new Block("B", "A", "C"));
11 insert(new Block("C", "B", ""));
12 insert(new Block("D", "", ""));
13 insert(new Block("table", "", "A"));
14 end

The following rule looks for situations where it is possible to move a
block with a few conditions:

 	Find a block block_1 that is on top of another block and is not
itself supporting any other blocks

 	Find a second block block_2 that is not block_1 and is not
itself supporting any other blocks

 	Find the block on_top_of_1 that is under block_2 and
supporting block_1

 	Make sure that no previous block with the name in the variable
block_2 has already been on top of block on_top_of_2 and
supporting block_1

If these conditions are met, we can remove the three matching facts and
create facts for the new block positions and a new OldBlockState fact
in working memory. Note that the fourth LHS matching pattern is prefixed
with “not” so this matches if there are no objects in working memory
that match this pattern:

 1 rule "Set Block On: move block_1 to block_2"
 2 when
 3 fact1 : Block(block_1 : name,
 4 on_top_of_1 : onTopOf != "",
 5 supporting == "")
 6 fact2 : Block(block_2 : name != block_1,
 7 on_top_of_2 : onTopOf != "",
 8 supporting == "")
 9 fact3 : Block(name == on_top_of_1,
10 on_top_of_3 : onTopOf,
11 supporting == block_1)
12 not OldBlockState(name == block_2,
13 onTopOf == on_top_of_2,
14 supporting == block_1)
15 then
16 System.out.println(fact1);
17 System.out.println(fact2);
18 System.out.println(fact3);
19 retract(fact1);
20 retract(fact2);
21 retract(fact3);
22 insert(new Block(block_1, block_2, ""));
23 insert(new Block(block_2, on_top_of_2,
24 block_1));
25 insert(new OldBlockState(block_2,
26 on_top_of_2, ""));
27 insert(new Block(on_top_of_1,
28 on_top_of_3, ""));
29 System.out.println("Moving " + block_1 +
30 " from " + on_top_of_1 +
31 " to " + block_2);
32 end

The next rule looks for opportunities to remove block_1 from
block_2 if no other block is sitting on top of block_1 (that is,
block_1 is clear):

 1 rule "Clear Block: remove block_1 from block_2"
 2 when
 3 fact1 : Block(block_1 : name != "table",
 4 on_top_of : onTopOf != "table",
 5 supporting == "")
 6 fact2 : Block(block_2 : name,
 7 on_top_of_2 : onTopOf,
 8 supporting == block_1)
 9 then
10 System.out.println(fact1);
11 System.out.println(fact2);
12 retract(fact1);
13 retract(fact2);
14 insert(new Block(block_1, "table", ""));
15 insert(new Block(block_2, on_top_of_2, ""));
16 insert(new Block("table", "", block_1));
17 System.out.println("Clearing: remove " +
18 block_1 + " from " +
19 on_top_of + " to table");
20 end

The next rule checks to see if the current goal is satisfied in which
case it halts the Drools engine:

1 rule "Halt on goal achieved"
2 salience 500
3 when
4 Goal(b1 : supportingBlock, b2 : supportedBlock)
5 Block(name == b1, supporting == b2)
6 then
7 System.out.println("Done!");
8 drools.halt();
9 end

The Java code in the next section can load and run these example rules.

Java Code for Blocks World Example

The example in this section introduces something new: modifying the
default way that Drools chooses which rules to “fire” (execute) when
more than one rule is eligible to fire. This is referred to as the
``conflict resolution strategy” and this phrase dates back to the
original OPS5 production system. Drools by default prefers rules that
are instantiated by data that is newer in working memory. This is
similar to depth first search.

In the “blocks world” example in this section we will need to change the
conflict resolution strategy to process rules in a first-in, first-out
order which is similar to a breadth first search strategy.

First, let us define the problem that we want to solve. Consider labeled
blocks sitting on a table as seen the preceding four figures showing blocks on a table.

The Java code in this section is similar to what we already saw in
the Section on Java Drools tools so we will just look at
the differences here. To start with, in the utility method readRule()
we need to add a few lines of code to configure Drools to use a
breadth-first instead of a depth-first reasoning strategy:

 1 private static RuleBase readRule() throws Exception {
 2 Reader source =
 3 new InputStreamReader(
 4 DroolsBlockWorld.class.getResourceAsStream(
 5 "/BlockWorld.drl"));
 6 PackageBuilder builder = new PackageBuilder();
 7 builder.addPackageFromDrl(source);
 8 Package pkg = builder.getPackage();
 9
10 // Change the default conflict resolution strategy:
11 RuleBaseConfiguration rbc =
12 new RuleBaseConfiguration();
13 rbc.setConflictResolver(new FifoConflictResolver());
14
15 RuleBase ruleBase = RuleBaseFactory.newRuleBase(rbc);
16 ruleBase.addPackage(pkg);
17 return ruleBase;
18 }

The Drools class FifoConflictResolver is not so well named, but a
first-in first-out (FIFO) strategy is like depth first search. The
default conflict resolution strategy favors rules that are eligible to
fire from data that has most recently changed.

Since we have already seen the definition of the Java POJO classes used
in the rules in the Section on example blocks POJOs the only
remaining Java code to look at is in the static main method:

 1 RuleBase ruleBase = readRule();
 2 WorkingMemory workingMemory =
 3 ruleBase.newStatefulSession();
 4 System.out.println("\nInitial Working Memory:\n\n" +
 5 workingMemory.toString());
 6 // Just fire the first setup rule:
 7 workingMemory.fireAllRules(1);
 8 Iterator<FactHandle> iter =
 9 workingMemory.iterateFactHandles();
10 while (iter.hasNext()) {
11 System.out.println(iter.next());
12 }
13 System.out.println("\n\n** Before firing rules...");
14 workingMemory.fireAllRules(20); // limit 20 cycles
15 System.out.println("\n\n** After firing rules.");
16 System.out.println("\nFinal Working Memory:\n" +
17 workingMemory.toString());
18 iter = workingMemory.iterateFactHandles();
19 while (iter.hasNext()) {
20 System.out.println(iter.next());
21 }

For making rule debugging easier I wanted to run the first “start up”
rule to define the initial problem facts in working memory, and then
print working memory. That is why I called
workingMemory.fireAllRules(1) to ask the Drools rule engine to just
fire one rule. In the last example we called
workingMemory.fireAllRules() with no arguments so the rule engine runs
forever as long as there are rules eligible to fire. After printing the
facts in working memory I call the fireAllRules(20) with a limit of 20
rule firings because blocks world problems can fail to terminate (at
least the simple rules that I have written for this example often failed
to terminate when I was debugging this example). Limiting the number of
rule firings is often a good idea. The output from this example with
debug output removed is:

1 Clearing: remove C from B to table
2 Moving B from A to C
3 Clearing: remove B from C to table
4 Moving A from table to C
5 Moving C from table to B
6 Done!

Note that this is not the best solution since it has unnecessary steps.
If you are interested, here is the output with debug printout showing
the facts that enabled each rule to fire:

 1 [Block_11475926 C on top of: B supporting:]
 2 [Block_14268353 B on top of: A supporting: C]
 3 Clearing: remove C from B to table
 4 [Block_3739389 B on top of: A supporting:]
 5 [Block_15146334 C on top of: table supporting:]
 6 [Block_2968039 A on top of: table supporting: B]
 7 Moving B from A to C
 8 [Block_8039617 B on top of: C supporting:]
 9 [Block_14928573 C on top of: table supporting: B]
10 Clearing: remove B from C to table
11 [Block_15379373 A on top of: table supporting:]
12 [OldBlockState_10920899 C on top of: table supporting:]
13 [Block_4482425 table on top of: supporting: A]
14 Moving A from table to C
15 [Block_13646336 C on top of: table supporting:]
16 [Block_11342677 B on top of: table supporting:]
17 [Block_6615024 table on top of: supporting: C]
18 Moving C from table to B
19 Done!

This printout does not show the printout of all facts before and after
running this example.

Example Drools Expert System: Help Desk System

Automating help desk functions can improve the quality of customer
service and reduce costs. Help desk software can guide human call
operators through canned explanations that can be thought of as decision
trees; for example: “Customer reports that their refrigerator is not
running –> Ask if the power is on and no circuit breakers are tripped.
If customer reports that power source is OK –> Ask if the light is on
inside the refrigerator to determine if just the compressor motor is
out…”. We will see in Chapter on Machine Learning with Weka that decision trees can
be learned from training data. One method of implementing a decision
tree approach to help desk support would be to capture customer
interactions by skilled support staff, factor operator responses into
standard phrases and customer comments into standard questions, and use
a machine learning package like Weka to learn the best paths through
questions and answers.

We will take a different approach in our example for this section: we
will assume that an expert customer service representative has provided
us with use cases of common problems, what customers tend to ask for
each problem, and the responses by customer service representatives. We
will develop some sample Drools rules to encode this knowledge. This
approach is likely to be more difficult to implement than a decision
tree system but has the potential advantage that if individual rules
“make sense” in general they may end up being useful in contexts beyond
those anticipated by rules developers. With this greater flexibility
comes a potential for less accuracy.

We will start in the next section by developing some POJO object models
required for our example help desk expert system and then in the next
section develop a few example rules.

Object Models for an Example Help Desk

We will use a single Java POJO class for this example. We want a problem
type, a description of a problem, and a suggestion. A “real” help desk
system might use additional classes for intermediate steps in diagnosing
problems and offering advice but for this example, we will chain
“problems” together. Here is an example:

1 Customer: My refrigerator is not running.
2 Service_technician: I want to know if the power is on. Is the light
3 on inside the refrigerator?
4 Customer: No.
5 Service_technician: Please check your circuit breaker, I will wait.
6 Customer: All my circuit breakers looked OK and
7 everything else is running in the kitchen.
8 Service_technician: I will schedule a service call for you.

We will not develop an interactive system; a dialog with a customer is
assumed to be converted into facts in working memory. These facts will
be represented by instances of the class Problem. The expert system
will apply the rule base to the facts in working memory and make
suggestions. Here is the Java class Problem that is defined as an
inner static class in the file DroolsHelpDesk.java:

 1 public static class Problem {
 2 // Note: Drools has problems dealing with Java 5
 3 // enums as match types so I use static
 4 // integers here. In general, using enums
 5 // is much better.
 6 final public static int NONE = 0;
 7 // appliance types:
 8 final public static int REFRIGERATOR = 101;
 9 final public static int MICROWAVE = 102;
10 final public static int TV = 103;
11 final public static int DVD = 104;
12 // environmentalData possible values:
13 final public static int CIRCUIT_BREAKER_OFF = 1002;
14 final public static int LIGHTS_OFF_IN_ROOM = 1003;
15 // problemType possible values:
16 final public static int NOT_RUNNING = 2001;
17 final public static int SMOKING = 2002;
18 final public static int ON_FIRE = 2003;
19 final public static int MAKES_NOISE = 2004;
20
21 long serviceId = 0; // unique ID for all problems
22 // dealing with customer problem
23 int applianceType = NONE;
24 int problemType = NONE;
25 int environmentalData = NONE;
26
27 public Problem(long serviceId, int type) {
28 this.serviceId = serviceId;
29 this.applianceType = type;
30 }
31
32 public String toString() {
33 return "[Problem: " + enumNames.get(applianceType) +
34 " problem type: " + enumNames.get(problemType) +
35 " environmental data: " +
36 enumNames.get(environmentalData) + "]";
37 }
38 public long getServiceId() { return serviceId; }
39 public int getEnvironmentalData() {
40 return environmentalData;
41 }
42 public int getProblemType() {
43 return problemType;
44 }
45 static Map<Integer, String> enumNames =
46 new HashMap<Integer, String>();
47 static {
48 enumNames.put(0, "NONE");
49 enumNames.put(1002, "CIRCUIT_BREAKER_OFF");
50 enumNames.put(1003, "LIGHTS_OFF_IN_ROOM");
51 enumNames.put(2001, "NOT_RUNNING");
52 enumNames.put(2002, "SMOKING");
53 enumNames.put(2003, "ON_FIRE");
54 enumNames.put(2004, "MAKES_NOISE");
55 enumNames.put(101, "REFRIGERATOR");
56 enumNames.put(102, "MICROWAVE");
57 enumNames.put(103, "TV");
58 enumNames.put(104, "DVD");
59 }
60 }

It is unfortunate that the current version of Drools does not work well
with Java 5 enums – the Problem class would have been about half as
many lines of code (no need to map integers to meaningful descriptions
for toString()) and the example would also be more type safe.

I used constant values like REFRIGERATOR and RUNNING to represent
possible values for the member class attributes like applianceType,
problemType, and environmentalData. There is obviously a tight
binding from the Java POJO classes like Problem to the rules that use
these classes to represent objects in working memory. We will see a few
example help desk rules in the next section.

Drools Rules for an Example Help Desk

This demo help desk system is not interactive. The Java code in the next
section loads the rule set that we are about to develop and then
programmatically adds test facts into working memory that simulate two
help desk customer service issues. This is an important example since
you will likely want to add data directly from Java code into Drools
working memory.

There are several rules defined in the example file HelpDesk.drl and we
will look at a few of them here. These rules are intended to be a
pedantic example of both how to match attributes in Java POJO classes
and to show a few more techniques for writing Drools rules.

I used to use the Lisp based OPS5 to develop expert systems and I find
the combination of Java and Drools is certainly “less agile” to use. I
found myself writing a rule, then editing the POJO class Problem to add
constants for things that I wanted to use in the rule. With more
experience, this less than interactive process might become more
comfortable for me.

As in the blocks world example, we want to place the rules file in the
same package as the Java code using the rules file and import any POJO
classes that we will use in working memory:

1 package com.markwatson.examples.drool
2 import com.markwatson.examples.drool.
3 DroolsHelpDesk.Problem;

The first rule sets a higher than default rule salience so it will fire
before any rules with the default rule salience (a value of zero). This
rule has a feature that we have not seen before: I have no matching
expressions in the “when” clause. All Java Problem instances will match
the left-hand side of this rule.

1 rule "Print all problems"
2 salience 100
3 when
4 p : Problem()
5 then
6 System.out.println("From rule 'Print all problems': "
7 + p);
8 end

The following rule matches an instance of the class Problem in working memory that has a value of “Problem.CIRCUIT_BREAKER_OFF”
for the vakue of attribute environmentalData. This constant has the integer value of 1002 but is is obviously more
clear to use meaningful constant names:

1 rule "Reset circuit breaker"
2 when
3 p1 : Problem(environmentalData ==
4 Problem.CIRCUIT_BREAKER_OFF)
5 then
6 System.out.println("Reset circuit breaker: " + p1);
7 end

The last rule could perhaps be improved by having it only fire if any
appliance was not currently running; we make this check in the next
rule. Notice that in the next rule we are matching different attributes
(problemType and environmentalData) and it does not matter if these attributes match in a single working
memory element or two different working memory elements:

 1 rule "Check for reset circuit breaker"
 2 when
 3 p1 : Problem(problemType == Problem.NOT_RUNNING)
 4 Problem(environmentalData ==
 5 Problem.CIRCUIT_BREAKER_OFF)
 6 then
 7 System.out.println("Check for power source: " + p1 +
 8 ". The unit is not is not on and " +
 9 "the circuit breaker is tripped - check " +
10 "the circuit breaker for this room.");
11 end

We will look at the Java code to use these example rules in the next
section.

Java Code for an Example Help Desk

We will see another trick for using Drools in this example: creating
working memory elements (i.e., instances of the Problem POJO class) in
Java code instead of in a “startup rule” as we did for the blocks world
example. The code in this section is also in the DroolsHelpDesk.java
source file (as is the POJO class definition seen in the Section on object modeling for the help desk).

The static main method in the DroolsHelpDesk class is very similar to
the main method in the blocks world example except that here we also
call a new method createTestFacts:

 1 public static final void main(String[] args)
 2 throws Exception {
 3 //load up the rulebase
 4 RuleBase ruleBase = readRule();
 5 WorkingMemory workingMemory =
 6 ruleBase.newStatefulSession();
 7 createTestFacts(workingMemory);
 8
 9 .. same as the blocks world example ..
10 }

We already looked at the utility method readRule in the Section on the blocks world examples so we will just look at
the new method createTestFacts that creates two instance of the POJO
class Problem in working memory:

 1 private static void
 2 createTestFacts(WorkingMemory workingMemory)
 3 throws Exception {
 4 Problem p1 = new Problem(101, Problem.REFRIGERATOR);
 5 p1.problemType = Problem.NOT_RUNNING;
 6 p1.environmentalData = Problem.CIRCUIT_BREAKER_OFF;
 7 workingMemory.insert(p1);
 8
 9 Problem p2 = new Problem(101, Problem.TV);
10 p2.problemType = Problem.SMOKING;
11 workingMemory.insert(p2);
12 }

In this code we created new instances of the class Problem and set
desired attributes. We then use the WorkingMemory method insert to
add the objects to the working memory collection that Drools maintains.
The output when running this example is (reformatted to fit the page
width):

 1 From rule 'Print all problems':
 2 [Problem: TV
 3 problem type: SMOKING
 4 environmental data: NONE]
 5
 6 From rule 'Print all problems':
 7 [Problem: REFRIGERATOR
 8 problem type: NOT_RUNNING
 9 environmental data: CIRCUIT_BREAKER_OFF]
10
11 Unplug appliance to prevent fire danger:
12 [Problem: TV problem type: SMOKING
13 environmental data: NONE]
14
15 Check for power source:
16 [Problem: REFRIGERATOR
17 problem type: NOT_RUNNING
18 environmental data: CIRCUIT_BREAKER_OFF]
19 The unit is not is not on and the circuit breaker
20 is tripped - check the circuit breaker for this room.

Notes on the Craft of Building Expert Systems

It may seem like rule-based expert systems have a lot of programming
overhead; that is, it will seem excessively difficult to solve simple
problems using production systems. However, for encoding large
ill-structured problems, production systems provide a convenient
notation for collecting together what would otherwise be too large a
collection of unstructured data and heuristic rules (Programming Expert
Systems in Ops5: An Introduction to Rule-Based Programming, Brownston
et al. 1985). As a programming technique, writing rule-based expert
systems is not for everyone. Some programmers find rule-based
programming to be cumbersome, while others find it a good fit for
solving some types of problems. I encourage the reader to have some fun
experimenting with Drools, both with the examples in this chapter, and
the many examples in the Drools distribution package and documentation.

Before starting a moderate or large expert system project, there are
several steps that I recommend:

 	Write a detailed description of the problem to be solved.

 	Decide what structured data elements best describe the problem
space.

 	Try to break down the problem into separate modules of rules; if
possible, try to develop and test these smaller modules
independently, preferably one source file per module.

 	Plan on writing specific rules that test parts of the system by
initializing working memory for specific tests for the various
modules; these tests will be very important when testing all of the
modules together because tests that work correctly for a single
module may fail when all modules are loaded due to unexpected rule
interactions.

Production systems model fairly accurately the stimulus-response
behavior in people. The left-hand side (LHS) terms represent
environmental data that triggers a response or action represented by the
right-hand side (RHS) terms in production rules. Simple
stimulus-response types of production rules might be adequate for
modeling simple behaviors, but our goal in writing expert systems is to
encode deep knowledge and the ability to make complex decisions in a
very narrow (or limited) problem domain. In order to model complex
decision-making abilities, we also often need to add higher-level
control functionality to expert systems. This higher level, or meta
control, can be the control of which rule modules are active. We did not
look at the Drools APIs for managing modules in this chapter but these
APIs are covered in the Drools documentation. Hopefully, this chapter
both gave you a quick-start for experimenting with Drools and enough
experience to know if a rule-based system might be a good fit for your
own development.

Genetic Algorithms

We have seen greedy search algorithms find locally good results that are much worse than the best possible solutions. Genetic Algorithms (GAs) are an efficient means of finding near optimum solutions.

GAs are computer simulations to evolve a population
of chromosomes that contain at least some very fit individuals. Fitness
is specified by a fitness function that rates each individual in the
population.

Setting up a GA simulation is fairly easy: we need to represent (or
encode) the state of a system in a chromosome that is usually
implemented as a set of bits. GA is basically a search operation:
searching for a good solution to a problem where the solution is a very
fit chromosome. The programming technique of using GA is useful for AI
systems that must adapt to changing conditions because “re-programming”
can be as simple as defining a new fitness function and re-running the
simulation. An advantage of GA is that the search process will not often
“get stuck” in local minimum because the genetic crossover process
produces radically different chromosomes in new generations while
occasional mutations (flipping a random bit in a chromosome) cause small
changes. Another aspect of GA is supporting the evolutionary concept of
“survival of the fittest”: by using the fitness function we will
preferentially “breed” chromosomes with higher fitness values.

It is interesting to compare how GAs are trained with how we train
neural networks (Chapter on Neural Networks). We need to
manually “supervise” the training process: for GAs we need to supply a
fitness function and for the two neural network models used in Chapter on Neural Networks we need to supply training data with desired
sample outputs for sample inputs.

Theory

GAs are typically used to search very large and possibly very high
dimensional search spaces. If we want to find a solution as a single
point in an N dimensional space where a fitness function has a near
maximum value, then we have N parameters to encode in each chromosome.
In this chapter we will be solving a simple problem that is
one-dimensional so we only need to encode a single number (a floating
point number for this example) in each chromosome. Using a GA toolkit,
like the one developed in Section [section:java-ga-lib], requires two
problem-specific customizations:

 	Characterize the search space by a set of parameters that can be
encoded in a chromosome (more on this later). GAs work with the
coding of a parameter set, not the parameters themselves (Genetic
Algorithms in Search, Optimization, and Machine Learning, David
Goldberg, 1989).

 	Provide a numeric fitness function that allows us to rate the
fitness of each chromosome in a population. We will use these
fitness values to determine which chromosomes in the population are
most likely to survive and reproduce using genetic crossover and
mutation operations.

The GA toolkit developed in this chapter treats genes as a single bit;
while you can consider a gene to be an arbitrary data structure, the
approach of using single bit genes and specifying the number of genes
(or bits) in a chromosome is very flexible. A population is a set of
chromosomes. A generation is defined as one reproductive cycle of
replacing some elements of the chromosome population with new
chromosomes produced by using a genetic crossover operation followed by
optionally mutating a few chromosomes in the population.

We will describe a simple example problem in this section, write a
general purpose library in Section on Java Library for Genetic Algorithms, and finish
the chapter in the Section on Java Genetic Alforihm Example
by solving the problem posed in this section.

 [image: Example Function]
 Example Function

For a sample problem, suppose that we want to find the maximum value of
the function F with one independent variable x in Equation
[math:ga~f~unc1] and as seen in last figure:

 F(x) = sin(x) * sin(0.4 * x) * sin(3 * x)

The problem that we want to solve is finding a good value of x to find
a near to possible maximum value of F(x). To be clear: we encode a
floating point number as a chromosome made up of a specific number of
bits so any chromosome with randomly set bits will represent some random
number in the interval [0, 10]. The fitness function is simply the
function in Equation [math:ga~f~unc1].

 [image: Crosssover Operation]
 Crosssover Operation

Figure showing genetic crossover operation shows an example of a crossover operation hat we will implemet later in te program example. A
random chromosome bit index is chosen, and two chromosomes are “cut” at
this this index and swap cut parts. The two original chromosomes in
generation_n are shown on the left of the figure and after the
crossover operation they produce two new chromosomes in
generation_{n+1} shown on the right of the figure.

In addition to using crossover operations to create new chromosomes from
existing chromosomes, we will also use genetic mutation: randomly
flipping bits in chromosomes. A fitness function that rates the fitness
value of each chromosome allows us to decide which chromosomes to
discard and which to use for the next generation: we will use the most
fit chromosomes in the population for producing the next generation
using crossover and mutation.

We will implement a general purpose Java GA library in the next section
and then solve the example problem posed in this section at the end of this
chapter in the GA Example Section.

Java Library for Genetic Algorithms

The full implementation of the GA library is in the Java source file
Genetic.java. The following code snippets shows the method signatures
defining the public API for the library; note that there are two
constructors, the first using default values for the fraction of
chromosomes on which to perform crossover and mutation operations and
the second constructor allows setting explicit values for these
parameters:

1 abstract public class Genetic {
2 public Genetic(int num_genes_per_chromosome,
3 int num_chromosomes)
4 public Genetic(int num_genes_per_chromosome,
5 int num_chromosomes,
6 float crossover_fraction,
7 float mutation_fraction)

The method sort is used to sort the population of chromosomes in most
fit first order. The methods getGene and setGene are used to fetch
and change the value of any gene (bit) in any chromosome. These methods
are protected but you will probably not need to override them in derived
classes.

1 protected void sort()
2 protected boolean getGene(int chromosome,
3 int gene)
4 protected void setGene(int chromosome,
5 int gene, int value)
6 protected void setGene(int chromosome,
7 int gene,
8 boolean value)

The methods evolve, doCrossovers, doMutations, and
doRemoveDuplicates are utilities for running GA simulations. These
methods are protected but you will probably not need to override them in
derived classes.

1 protected void evolve()
2 protected void doCrossovers()
3 protected void doMutations()
4 protected void doRemoveDuplicates()

When you subclass class Genetic you must implement the following
abstract method calcFitness that will determine the evolution of
chromosomes during the GA simulation.

1 // Implement the following method in sub-classes:
2 abstract public void calcFitness();
3 }

The class Chromosome represents a bit set with a specified number of
bits and a floating point fitness value.

1 class Chromosome {
2 private Chromosome()
3 public Chromosome(int num_genes)
4 public boolean getBit(int index)
5 public void setBit(int index, boolean value)
6 public float getFitness()
7 public void setFitness(float value)
8 public boolean equals(Chromosome c)
9 }

The class ChromosomeComparator implements a Comparator interface and
is application specific: it is used to sort a population in “best first”
order:

1 class ChromosomeComparator
2 implements Comparator<Chromosome> {
3 public int compare(Chromosome o1,
4 Chromosome o2)
5 }

The last class ChromosomeComparator is used when using the Java
Collection class static sort method.

The class Genetic is an abstract class: you must subclass it and
implement the method calcFitness that uses an application specific
fitness function (that you must supply) to set a fitness value for each
chromosome.

This GA library provides the following behavior:

 	Generates an initial random population with a specified number of
bits (or genes) per chromosome and a specified number of chromosomes
in the population

 	Ability to evaluate each chromosome based on a numeric fitness
function

 	Ability to create new chromosomes from the most fit chromosomes in
the population using the genetic crossover and mutation operations

There are two class constructors for Genetic set up a new GA experiment
by setting the number of genes (or bits) per chromosome, and the number
of chromosomes in the population.

The Genetic class constructors build an array of integers
rouletteWheel which is used to weight the most fit chromosomes in the
population for choosing the parents of crossover and mutation
operations. When a chromosome is being chosen, a random integer is
selected to be used as an index into the rouletteWheel array; the
values in the array are all integer indices into the chromosome array.
More fit chromosomes are heavily weighted in favor of being chosen as
parents for the crossover operations. The algorithm for the crossover
operation is fairly simple; here is the implementation:

 1 public void doCrossovers() {
 2 int num = (int)(numChromosomes * crossoverFraction);
 3 for (int i = num - 1; i >= 0; i--) {
 4 // Don't overwrite the "best" chromosome
 5 // from current generation:
 6 int c1 = 1 + (int) ((rouletteWheelSize - 1) *
 7 Math.random() * 0.9999f);
 8 int c2 = 1 + (int) ((rouletteWheelSize - 1) *
 9 Math.random() * 0.9999f);
10 c1 = rouletteWheel[c1];
11 c2 = rouletteWheel[c2];
12 if (c1 != c2) {
13 int locus = 1+(int)((numGenesPerChromosome-2) *
14 Math.random());
15 for (int g = 0; g<numGenesPerChromosome; g++) {
16 if (g < locus) {
17 setGene(i, g, getGene(c1, g));
18 } else {
19 setGene(i, g, getGene(c2, g));
20 }
21 }
22 }
23 }
24 }

The method doMutations is similar to doCrossovers: we randomly
choose chromosomes from the population and for these selected
chromosomes we randomly “flip” the value of one gene (a gene is a bit in
our implementation):

 1 public void doMutations() {
 2 int num = (int)(numChromosomes * mutationFraction);
 3 for (int i = 0; i < num; i++) {
 4 // Don't overwrite the "best" chromosome
 5 // from current generation:
 6 int c = 1 + (int) ((numChromosomes - 1) *
 7 Math.random() * 0.99);
 8 int g = (int) (numGenesPerChromosome *
 9 Math.random() * 0.99);
10 setGene(c, g, !getGene(c, g));
11 }
12 }

We developed a general purpose library in this section for simulating
populations of chromosomes that can evolve to a more “fit” population
given a fitness function that ranks individual chromosomes in order of
fitness. In Section [section:java-ga-example] we will develop an
example GA application by defining the size of a population and the
fitness function defined by Equation [math:ga~f~unc1].

Finding the Maximum Value of a Function

We will use the Java library in the last section to develop an example
application to find the maximum of the function seen in the Figure showing a sample function which shows a plot of our test fucntion that we are using a GA to fit, plotted in the interval [0, 10].

While we could find the maximum value of this function by using Newton’s
method (or even a simple brute force search over the range of the
independent variable x), the GA method scales very well to similar problems of higher
dimensionality. The GA also helps us to not find just locally optimum
solutions. In this example we are working in one dimension so we only
need to encode a single variable in a chromosome. As an example of a
higher dimensional system, we might have products of sine waves using 20
independent variables x1, x2, ..x20. Still, the one-dimensional case
seen in the Figure showin the sample function is a good example for showing you how to set
up a GA simulation.

Our first task is to characterize the search space as one or more
parameters. In general when we write GA applications we might need to
encode several parameters in a single chromosome. For example, if a
fitness function has three arguments we would encode three numbers in a
singe chromosome. In this example problem, we have only one parameter,
the independent variable x. We will encode the parameter x using ten
bits (so we have ten 1-bit genes per chromosome). A good starting place
is writing utility method for converting the 10-bit representation to a
floating-point number in the range [0.0, 10.0]:

1 float geneToFloat(int chromosomeIndex) {
2 int base = 1;
3 float x = 0;
4 for (int j=0; j<numGenesPerChromosome; j++) {
5 if (getGene(chromosomeIndex, j)) {
6 x += base;
7 }
8 base *= 2;
9 }

After summing up all on bits times their base_2 value, we need to
normalize what is an integer in the range of [0,1023] to a floating
point number in the approximate range of [0, 10]:

1 x /= 102.4f;
2 return x;
3 }

Note that we do not need the reverse method! We use the GA library from
Section [section:java-ga-lib] to create a population of 10-bit
chromosomes; in order to evaluate the fitness of each chromosome in a
population, we only have to convert the 10-bit representation to a
floating-point number for evaluation using the following fitness
function (Equation [math:ga~f~unc1]):

1 private float fitness(float x) {
2 return (float)(Math.sin(x) *
3 Math.sin(0.4f * x) *
4 Math.sin(3.0f * x));
5 }

Table [tab:chrom~e~ncoding] shows some sample random chromosomes and the
floating point numbers that they encode. The first column shows the gene
indices where the bit is “on,” the second column shows the chromosomes
as an integer number represented in binary notation, and the third
column shows the floating point number that the chromosome encodes. The
center column in the followin table shows the bits in order
where index 0 is the left-most bit, and index 9 if the right-most bit;
this is the reverse of the normal order for encoding integers but the GA
does not care: it works with any encoding we use. Once again, GAs work
with encodings.

1 “On bits” in chromosome As binary Number encoded
2 ----------------------- --------- --------------
3 2, 5, 7, 8, 9 0010010111 9.1015625
4 0, 1, 3, 5, 6 1101011000 1.0449219
5 0, 3, 5, 6, 7, 8 1001011110 4.7753906

Using methods geneToFloat and fitness we now implement the abstract
method calcFitness from our GA library class Genetic so the derived
class TestGenetic is not abstract. This method has the responsibility
for calculating and setting the fitness value for every chromosome
stored in an instance of class Genetic:

1 public void calcFitness() {
2 for (int i=0; i<numChromosomes; i++) {
3 float x = geneToFloat(i);
4 chromosomes.get(i).setFitness(fitness(x));
5 }
6 }

While it was useful to make this example more clear with a separate
geneToFloat method, it would have also been reasonable to simply place
the formula in the method fitness in the implementation of the
abstract (in the base class) method calcFitness.

In any case we are done with coding this example: you can compile the
two example Java files Genetic.java and TestGenetic.java, and run the
TestGenetic class to verify that the example program quickly finds a
near maximum value for this function.

You can try setting different numbers of chromosomes in the population
and try setting non-default crossover rates of 0.85 and a mutation rates
of 0.3. We will look at a run with a small number of chromosomes in the
population created with:

 1 genetic_experiment =
 2 new MyGenetic(10, 20, 0.85f, 0.3f);
 3 int NUM_CYCLES = 500;
 4 for (int i=0; i<NUM_CYCLES; i++) {
 5 genetic_experiment.evolve();
 6 if ((i%(NUM_CYCLES/5))==0 || i==(NUM_CYCLES-1)) {
 7 System.out.println("Generation " + i);
 8 genetic_experiment.print();
 9 }
10 }

In this experiment 85% of chromosomes will be “sliced and diced” with a
crossover operation and 30% will have one of their genes changed. We
specified 10 bits per chromosome and a population size of 20
chromosomes. In this example, I have run 500 evolutionary cycles. After
you determine a fitness function to use, you will probably need to
experiment with the size of the population and the crossover and
mutation rates. Since the simulation uses random numbers (and is thus
non-deterministic), you can get different results by simply rerunning
the simulation. Here is example program output (with much of the output
removed for brevity):

 1 count of slots in roulette wheel=55
 2 Generation 0
 3 Fitness for chromosome 0 is 0.505, occurs at x=7.960
 4 Fitness for chromosome 1 is 0.461, occurs at x=3.945
 5 Fitness for chromosome 2 is 0.374, occurs at x=7.211
 6 Fitness for chromosome 3 is 0.304, occurs at x=3.929
 7 Fitness for chromosome 4 is 0.231, occurs at x=5.375
 8 ...
 9 Fitness for chromosome 18 is -0.282 occurs at x=1.265
10 Fitness for chromosome 19 is -0.495, occurs at x=5.281
11 Average fitness=0.090 and best fitness for this
12 generation:0.505
13 ...
14 Generation 499
15 Fitness for chromosome 0 is 0.561, occurs at x=3.812
16 Fitness for chromosome 1 is 0.559, occurs at x=3.703
17 ...

This example is simple but is intended to be show you how to encode
parameters for a problem where you want to search for values to maximize
a fitness function that you specify. Using the library developed in this
chapter you should be able to set up and run a GA simulation for your
own applications.

Machine Learning with Weka

Weka is a standard Java tool for performing both machine learning
experiments and for embedding trained models in Java applications. I
have used Weka since 1999 and it is often my tool of choice on machine
learning projects that are compatible with Weka’s use of the GPL
license. In addition to the material in this chapter you should visit
the primary Weka web site www.cs.waikato.ac.nz/ml/weka for more examples
and tutorials. Good online documentation can also be found at
weka.sourceforge.net/wekadoc. Weka can be run both as a GUI application
and for using a command line interface for running experiments. While
the techniques of machine learning have many practical applications the
example used in this chapter is simple and is mostly intended to show
you the techniques for running Weka and techniques for embedding Weka in
your Java applications. Full documentation of the many machine learning
algorithms is outside the scope of this chapter.

In addition to data cleansing and preprocessing utilities (filters for
data normalization, resampling, transformations, etc.) Weka supports
most machine-learning techniques for automatically calculating
classification systems. I have used the following Weka learning modules
in my own work:

 	Naive Bayes – uses Bayes’s rule for probability of a hypothesis
given evidence.

 	Instance-based learner – stores all training examples and use.

 	C4.5 – a learning scheme by J Ross Quinlan that calculates decision
trees from training data. We will use the J48 algorithm in this
chapter.

Weka can be used for both unsupervised and supervised learning. An
example of unsupervised learning is processing a set of unlabeled data
and automatically clustering the data into smaller sets containing
similar items. We will use supervised learning as the example in this
chapter: data on daily stock prices is labeled as buy, sell, or hold. We
will use the J48 algorithm to automatically build a decision tree for
deciding on how to process a stock, given its cost data. This example is
simplistic and should not be used to actually trade stocks.

It is also possible to induce rules from training data that are
equivalent to decision trees for the same training data. The learned
model uses linear combinations of attribute values for classification.

We are going to use a simple example to learn how to use Weka
interactively and embedded in applications in the next two sections.
Weka uses a data file format call ARFF. The following listing shows the
sample ARFF input file that we will use in the next two sections:

 1 @relation stock
 2
 3 @attribute percent_change_since_open real
 4 @attribute percent_change_from_day_low real
 5 @attribute percent_change_from_day_high real
 6 @attribute action {buy, sell, hold}
 7
 8 @data
 9 -0.2,0.1,-0.22,hold
10 -2.2,0.0,-2.5,sell
11 0.2,0.21,-0.01,buy
12 -0.22,0.12,-0.25,hold
13 -2.0,0.0,-2.1,sell
14 0.28,0.26,-0.04,buy
15 -0.12,0.08,-0.14,hold
16 -2.6,0.1,-2.6,sell
17 0.24,0.25,-0.03,buy

Here the concept of a relation is similar to a relation in PowerLoom as
we saw in Chapter on Reasoning: a relation has a name and a list
of attributes, each with an allowed data type. Here the relation name is
“stock” and we have three attributes that have floating point
(numerical) values and a fourth attribute that has an enumeration of
discrete allowed values. The @data section defines data for initializing
nine stock relations.

Using Weka’s Interactive GUI Application

The Weka JAR file is included with the ZIP file for this book. To run
the Weka GUI application, change directory to test_data and type:

1 java -cp ../lib -jar ../lib/weka.jar

 [image: First Screenshot of Weka Explorer]
 First Screenshot of Weka Explorer

Once you have loaded (and possibly browsed) the data as seen in Figure
[fig:weka-explorer-1] you can then select the classifier tab, and
using the “Choose” Classifier option, find J48 under the trees submenu,
and click the “Start” button. The results can be seen in the
Second Weka Explorer Screenshot.

 [image: Second Screenshot of Weka Explorer]
 Second Screenshot of Weka Explorer

The decision tree is displayed in the “Classifier output” window pane.
We will run this same problem from the command line in the next section
and then discuss the generated decision tree seen in the lower right
panel of the GUI display seen in the Second Weka Explorer Screenshot.

Interactive Command Line Use of Weka

We will run the same problem as in the previous section and discuss the
sections of the output report:

 1 java -cp ../lib/weka.jar \\
 2 weka.classifiers.trees.J48 -t \\
 3 stock_training_data.arff -x 2
 4
 5 J48 pruned tree
 6 ------------------
 7
 8 percent_change_from_day_low <= 0.12
 9 | percent_change_since_open <= -2: sell (3.0)
10 | percent_change_since_open > -2: hold (3.0)
11 percent_change_from_day_low > 0.12: buy (3.0)
12
13 Number of Leaves : 3
14
15 Size of the tree : 5

The generated decision tree can be described in English as “If the
percent change of a stock from the day low is less than or equal to 0.12
then if the percent change since the open is less than -2 then sell the
stock, otherwise keep it. If the percent change from the day low is
greater than 0.12 then purchase more shares.”

 1 Time taken to build model: 0.01 seconds
 2 Time taken to test model on training data: 0 seconds
 3
 4 === Error on training data ===
 5
 6 Correctly Classified Instances 9 100 %
 7 Incorrectly Classified Instances 0 0 %
 8 Kappa statistic 1
 9 Mean absolute error 0
10 Root mean squared error 0
11 Relative absolute error 0 %
12 Root relative squared error 0 %
13 Total Number of Instances 9

This output shows results for testing on the original training data so
the classification is perfect. In practice, you will test on separate
data sets.

1 === Confusion Matrix ===
2
3 a b c <-- classified as
4 3 0 0 | a = buy
5 0 3 0 | b = sell
6 0 0 3 | c = hold

The confusion matrix shows the prediction (columns) for each data sample
(rows). Here we see the original data (three buy, three sell, and three
hold samples). The following output shows random sampling testing:

 1 === Stratified cross-validation ===
 2
 3 Correctly Classified Instances 4 44.4444 %
 4 Incorrectly Classified Instances 5 55.5556 %
 5 Kappa statistic 0.1667
 6 Mean absolute error 0.3457
 7 Root mean squared error 0.4513
 8 Relative absolute error 75.5299 %
 9 Root relative squared error 92.2222 %
10 Total Number of Instances 9

With random sampling, we see in the confusion matrix that the three buy
recommendations are still perfect, but that both of the sell
recommendations are wrong (with one buy and two holds) and that two of
what should have been hold recommendations are buy recommendations.

1 === Confusion Matrix ===
2
3 a b c <-- classified as
4 3 0 0 | a = buy
5 1 0 2 | b = sell
6 2 0 1 | c = hold

Embedding Weka in a Java Application

The example in this section is partially derived from documentation at
the web site http://weka.sourceforge.net/wiki. This example loads the
training ARFF data file seen at the beginning of this chapter and loads
a similar ARFF file for testing that is equivalent to the original
training file except that small random changes have been made to the
numeric attribute values in all samples. A decision tree model is
trained and tested on the new test ARFF data.

 1 import weka.classifiers.meta.FilteredClassifier;
 2 import weka.classifiers.trees.J48;
 3 import weka.core.Instances;
 4 import weka.filters.unsupervised.attribute.Remove;
 5
 6 import java.io.BufferedReader;
 7 import java.io.FileNotFoundException;
 8 import java.io.FileReader;
 9 import java.io.IOException;
10
11 public class WekaStocks {
12
13 public static void main(String[] args) throws Exception {

We start by creating a new training instance by supplying a reader for
the stock training ARFF file and setting the number of attributes to
use:

1 Instances training_data = new Instances(
2 new BufferedReader(
3 new FileReader(
4 "test_data/stock_training_data.arff")));
5 training_data.setClassIndex(
6 training_data.numAttributes() - 1);

We want to test with separate data so we open a separate examples ARFF
file to test against:

1 Instances testing_data = new Instances(
2 new BufferedReader(
3 new FileReader(
4 "test_data/stock_testing_data.arff")));
5 testing_data.setClassIndex(
6 training_data.numAttributes() - 1);

The method toSummaryString prints a summary of a set of training or
testing instances.

 1 String summary = training_data.toSummaryString();
 2 int number_samples = training_data.numInstances();
 3 int number_attributes_per_sample =
 4 training_data.numAttributes();
 5 System.out.println(
 6 "Number of attributes in model = " +
 7 number_attributes_per_sample);
 8 System.out.println(
 9 "Number of samples = " + number_samples);
10 System.out.println("Summary: " + summary);
11 System.out.println();

Now we create a new classifier (a J48 classifier in this case) and we
see how to optionally filter (remove) samples. We build a classifier
using the training data and then test it using the separate test data
set:

 1 // a classifier for decision trees:
 2 J48 j48 = new J48();
 3
 4 // filter for removing samples:
 5 Remove rm = new Remove();
 6 // remove first attribute
 7 rm.setAttributeIndices("1");
 8
 9 // filtered classifier
10 FilteredClassifier fc = new FilteredClassifier();
11 fc.setFilter(rm);
12 fc.setClassifier(j48);
13 // train using stock_training_data.arff:
14 fc.buildClassifier(training_data);
15 // test using stock_testing_data.arff:
16 for (int i = 0;
17 i < testing_data.numInstances(); i++) {
18 double pred =
19 fc.classifyInstance(testing_data.
20 instance(i));
21 System.out.print("given value: " +
22 testing_data.classAttribute().
23 value((int)testing_data.instance(i).
24 classValue()));
25 System.out.println(". predicted value: " +
26 testing_data.classAttribute().value((int)pred));
27 }
28 }
29 }

This example program produces the following output (some output not
shown due to page width limits):

 1 Number of attributes in model = 4
 2 Number of samples = 9
 3 Summary: Relation Name: stock
 4 Num Instances: 9
 5 Num Attributes: 4
 6
 7 Name Type Nom Int Real ...
 8 1 percent_change_since_open Num 0% 11% 89% ...
 9 2 percent_change_from_day_l Num 0% 22% 78% ...
10 3 percent_change_from_day_h Num 0% 0% 100% ...
11 4 action Nom 100% 0% 0% ...
12
13 given value: hold. predicted value: hold
14 given value: sell. predicted value: sell
15 given value: buy. predicted value: buy
16 given value: hold. predicted value: buy
17 given value: sell. predicted value: sell
18 given value: buy. predicted value: buy
19 given value: hold. predicted value: hold
20 given value: sell. predicted value: buy
21 given value: buy. predicted value: buy

Suggestions for Further Study

Weka is well documented in the book Data Mining: Practical Machine
Learning Tools and Techniques, Second Edition [Ian H. Witten (Author),
Eibe Frank. 2005]. Additional documentation can be found at
weka.sourceforge.net/wiki/index.php.

Neural Networks

Neural networks can be used to efficiently solve many problems that are
intractable or difficult using other AI programming techniques. I spent
almost two years on a DARPA neural network tools advisory panel, wrote
the first version of the ANSim neural network product, and have used
neural networks for a wide range of application problems (radar
interpretation, bomb detection, and as controllers in computer games).
Mastering the use of simulated neural networks will allow you to solve
many types of problems that are very difficult to solve using other
methods.

I will cover Hopfield and Backpropagation neural networks in this chapter.
As I am writing this, the fourth edition of this book, there is an exciting
new technology that often goes by the name “Deep Learning” that uses a
computational trick to train Backpropagation networks with many layers.
Google has used Deep Learning networks for automated image identification.
I am not covering Deep Learning in this book, but after experimenting with the
Java Backpropagation in this chapter you might then look at these
[Examples of Deep Learning]{#http://deeplearning.net/tutorial/}.

Although most of this book is intended to provide practical advice (with
some theoretical background) on using AI programming techniques, I
cannot imagine being interested in practical AI programming without also
wanting to think about the philosophy and mechanics of how the human
mind works. I hope that my readers share this interest.

In this book, we have examined techniques for focused problem solving,
concentrating on performing one task at a time. However, the physical
structure and dynamics of the human brain is inherently parallel and
distributed [Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Rumelhart, McClelland, etc. 1986]. We are
experts at doing many things at once. For example, I simultaneously can
walk, talk with my wife, keep our puppy out of cactus, and enjoy the
scenery behind our house in Sedona, Arizona. AI software systems
struggle to perform even narrowly defined tasks well, so how is it that
we are able to simultaneously perform several complex tasks? There is no
clear or certain answer to this question at this time, but certainly the
distributed neural architecture of our brains is a requirement for our
abilities. Unfortunately, artificial neural network simulations do not
currently address “multi-tasking” (other techniques that do address this
issue are multi-agent systems with some form or mediation between
agents).

Also interesting is the distinction between instinctual behavior and
learned behavior. Our knowledge of GAs from Chapter on Genetic Algorithms
provides a clue to how the brains of especially lower order animals can
be hardwired to provide efficient instinctual behavior under the
pressures of evolutionary forces (i.e., likely survival of more fit
individuals). This works by using genetic algorithms to design specific
neural wiring. I have used genetic algorithms to evolve recurrent neural
networks for control applications. This work only had partial success
but did convince me that biological genetic pressure is probably
adequate to “pre-wire” some forms of behavior in natural (biological)
neural networks.

While we will study supervised learning techniques in this chapter, it
is possible to evolve both structure and attributes of neural networks
using other types of neural network models like Adaptive Resonance
Theory (ART) to autonomously learn to classify learning examples without
intervention.

We will start this chapter by discussing human neuron cells and which
features of real neurons that we will model. Unfortunately, we do not
yet understand all of the biochemical processes that occur in neurons,
but there are fairly accurate models available (web search “neuron
biochemical”). Neurons are surrounded by thin hair-like structures
called dendrites which serve to accept activation from other neurons.
Neurons sum up activation from their dendrites and each neuron has a
threshold value; if the activation summed over all incoming dendrites
exceeds this threshold, then the neuron fires, spreading its activation
to other neurons. Dendrites are very localized around a neuron. Output
from a neuron is carried by an axon, which is thicker than dendrites and
potentially much longer than dendrites in order to affect remote
neurons. The following figure shows the physical structure of a
neuron; in general, the neuron’s axon would be much longer than is seen
in this figure. The axon terminal buttons transfer
activation to the dendrites of neurons that are close to the individual
button. An individual neuron is connected to up to ten thousand other
neurons in this way.

 [image: Neuron]
 Neuron

The activation absorbed through dendrites is summed together, but the
firing of a neuron only occurs when a threshold is passed. In neural network simulations there are several common ways to model neurons and connections between neurons that we will see n both this and the next chapter.

Hopfield Neural Networks

Hopfield neural networks implement associative (or content addressable)
memory. A Hopfield network is trained using a set of patterns. After
training, the network can be shown a pattern similar to one of the
training inputs and it will hopefully associate the “noisy” pattern with
the correct input pattern. Hopfield networks are very different than
back propagation networks (covered later in the Section of Backpropagation)
because the training data only contains input examples unlike back
propagation networks that are trained to associate desired output
patterns with input patterns. Internally, the operation of Hopfield
neural networks is very different than back propagation networks. We use
Hopfield neural networks to introduce the subject of neural nets because
they are very easy to simulate with a program, and they can also be very
useful in practical applications.

The inputs to Hopfield networks can be any dimensionality. Hopfield
networks are often shown as having a two-dimensional input field and are
demonstrated recognizing characters, pictures of faces, etc. However, we
will lose no generality by implementing a Hopfield neural network
toolkit with one-dimensional inputs because a two-dimensional image can
be represented by an equivalent one-dimensional array.

How do Hopfield networks work? A simple analogy will help. The trained
connection weights in a neural network represent a high dimensional
space. This space is folded and convoluted with local minima
representing areas around training input patterns. For a moment,
visualize this very high dimensional space as just being the three
dimensional space inside a room. The floor of this room is a convoluted
and curved surface. If you pick up a basketball and bounce it around the
room, it will settle at a low point in this curved and convoluted floor.
Now, consider that the space of input values is a two-dimensional grid a
foot above the floor. For any new input, that is equivalent to a point
defined in horizontal coordinates; if we drop our basketball from a
position above an input grid point, the basketball will tend to roll
down hill into local gravitational minima. The shape of the curved and
convoluted floor is a calculated function of a set of training input
vectors. After the “floor has been trained” with a set of input vectors,
then the operation of dropping the basketball from an input grid point
is equivalent to mapping a new input into the training example that is
closest to this new input using a neural network.

A common technique in training and using neural networks is to add noise
to training data and weights. In the basketball analogy, this is
equivalent to “shaking the room” so that the basketball finds a good
minima to settle into, and not a non-optimal local minima. We use this
technique later when implementing back propagation networks. The weights
of back propagation networks are also best visualized as defining a very
high dimensional space with a manifold that is very convoluted near
areas of local minima. These local minima are centered near the
coordinates defined by each input vector.

Java Classes for Hopfield Neural Networks

The Hopfield neural network model is defined in the file Hopfield.java.
Since this file only contains about 65 lines of code, we will look at
the code and discuss the algorithms for storing and recall of patterns
at the same time. In a Hopfield neural network simulation, every neuron
is connected to every other neuron.

Consider a pair of neurons indexed by i and j. There is a weight
W_{i,j} between these neurons that corresponds in the code to the
array element weight[i,j]. We can define energy between the
associations of these two neurons as:

1 energy[i,j] = -weight[i,j] * activation[i] * activation[j]

In the Hopfield neural network simulator, we store activations (i.e.,
the input values) as floating point numbers that get clamped in value to
-1 (for off) or +1 (for on). In the energy equation, we consider an
activation that is not clamped to a value of one to be zero. This energy
is like “gravitational energy potential” using a basketball court
analogy: think of a basketball court with an overlaid 2D grid, different
grid cells on the floor are at different heights (representing energy
levels) and as you throw a basketball on the court, the ball naturally
bounces around and finally stops in a location near to the place you
threw the ball, in a low grid cell in the floor – that is, it settles in
a locally low energy level. Hopfield networks function in much the same
way: when shown a pattern, the network attempts to settle in a local
minimum energy point as defined by a previously seen training example.

When training a network with a new input, we are looking for a low
energy point near the new input vector. The total energy is a sum of the
above equation over all (i,j).

The class constructor allocates storage for input values, temporary
storage, and a two-dimensional array to store weights:

1 public Hopfield(int numInputs) {
2 this.numInputs = numInputs;
3 weights = new float[numInputs][numInputs];
4 inputCells = new float[numInputs];
5 tempStorage = new float[numInputs];
6 }

Remember that this model is general purpose: multi-dimensional inputs
can be converted to an equivalent one-dimensional array. The method
addTrainingData is used to store an input data array for later
training. All input values get clamped to an “off” or “on” value by the
utility method adjustInput. The utility method truncate truncates
floating-point values to an integer value. The utility method
deltaEnergy has one argument: an index into the input vector. The
class variable tempStorage is set during training to be the sum of a
row of trained weights. So, the method deltaEnergy returns a measure
of the energy difference between the input vector in the current input
cells and the training input examples:

1 private float deltaEnergy(int index) {
2 float temp = 0.0f;
3 for (int j=0; j<numInputs; j++) {
4 temp += weights[index][j] * inputCells[j];
5 }
6 return 2.0f * temp - tempStorage[index];
7 }

The method train is used to set the two-dimensional weight array and
the one-dimensional tempStorage array in which each element is the sum
of the corresponding row in the two-dimensional weight array:

 1 public void train() {
 2 for (int j=1; j<numInputs; j++) {
 3 for (int i=0; i<j; i++) {
 4 for (int n=0; n<trainingData.size(); n++) {
 5 float [] data = (float [])trainingData.elementAt(n);
 6 float temp1 = adjustInput(data[i]) * adjustInput(data[j]);
 7 float temp = truncate(temp1 + weights[j][i]);
 8 weights[i][j] = weights[j][i] = temp;
 9 }
10 }
11 }
12 for (int i=0; i<numInputs; i++) {
13 tempStorage[i] = 0.0f;
14 for (int j=0; j<i; j++) {
15 tempStorage[i] += weights[i][j];
16 }
17 }
18 }

Once the arrays weight and tempStorage are defined, it is simple to
recall an original input pattern from a similar test pattern:

 1 public float [] recall(float [] pattern, int numIterations) {
 2 for (int i=0; i<numInputs; i++) {
 3 inputCells[i] = pattern[i];
 4 }
 5 for (int ii = 0; ii<numIterations; ii++) {
 6 for (int i=0; i<numInputs; i++) {
 7 if (deltaEnergy(i) > 0.0f) {
 8 inputCells[i] = 1.0f;
 9 } else {
10 inputCells[i] = 0.0f;
11 }
12 }
13 }
14 return inputCells;
15 }

Testing the Hopfield Neural Network Class

The test program for the Hopfield neural network class is
Test_Hopfield. This test program defined three test input patterns,
each with ten values:

1 static float [] data [] = {
2 { 1, 1, 1, -1, -1, -1, -1, -1, -1, -1},
3 {-1, -1, -1, 1, 1, 1, -1, -1, -1, -1},
4 {-1, -1, -1, -1, -1, -1, -1, 1, 1, 1} };

The following code fragment shows how to create a new instance of the
Hopfield class and train it to recognize these three test input
patterns:

1 test = new Hopfield(10);
2 test.addTrainingData(data[0]);
3 test.addTrainingData(data[1]);
4 test.addTrainingData(data[2]);
5 test.train();

The static method helper is used to slightly scramble an input
pattern, then test the training Hopfield neural network to see if the
original pattern is re-created:

1 helper(test, "pattern 0", data[0]);
2 helper(test, "pattern 1", data[1]);
3 helper(test, "pattern 2", data[2]);

The following listing shows an implementation of the method helper
(the called method pp simply formats a floating point number for
printing by clamping it to zero or one). This version of the code
randomly flips one test bit and we will see that the trained Hopfield
network almost always correctly recognizes the original pattern. The
version of method helper included in the ZIP file for this book is
slightly different in that two bits are randomly flipped (we will later
look at sample output with both one and two bits randomly flipped).

 1 private static void helper(Hopfield test,
 2 String s,
 3 float [] test_data) {
 4 float [] dd = new float[10];
 5 for (int i=0; i<10; i++) {
 6 dd[i] = test_data[i];
 7 }
 8 int index = (int)(9.0f * (float)Math.random());
 9 if (dd[index] < 0.0f) dd[index] = 1.0f; else dd[index] = -1.0f;
10 float [] rr = test.recall(dd, 5);
11 System.out.print(s+"\nOriginal data: ");
12 for (int i = 0; i < 10; i++)
13 System.out.print(pp(test_data[i]) + " ");
14 System.out.print("\nRandomized data: ");
15 for (int i = 0; i < 10; i++)
16 System.out.print(pp(dd[i]) + " ");
17 System.out.print("\nRecognized pattern: ");
18 for (int i = 0; i < 10; i++)
19 System.out.print(pp(rr[i]) + " ");
20 System.out.println();
21 }

The following listing shows how to run the program, and lists the
example output:

 1 java Test_Hopfield
 2 pattern 0
 3 Original data: 1 1 1 0 0 0 0 0 0 0
 4 Randomized data: 1 1 1 0 0 0 1 0 0 0
 5 Recognized pattern: 1 1 1 0 0 0 0 0 0 0
 6 pattern 1
 7 Original data: 0 0 0 1 1 1 0 0 0 0
 8 Randomized data: 1 0 0 1 1 1 0 0 0 0
 9 Recognized pattern: 0 0 0 1 1 1 0 0 0 0
10 pattern 2
11 Original data: 0 0 0 0 0 0 0 1 1 1
12 Randomized data: 0 0 0 1 0 0 0 1 1 1
13 Recognized pattern: 0 0 0 0 0 0 0 1 1 1

In this listing we see that the three sample training patterns in
Test_Hopfield.java are re-created after scrambling the data by
changing one randomly chosen value to its opposite value. When you run
the test program several times you will see occasional errors when one
random bit is flipped and you will see errors occur more often with two
bits flipped. Here is an example with two bits flipped per test: the
first pattern is incorrectly reconstructed and the second and third
patterns are reconstructed correctly:

 1 pattern 0
 2 Original data: 1 1 1 0 0 0 0 0 0 0
 3 Randomized data: 0 1 1 0 1 0 0 0 0 0
 4 Recognized pattern: 1 1 1 1 1 1 1 0 0 0
 5 pattern 1
 6 Original data: 0 0 0 1 1 1 0 0 0 0
 7 Randomized data: 0 0 0 1 1 1 1 0 1 0
 8 Recognized pattern: 0 0 0 1 1 1 0 0 0 0
 9 pattern 2
10 Original data: 0 0 0 0 0 0 0 1 1 1
11 Randomized data: 0 0 0 0 0 0 1 1 0 1
12 Recognized pattern: 0 0 0 0 0 0 0 1 1 1

Back Propagation Neural Networks

The next neural network model that we will use is called back
propagation, also known as back-prop or delta rule learning. In this
model, neurons are organized into data structures that we call layers.
The Figure showing Backpropagation network with No Hidden Layer shows a simple neural network with two
layers; this network is shown in two different views: just the neurons
organized as two one-dimensional arrays, and as two one-dimensional
arrays with the connections between the neurons. In our model, there is
a connection between two neurons that is characterized by a single
floating-point number that we will call the connection’s weight. A
weight W_{i,j} connects input neuron i to output neuron j. In the
back propagation model, we always assume that a neuron is connected to
every neuron in the previous layer.

A key feature of back-prop neural networks is that they can be efficiently trained.
Training is performed by calculating sets of weights for connecting each
layer. As we will see, we will train networks by applying input values
to the input layer, allowing these values to propagate through the
network using the current weight values, and calculating the errors
between desired output values and the output values from propagation of
input values through the network.

The errors at the output layer are used to calculate gradients (or corrections) to the weights feeding into the output layer. Gradients are back propagated through the network allowing all weights in the network to be updated to reduce errors visible at the output layer.

One limitation of back propagation neural networks is that they are limited to the number of neuron layers that can be efficiently trained. The problem is that as error gradients are back propagated through the netowrk toward the input layer, the gradients get smalller and smaller. The effect is that it can take a lot of time to train back propagation networks with many hidden layers. We will see in the next chaper on Deep Learning how this problem can be solved and deep networks (i.e., networks with many hidden layers) can be trained.

Initially, weights are set to small
random values. You will get a general idea for how this is done in this
section and then we will look at Java implementation code in the Section for a Java Class Library for Back Propagation.

In the Figure showing Backpropagation network with No Hidden Layer, we only have two neuron layers, one for
the input neurons and one for the output neurons. Networks with no
hidden layers are not usually useful – I am using the network in
the Figure showing Backpropagation network with No Hidden Layer
just to demonstrate layer to layer connections through a weights array.

 [image: Example Backpropagation network with No Hidden Layer]
 Example Backpropagation network with No Hidden Layer

To calculate the activation of the first output neuron O1, we evaluate
the sum of the products of the input neurons times the appropriate
weight values; this sum is input to a Sigmoid activation function (see
the Figure showing the Sigmoid Function) and the result is the new activation value for
O1. Here is the formula for the simple network in the Figure showing Backpropagation network with No Hidden Layer:

1 O1 = Sigmoid (I1 * W[1,1] + I2 * W[2,1])
2 O2 = Sigmoid (I2 * W[1,2] + I2 * W[2,2])

The Figure showing the Sigmoid Function shows a plot of the Sigmoid function and the
derivative of the sigmoid function (SigmoidP). We will use the
derivative of the Sigmoid function when training a neural network
(with at least one hidden neuron layer) with classified data examples.

 [image: Sigmoid Function and Derivative of Sigmoid Function (SigmoidP)]
 Sigmoid Function and Derivative of Sigmoid Function (SigmoidP)

A neural network like the one seen in the Figure showing Backpropagation network with No Hidden Layer is
trained by using a set of training data. For back propagation networks,
training data consists of matched sets of input with matching desired
output values. We want to train a network to not only produce the same
outputs for training data inputs as appear in the training data, but
also to generalize its pattern matching ability based on the training
data to be able to match test patterns that are similar to training
input patterns. A key here is to balance the size of the network against
how much information it must hold. A common mistake when using back-prop
networks is to use too large a network: a network that contains too many
neurons and connections will simply memorize the training examples,
including any noise in the training data. However, if we use a smaller
number of neurons with a very large number of training data examples,
then we force the network to generalize, ignoring noise in the training
data and learning to recognize important traits in input data while
ignoring statistical noise.

How do we train a back propagation neural network given that we have a
good training data set? The algorithm is quite easy; we will now walk
through the simple case of a two-layer network like the one in the Figure showing Backpropagation network with No Hidden Layer, and later in the Section for a Java Class Library for Back Propagation we will
review the algorithm in more detail when we have either one or two
hidden neuron layers between the input and output layers.

In order to train the network in the Figure showing Backpropagation network with No Hidden Layer, we repeat
the following learning cycle several times:

 	Zero out temporary arrays for holding the error at each neuron. The
error, starting at the output layer, is the difference between the
output value for a specific output layer neuron and the calculated
value from setting the input layer neuron’s activation values to the
input values in the current training example, and letting activation
spread through the network.

 	Update the weight W{i,j}** (where **i** is the index of an input
neuron, and **j** is the index of an output neuron) using the formula
**W{i,j} += learning_rate * output_error_j*I_i (learning_rate
is a tunable parameter) and output_error_j was calculated in step
1, and I_i is the activation of input neuron at index i.

This process is continued to either a maximum number of learning cycles
or until the calculated output errors get very small. We will see later
that the algorithm is similar but slightly more complicated, when we
have hidden neuron layers; the difference is that we will “back
propagate” output errors to the hidden layers in order to estimate
errors for hidden neurons. We will cover more on this later. This type
of neural network is too simple to solve very many interesting problems,
and in practical applications we almost always use either one additional
hidden neuron layer or two additional hidden neuron layers. The Figure
showing mappings supported by zero
hidden layer, one hidden layer, and two hidden hidden layer networks shows the types of problems that can be solved networks with different numbers of hidden layers.

 [image: Mappings supported by 0, 1, and 2 hidden layer neural networks]
 Mappings supported by 0, 1, and 2 hidden layer neural networks

A Java Class Library for Back Propagation

The back propagation neural network library used in this chapter was
written to be easily understood and is useful for many problems.
However, one thing that is not in the implementation in this section (it
is added in the Section on using Momentum to speed up training) is something usually
called “momentum” to speed up the training process at a cost of doubling
the storage requirements for weights. Adding a “momentum” term not only
makes learning faster but also increases the chances of successfully
learning more difficult problems.

We will concentrate in this section on implementing a back-prop learning
algorithm that works for both one and two hidden layer networks. As we
saw in the Figure
showing mappings supported by zero
hidden layer, one hidden layer, and two hidden hidden layer networks a network with two hidden layers is
capable of arbitrary mappings of input to output values so it used to be common opinion that there was no
theoretical reason for using networks with three hidden
layers. With recent projects using Deep Learning, as I mentioned at the beginning of this chapter, neural networks with many hidden layers are now common practice.

 [image: Example showing 1 hidden layer]
 Example showing 1 hidden layer

 [image: Example showing 2 hidden layers]
 Example showing 2 hidden layers

The source directory src-neural-networks contains example programs for
both back propagation neural networks and Hopfield neural networks which
we saw at the beginning of this chapter. The relevant files for the back
propagation examples are:

 	Neural_1H.java – contains a class for simulating a neural network with one hidden neuron layer

 	Test_1H.java – a text-based test program for the class Neural_1H

 	GUITest_1H.java – a GUI-based test program for the class Neural_1H

 	Neural_2H.java – contains a class for simulating a neural network with two hidden neuron layers

 	Neural_2H_momentum.java – contains a class for simulating a neural network with two hidden neuron layers and implements momentum learning (implemented in the Section on using Momentum to speed up training

 	Test_2H.java – a text-based test program for the class Neural_2H

 	GUITest_2H.java – a GUI-based test program for the class Neural_2H

 	GUITest_2H_momentum.java – a GUI-based test program for the class Neural_2H_momentum that uses momentum learning (implemented in the Section on using Momentum to speed up training

 	Plot1DPanel – a Java JFC graphics panel for the values of a one-dimensional array of floating point values

 	Plot2DPanel – a Java JFC graphics panel for the values of a two-dimensional array of floating point values

The GUI files are for demonstration purposes only, and we will not
discuss the code for these classes; if you are interested in the demo
graphics code and do not know JFC Java programming, there are a few good
JFC tutorials at the web site java.sun.com.

It is common to implement back-prop libraries to handle either zero,
one, or two hidden layers in the same code base. At the risk of having
to repeat similar code in two different classes, I decided to make the
Neural_1H and Neural_2H classes distinct. I think that this makes
the code a little easier for you to understand. As a practical point,
you will almost always start solving a neural network problem using only
one hidden layer and only progress to trying two hidden layers if you
cannot train a one hidden layer network to solve the problem at-hand
with sufficiently small error when tested with data that is different
than the original training data. One hidden layer networks require less
storage space and run faster in simulation than two hidden layer
networks.

In this section we will only look at the implementation of the class
Neural_2H (class Neural_1H is simpler and when you understand how
Neural_2H works, the simpler class is easy to understand also). This
class implements the Serializable interface and contains a utility
method save to write a trained network to a disk file:

1 class Neural_2H implements Serializable {

There is a static factory method that reads a saved network file from
disk and builds an instance of Neural_2H and there is a class
constructor that builds a new untrained network in memory, given the
number of neurons in each layer:

1 public static Neural_2H Factory(String serialized_file_name)
2 public Neural_2H(int num_in,
3 int num_hidden1,
4 int num_hidden2, int num_output)

An instance of Neural_2H contains training data as transient data
that is not saved by method save.

1 transient protected ArrayList inputTraining = new Vector();
2 transient protected ArrayList outputTraining = new Vector();

I want the training examples to be native float arrays so I used generic
ArrayList containers. You will usually need to experiment with
training parameters in order to solve difficult problems. The learning
rate not only controls how large the weight corrections we make each
learning cycle but this parameter also affects whether we can break out
of local minimum. Other parameters that affect learning are the ranges
of initial random weight values that are hardwired in the method
randomizeWeights() and the small random values that we add to weights
during the training cycles; these values are set in in
slightlyRandomizeWeights(). I usually only need to adjust the learning
rate when training back-prop networks:

1 public float TRAINING_RATE = 0.5f;

I often decrease the learning rate during training – that is, I start
with a large learning rate and gradually reduce it during training. The
calculation for output neuron values given a set of inputs and the
current weight values is simple. I placed the code for calculating a
forward pass through the network in a separate method forwardPass()
because it is also used later in the method training:

 1 public float[] recall(float[] in) {
 2 for (int i = 0; i < numInputs; i++) inputs[i] = in[i];
 3 forwardPass();
 4 float[] ret = new float[numOutputs];
 5 for (int i = 0; i < numOutputs; i++) ret[i] = outputs[i];
 6 return ret;
 7 }
 8
 9 public void forwardPass() {
10 for (int h = 0; h < numHidden1; h++) {
11 hidden1[h] = 0.0f;
12 }
13 for (int h = 0; h < numHidden2; h++) {
14 hidden2[h] = 0.0f;
15 }
16 for (int i = 0; i < numInputs; i++) {
17 for (int h = 0; h < numHidden1; h++) {
18 hidden1[h] += inputs[i] * W1[i][h];
19 }
20 }
21 for (int i = 0; i < numHidden1; i++) {
22 for (int h = 0; h < numHidden2; h++) {
23 hidden2[h] += hidden1[i] * W2[i][h];
24 }
25 }
26 for (int o = 0; o < numOutputs; o++) outputs[o] = 0.0f;
27 for (int h = 0; h < numHidden2; h++) {
28 for (int o = 0; o < numOutputs; o++) {
29 outputs[o] += sigmoid(hidden2[h]) * W3[h][o];
30 }
31 }
32 }

While the code for recall and forwardPass is almost trivial, the
training code in method train is more complex and we will go through
it in some detail. Before we get to the code, I want to mention that
there are two primary techniques for training back-prop networks. The
technique that I use is to update the weight arrays after each
individual training example. The other technique is to sum all output
errors over the entire training set (or part of the training set) and
then calculate weight updates. In the following discussion, I am going
to weave my comments on the code into the listing. The private member
variable current_example is used to cycle through the training
examples: one training example is processed each time that the train
method is called:

1 private int current_example = 0;
2
3 public float train(ArrayList ins, ArrayList v_outs) {

Before starting a training cycle for one example, we zero out the arrays
used to hold the output layer errors and the errors that are back
propagated to the hidden layers. We also need to copy the training
example input values and output values:

 1 int i, h, o; float error = 0.0f;
 2 int num_cases = ins.size();
 3 for (int example=0; example<num_cases; example++) {
 4 // zero out error arrays:
 5 for (h = 0; h < numHidden1; h++) hidden1_errors[h] = 0.0f;
 6 for (h = 0; h < numHidden2; h++) hidden2_errors[h] = 0.0f;
 7 for (o = 0; o < numOutputs; o++) output_errors[o] = 0.0f;
 8 // copy the input values:
 9 for (i = 0; i < numInputs; i++) {
10 inputs[i] = ((float[]) ins.get(current_example))[i];
11 }
12 // copy the output values:
13 float[] outs = (float[]) v_outs.get(current_example);

We need to propagate the training example input values through the
hidden layers to the output layers. We use the current values of the
weights:

1 forwardPass();

After propagating the input values to the output layer, we need to
calculate the output error for each output neuron. This error is the
difference between the desired output and the calculated output; this
difference is multiplied by the value of the calculated output neuron
value that is first modified by the Sigmoid function that we saw in
the Figure showing the Sigmoid Function.
The Sigmoid function is to clamp the
calculated output value to a reasonable range.

1 for (o = 0; o < numOutputs; o++) {
2 output_errors[o] = (outs[o] - outputs[o]) * sigmoidP(outputs[o]);
3 }

The errors for the neuron activation values in the second hidden layer
(the hidden layer connected to the output layer) are estimated by
summing for each hidden neuron its contribution to the errors of the
output layer neurons. The thing to notice is that if the connection
weight value between hidden neuron h and output neuron o is large,
then hidden neuron h is contributing more to the error of output
neuron o than other neurons with smaller connecting weight values:

1 for (h = 0; h < numHidden2; h++) {
2 hidden2_errors[h] = 0.0f; for (o = 0; o < numOutputs; o++) {
3 hidden2_errors[h] += output_errors[o] * W3[h][o];
4 }
5 }

We estimate the errors in activation energy for the first hidden layer
neurons by using the estimated errors for the second hidden layers that
we calculated in the last code snippet:

1 for (h = 0; h < numHidden1; h++) {
2 hidden1_errors[h] = 0.0f; for (o = 0; o < numHidden2; o++) {
3 hidden1_errors[h] += hidden2_errors[o] * W2[h][o];
4 }
5 }

After we have scaled estimates for the activation energy errors for both
hidden layers we then want to scale the error estimates using the
derivative of the sigmoid function’s value of each hidden neuron’s
activation energy:

1 for (h = 0; h < numHidden2; h++) {
2 hidden2_errors[h] = hidden2_errors[h] * sigmoidP(hidden2[h]);
3 }
4 for (h = 0; h < numHidden1; h++) {
5 hidden1_errors[h] = hidden1_errors[h] * sigmoidP(hidden1[h]);
6 }

Now that we have estimates for the hidden layer neuron errors, we update
the weights connecting to the output layer and each hidden layer by
adding the product of the current learning rate, the estimated error of
each weight’s target neuron, and the value of the weight’s source
neuron:

 1 // update the hidden2 to output weights:
 2 for (o = 0; o < numOutputs; o++) {
 3 for (h = 0; h < numHidden2; h++) {
 4 W3[h][o] += TRAINING_RATE * output_errors[o] * hidden2[h];
 5 W3[h][o] = clampWeight(W3[h][o]);
 6 }
 7 }
 8 // update the hidden1 to hidden2 weights:
 9 for (o = 0; o < numHidden2; o++) {
10 for (h = 0; h < numHidden1; h++) {
11 W2[h][o] += TRAINING_RATE * hidden2_errors[o] * hidden1[h];
12 W2[h][o] = clampWeight(W2[h][o]);
13 }
14 }
15 // update the input to hidden1 weights:
16 for (h = 0; h < numHidden1; h++) {
17 for (i = 0; i < numInputs; i++) {
18 W1[i][h] += TRAINING_RATE * hidden1_errors[h] * inputs[i];
19 W1[i][h] = clampWeight(W1[i][h]);
20 }
21 }
22 for (o = 0; o < numOutputs; o++) {
23 error += Math.abs(outs[o] - outputs[o]);
24 }

The last step in this code snippet was to calculate an average error
over all output neurons for this training example. This is important so
that we can track the training status in real time. For very long
running back-prop training experiments I like to be able to see this
error graphed in real time to help decide when to stop a training run.
This allows me to experiment with the learning rate initial value and
see how fast it decays. The last thing that method train needs to do
is to update the training example counter so that the next example is
used the next time that train is called:

1 current_example++;
2 if (current_example >= num_cases)
3 current_example = 0;
4 return error;
5 }

You can look at the implementation of the Swing GUI test class
GUTest_2H to see how I decrease the training rate during training. I
also monitor the summed error rate over all output neurons and
occasionally randomize the weights if the network is not converging to a
solution to the current problem.

Adding Momentum to Speed Up Back-Prop Training

We did not use a momentum term in the Java code in the Section for a Java Class Library for Back Propagation. For difficult to train problems, adding a momentum
term can drastically reduce the training time at a cost of doubling the
weight storage requirements. To implement momentum, we remember how much
each weight was changed in the previous learning cycle and make the
weight change larger if the current change in “direction” is the same as
the last learning cycle. For example, if the change to weight W{i,j}**
had a large positive value in the last learning cycle and the calculated
weight change for **W{i,j} is also a large positive value in the
current learning cycle, then make the current weight change even larger.
Adding a “momentum” term not only makes learning faster but also
increases the chances of successfully learning more difficult problems.

I modified two of the classes from the Section for a Java Class Library for Back Propagation to use
momentum:

 	Neural_2H_momentum.java – training and recall for two hidden layer
back-prop networks. The constructor has an extra argument “alpha”
that is a scaling factor for how much of the previous cycle’s weight
change to add to the new calculated delta weight values.

 	GUITest_2H_momentum.java – a GUI test application that tests the
new class Neural_2H_momentum.

The code for class Neural_2H_momentum is similar to the code for
Neural_2H that we saw in the last section so here we will just look
at the differences. The class constructor now takes another parameter
alpha that determines how strong the momentum correction is when we
modify weight values:

1 // momentum scaling term that is applied
2 // to last delta weight: private float alpha = 0f;

While this alpha term is used three times in the training code, it
suffices to just look at one of these uses in detail. When we allocated
the three weight arrays W1, W2, and W3 we also now allocate three
additional arrays of corresponding same size: W1_last_delta,
W2_last_delta, and W3_last_delta. These three new arrays are
used to store the weight changes for use in the next training cycle.
Here is the original code to update W3 from the last section:

1 W3[h][o] += TRAINING_RATE * output_errors[o] * hidden2[h];

The following code snippet shows the additions required to use momentum:

1 W3[h][o] += TRAINING_RATE * output_errors[o] * hidden2[h] +
2 // apply the momentum term:
3 alpha * W3_last_delta[h][o];
4 W3_last_delta[h][o] = TRAINING_RATE * output_errors[o] * hidden2[h];

I mentioned in the last section that there are two techniques for
training back-prop networks: updating the weights after processing each
training example or waiting to update weights until all training
examples are processed. I always use the first method when I don’t use
momentum. In many cases it is best to use the second method when using
momentum.

Statistical Natural Language Processing

I have been working in the field of Natural Language Processing (NLP) since 1982. In this
chapter we will use a few of my open source NLP projects. In the next chapter I have selected
one of many fine open source projects to provide more examples of using NLP to get you started using
NLP in your own projects.

We will cover a wide variety of techniques for processing text in this
chapter. The part of speech tagger, text categorization, clustering,
spelling, and entity extraction examples are all derived from either my
open source projects or my commercial projects. I wrote the Markov model
example code for an earlier edition of this book.

Statistical Natural Language Processing (NLP) is another form of machine learning.

I am not offering you a very formal view of Statistical Natural Language
Processing in this chapter; rather, I collected Java code that I have
been using for years on various projects and simplified it to
(hopefully) make it easier for you to understand and modify for your own
use. The web site http://nlp.stanford.edu/links/statnlp.html is an
excellent resource for both papers when you need more theory and
additional software for Statistical Natural Language Processing. For
Python programmers I can recommend the statistical NLP toolkit NLTK
(nltk.sourceforge.net) that includes an online book and is licensed
using the GPL.

Tokenizing, Stemming, and Part of Speech Tagging Text

Tokenizing text is the process of splitting a string containing text
into individual tokens. Stemming is the reduction of words to
abbreviated word roots that allow for easy comparison for equality of
similar words. Tagging is identifying what part of speech each word is
in input text. Tagging is complicated by many words having different
parts of speech depending on context (examples: “bank the airplane,”
“the river bank,” etc.) You can find the code in this section in the
code ZIP file for this book in the files
src/com/knowledgebooks/nlp/fasttag/FastTag.java and
src/com/knowledgebooks/nlp/util/Tokenizer.java. The required data files
are in the directory test_data in the files lexicon.txt (for processing
English text) and lexicon_medpost.txt (for processing medical text).

We will also look at a public domain word stemmer that I frequently use
in this section.

Before we can process any text we need to break text into individual
tokens. Tokens can be words, numbers and punctuation symbols. The class
Tokenizer has two static methods, both take an input string to
tokenize and return a list of token strings. The second method has an
extra argument to specify the maximum number of tokens that you want
returned:

1 static public List<String> wordsToList(String s)
2 static public List<String> wordsToList(String s,
3 int maxR)

The following listing shows a fragment of example code using this class
with the output:

1 String text =
2 "The ball, rolling quickly, went down the hill.";
3 List<String> tokens = Tokenizer.wordsToList(text);
4 System.out.println(text);
5 for (String token : tokens)
6 System.out.print("\""+token+"\" ");
7 System.out.println();

This code fragment produces the following output:

1 The ball, rolling quickly, went down the hill.
2 "The" "ball" "," "rolling" "quickly" "," "went"
3 "down" "the" "hill" "."

For many applications, it is better to “stem” word tokens to simplify
comparison of similar words. For example “run,” “runs,” and “running”
all stem to “run.” The stemmer that we will use, which I believe to be
in the public domain, is in the file src/public_domain/Stemmer.java.
There are two convenient APIs defined at the end of the class, one to
stem a string of multiple words and one to stem a single word token:

1 public List<String> stemString(String str)
2 public String stemOneWord(String word)

We will use both the FastTag and Stemmer classes often in the
remainder of this chapter.

The FastTag project resulted from my using the excellent tagger written
by Eric Brill while he was at the University of Pennsylvania. He used
machine learning techniques to learn transition rules for tagging text
using manually tagged text as training examples. In reading through his
doctoral thesis I noticed that there were a few transition rules that
covered most of the cases and I implemented a simple “fast tagger” in
Common Lisp, Ruby, Scheme and Java. The Java version is in the file
src/com/knowledgebooks/nlp/fasttag/FastTag.java.

The file src/com/knowledgebooks/nlp/fasttag/README.txt contains
information on where to obtain Eric Brill’s original tagging system and
also defines the tags for both his English language lexicon and the
Medpost lexicon. Table [tab:tagpos] shows the most commonly used tags
(see the README.txt file for a complete description).

 1 [htdp]
 2
 3 l | l | l
 4
 5 **Tag** & **Description** & **Examples**\
 6 NN & singular noun & dog\
 7 NNS & plural noun & dogs\
 8 NNP & singular proper noun & California\
 9 NNPS & plural proper noun & Watsons\
10 CC & conjunction & and, but, or\
11 CD & cardinal number & one, two\
12 DT & determiner & the, some\
13 IN & preposition & of, in, by\
14 JJ & adjective & large, small, green\
15 JJR & comparative adjective & bigger\
16 JJS & superlative adjective & biggest\
17 PP & proper pronoun & I, he, you\
18 RB & adverb & slowly\
19 RBR & comparative adverb & slowest\
20 RP & particle & up, off\
21 VB & verb & eat\
22 VBN & past participle verb & eaten\
23 VBG & gerund verb & eating\
24 VBZ & present verb & eats\
25 WP & wh* pronoun & who, what\
26 WDT & wh* determiner & which, that\
27
28 [tab:tagpos]

Brill’s system worked by processing manually tagged text and then
creating a list of words followed by the tags found for each word. Here
are a few random lines selected from the test_data/lexicon.txt file:

1 Arco NNP
2 Arctic NNP JJ
3 fair JJ NN RB

Here “Arco” is a proper noun because it is the name of a corporation.
The word “Arctic” can be either a proper noun or an adjective; it is
used most frequently as a proper noun so the tag “NNP” is listed before
“JJ.” The word “fair” can be an adjective, singular noun, or an adverb.

The class Tagger reads the file lexicon either as a resource stream
(if, for example, you put lexicon.txt in the same JAR file as the
compiled Tagger and Tokenizer class files) or as a local file. Each
line in the lexicon.txt file is passed through the utility method
parseLine that processes an input string using the first token in the
line as a hash key and places the remaining tokens in an array that is
the hash value. So, we would process the line “fair JJ NN RB” as a hash
key of “fair” and the hash value would be the array of strings (only the
first value is currently used but I keep the other values for future
use):

When the tagger is processing a list of word tokens, it looks each token
up in the hash table and stores the first possible tag type for the
word. In our example, the word “fair” would be assigned (possibly
temporarily) the tag “JJ.” We now have a list of word tokens and an
associated list of possible tag types. We now loop through all of the
word tokens applying eight transition rules that Eric Brill’s system
learned. We will look at the first rule in some detail; i is the loop
variable in the range [0, number of word tokens - 1] and word is the
current word at index i:

1 // rule 1: DT, {VBD | VBP} --> DT, NN
2 if (i > 0 && ret.get(i - 1).equals("DT")) {
3 if (word.equals("VBD") ||
4 word.equals("VBP") ||
5 word.equals("VB")) {
6 ret.set(i, "NN");
7 }
8 }

In English, this rule states that if a determiner (DT) at word token
index i-1 is followed by either a past tense verb (VBD) or a present
tense verb (VBP) then replace the tag type at index i with “NN.”

I list the remaining seven rules in a short syntax here and you can look
at the Java source code to see how they are implemented:

 1 rule 2: convert a noun to a number (CD) if "."
 2 appears in the word
 3 rule 3: convert a noun to a past participle if
 4 words.get(i) ends with "ed"
 5 rule 4: convert any type to adverb if it ends in "ly"
 6 rule 5: convert a common noun (NN or NNS) to an
 7 adjective if it ends with "al"
 8 rule 6: convert a noun to a verb if the preceding
 9 work is "would"
10 rule 7: if a word has been categorized as a common
11 anoun nd it ends with "s", then set its type
12 to plural common noun (NNS)
13 rule 8: convert a common noun to a present participle
14 verb (i.e., a gerund)

My FastTag tagger is not quite as accurate as Brill’s original tagger so
you might want to use his system written in C but which can be executed
from Java as an external process or with a JNI interface.

In the next section we will use the tokenizer, stemmer, and tagger from
this section to develop a system for identifying named entities in text.

Named Entity Extraction From Text

In this section we will look at identifying names of people and places
in text. This can be useful for automatically tagging news articles with
the people and place names that occur in the articles. The “secret
sauce” for identifying names and places in text is the data in the file
test_data/propername.ser – a serialized Java data file containing hash
tables for human and place names. This data is read in the constructor
for the class Names; it is worthwhile looking at the code if you have
not used the Java serialization APIs before:

1 ObjectInputStream p = new ObjectInputStream(ins);
2 Hashtable lastNameHash = (Hashtable) p.readObject();
3 Hashtable firstNameHash = (Hashtable) p.readObject();
4 Hashtable placeNameHash = (Hashtable) p.readObject();
5 Hashtable prefixHash = (Hashtable) p.readObject();

If you want to see these data values, use code like

1 while (keysE.hasMoreElements()) {
2 Object key = keysE.nextElement();
3 System.out.println(key + " : " +
4 placeNameHash.get(key));
5 }

to see data values like the following:

1 Mauritius : country
2 Port-Vila : country_capital
3 Hutchinson : us_city
4 Mississippi : us_state
5 Lithuania : country

Before we look at the entity extraction code and how it works, we will
first look at an example of using the main APIs for the Names class.
The following example uses the methods isPlaceName, isHumanName, and
getProperNames:

 1 System.out.println("Los Angeles: " +
 2 names.isPlaceName("Los Angeles"));
 3 System.out.println("President Bush: " +
 4 names.isHumanName("President Bush"));
 5 System.out.println("President George Bush: " +
 6 names.isHumanName("President George Bush"));
 7 System.out.println("President George W. Bush: " +
 8 names.isHumanName("President George W. Bush"));
 9 ScoredList[] ret = names.getProperNames(
10 "George Bush played golf. President \
11 George W. Bush went to London England, \
12 and Mexico to see Mary \
13 Smith in Moscow. President Bush will \
14 return home Monday.");
15 System.out.println("Human names: " +
16 ret[0].getValuesAsString());
17 System.out.println("Place names: " +
18 ret[1].getValuesAsString());

The output from running this example is:

 1 Los Angeles: true
 2 President Bush: true
 3 President George Bush: true
 4 President George W. Bush: true
 5 * place name: London,
 6 placeNameHash.get(name): country_capital
 7 * place name: Mexico,
 8 placeNameHash.get(name): country_capital
 9 * place name: Moscow,
10 placeNameHash.get(name): country_capital
11 Human names: George Bush:1,
12 President George W . Bush:1,
13 Mary Smith:1,
14 President Bush:1
15 Place names: London:1, Mexico:1, Moscow:1

The complete implementation that you can read through in the source file
ExtractNames.java is reasonably simple. The methods isHumanName and
isPlaceName simply look up a string in either of the human or place
name hash tables. For testing a single word this is very easy; for
example:

1 public boolean isPlaceName(String name) {
2 return placeNameHash.get(name) != null;
3 }

The versions of these APIs that handle names containing multiple words
are just a little more complicated; we need to construct a string from
the words between the starting and ending indices and test to see if
this new string value is a valid key in the human names or place names
hash tables. Here is the code for finding multi-word place names:

 1 public boolean isPlaceName(List<String> words,
 2 int startIndex,
 3 int numWords) {
 4 if ((startIndex + numWords) > words.size()) {
 5 return false;
 6 }
 7 if (numWords == 1) {
 8 return isPlaceName(words.get(startIndex));
 9 }
10 String s = "";
11 for (int i=startIndex;
12 i<(startIndex + numWords); i++) {
13 if (i < (startIndex + numWords - 1)) {
14 s = s + words.get(startIndex) + " ";
15 } else {
16 s = s + words.get(startIndex);
17 }
18 }
19 return isPlaceName(s);
20 }

This same scheme is used to test for multi-word human names. The
top-level utility method getProperNames is used to find human and
place names in text. The code in getProperNames is intentionally easy
to understand but not very efficient because of all of the temporary
test strings that need to be constructed.

Using the WordNet Linguistic Database

The home page for the WordNet project is http://wordnet.princeton.edu
and you will need to download version 3.0 and install it on your
computer to use the example programs in this section and in Chapter
Chapter on Information Gathering. As you can see on the WordNet web
site, there are several Java libraries for accessing the WordNet data
files; we will use the JAWS library written by Brett Spell as a student
project at the Southern Methodist University. I include Brett’s library
and the example programs for this section in the directory
src-jaws-wordnet in the ZIP file for this book.

Tutorial on WordNet

The WordNet lexical database is an ongoing research project that
includes many years of effort by professional linguists. My own use
of WordNet over the last ten years has been simple, mainly using the
database to determine synonyms (called synsets in WordNet) and looking
at the possible parts of speech of words. For reference (as taken from
the Wikipedia article on WordNet), here is a small subset of the type of
relationships contained in WordNet for verbs shown by examples (taken
from the Wikipedia article):

 1 hypernym
 2 : travel (less general) is an hypernym of movement (more general)
 3
 4 entailment
 5 : to sleep is entailed by to snore because you must be asleep to snore
 6
 7 Here are a few of the relations supported for nouns:
 8
 9 hypernyms
10 : canine is a hypernym of dog since every dog is of type canine
11
12 hyponyms
13 : dog (less general) is a hyponym of canine (more general)
14
15 holonym
16 : building is a holonym of window because a window is part of a
17 building
18
19 meronym
20 : window is a meronym of building because a window is part of a
21 building

Some of the related information maintained for adjectives is:

1 related nouns
2 :
3 similar to
4 :

I find the WordNet book (WordNet: An Electronic Lexical Database
(Language, Speech, and Communication) by Christiane Fellbaum, 1998) to
be a detailed reference for WordNet but there have been several new
releases of WordNet since the book was published. The WordNet site and
the Wikipedia article on WordNet are also good sources of information if
you decide to make WordNet part of your toolkit:

1 http://wordnet.princeton.edu/
2 http://en.wikipedia.org/wiki/WordNet

We will Brett’s open source Java WordNet utility library in the next
section to experiment with WordNet. There are also good open source
client applications for browsing the WordNet lexical database that are
linked on the WordNet web site.

Example Use of the JAWS WordNet Library

Assuming that you have downloaded and installed WordNet on your
computer, if you look at the data files themselves you will notice that
the data is divided into index and data files for different data types.
The JAWS library (and other WordNet client libraries for many
programming languages) provides a useful view and convenient access to
the WordNet data. You will need to define a Java property for the
location of the raw WordNet data files in order to use JAWS; on my
system I set:

1 wordnet.database.dir=/Users/markw/temp/wordnet3/dict

The example class WordNetTest finds the different word senses for a given word and prints this data to
standard output. We will tweak this code slightly in the next section
where we will be combining WordNet with a part of speech tagger in
another example program.

Accessing WordNet data using Brett’s library is easy, so we will spend
more time actually looking at the WordNet data itself. Here is a sample
program that shows how to use the APIs. The class constructor makes a
connection to the WordNet data files for reuse:

1 public class WordNetTest {
2 public WordNetTest() {
3 database =
4 WordNetDatabase.getFileInstance();
5 }

Here I wrap a JAWS utility method to return lists of synsets instead of
raw Java arrays:

1 public List<Synset> getSynsets(String word) {
2 return Arrays.asList(database.getSynsets(word));
3 }
4 public static void main(String[] args) {

The constant PropertyNames.DATABASE_DIRECTORY is equal to “wordnet.database.dir.” It is a good idea to make sure that
you have this Java property set; if the value prints as null, then
either fix the way you set Java properties, or just set it explicitly:

 1 System.setProperty(PropertyNames.DATABASE_DIRECTORY,
 2 "/Users/markw/temp/wordnet3/dict");
 3 WordNetTest tester = new WordNetTest();
 4 String word = "bank";
 5 List<Synset> synset_list = tester.getSynsets(word);
 6 System.out.println("\n\n** Process word: " + word);
 7 for (Synset synset : synset_list) {
 8 System.out.println("\nsynset type: " +
 9 SYNSET_TYPES[synset.getType().getCode()]);
10 System.out.println(" definition: " +
11 synset.getDefinition());
12 // word forms are synonyms:
13 for (String wordForm : synset.getWordForms()) {
14 if (!wordForm.equals(word)) {
15 System.out.println(" synonym: " +
16 wordForm);

Antonyms are the opposites to synonyms. Notice that antonyms are
specific to individual senses for a word. This is why I have the
following code to display antonyms inside the loop over word forms for
each word sense for “bank”:

 1 // antonyms mean the opposite:
 2 for (WordSense antonym :
 3 synset.getAntonyms(wordForm)) {
 4 for (String opposite :
 5 antonym.getSynset().getWordForms()) {
 6 System.out.println(
 7 " antonym (of " +
 8 wordForm+"): " + opposite);
 9 }
10 }
11 }
12 }
13 System.out.println("\n");
14 }
15 }
16 private WordNetDatabase database;
17 private final static String[] SYNSET_TYPES =
18 {"", "noun", "verb"};
19 }

Using this example program, we can see the word “bank” has 18 different
“senses,” 10 noun, and 8 verb senses:

 1 ** Process word: bank
 2
 3 synset type: noun
 4 definition: sloping land (especially the slope
 5 beside a body of water)
 6 synset type: noun
 7 definition: a financial institution that accepts
 8 deposits and channels the money into
 9 lending activities
10 synonym: depository financial institution
11 synonym: banking concern
12 synonym: banking company
13 synset type: noun
14 definition: a long ridge or pile
15 synset type: noun
16 definition: an arrangement of similar objects
17 in a row or in tiers
18 synset type: noun
19 definition: a supply or stock held in reserve
20 for future use (especially in
21 emergencies)
22 synset type: noun
23 definition: the funds held by a gambling house
24 or the dealer in some gambling games
25 synset type: noun
26 definition: a slope in the turn of a road or
27 track; the outside is higher than
28 the inside in order to reduce the
29 effects of centrifugal force
30 synonym: cant
31 synonym: camber
32 synset type: noun
33 definition: a container (usually with a slot
34 in the top) for keeping money
35 at home
36 synonym: savings bank
37 synonym: coin bank
38 synonym: money box
39 synset type: noun
40 definition: a building in which the business
41 of banking transacted
42 synonym: bank building
43 synset type: noun
44 definition: a flight maneuver; aircraft
45 tips laterally about its
46 longitudinal axis
47 (especially in turning)
48 synset type: verb
49 definition: tip laterally
50 synset type: verb
51 definition: enclose with a bank
52 synset type: verb
53 definition: do business with a bank or
54 keep an account at a bank
55 synset type: verb
56 definition: act as the banker in a game
57 or in gambling
58 synset type: verb
59 definition: be in the banking business
60 synset type: verb
61 definition: put into a bank account
62 synonym: deposit
63 antonym (of deposit): withdraw
64 antonym (of deposit): draw
65 antonym (of deposit): take out
66 antonym (of deposit): draw off
67 synset type: verb
68 definition: cover with ashes so to control
69 the rate of burning
70 synset type: verb
71 definition: have confidence or faith in
72 synonym: trust
73 antonym (of trust): distrust
74 antonym (of trust): mistrust
75 antonym (of trust): suspect
76 antonym (of trust): distrust
77 antonym (of trust): mistrust
78 antonym (of trust): suspect
79 synonym: swear
80 synonym: rely

WordNet provides a rich linguistic database for human linguists but
although I have been using WordNet since 1999, I do not often use it in
automated systems. I tend to use it for manual reference and sometimes
for simple tasks like augmenting a list of terms with synonyms. In the
next two sub-sections I suggest two possible projects both involving use
of synsets (synonyms). I have used both of these suggested ideas in my
own projects with some success.

Suggested Project: Using a Part of Speech Tagger to Use the Correct WordNet Synonyms

[section:stat~n~lp~s~ynonyms]

We saw in the Section on using WordNet that WordNet will give us
both synonyms and antonyms (opposite meaning) of words. The problem is
that we can only get words with similar and opposite meanings for
specific “senses” of a word. Using the example in the Section on using WordNet, synonyms of the word “bank” in the sense
of a verb meaning “have confidence or faith in” are:

 	trust

 	swear

 	rely

while synonyms for “bank” in the sense of a noun meaning “a financial
institution that accepts deposits and channels the money into lending
activities” are:

 	depository financial institution

 	banking concern

 	banking company

So, it does not make too much sense to try to maintain a data map of
synonyms for a given word. It does make some sense to try to use some
information about the context of a word. We can do this with some degree
of accuracy by using the part of speech tagger from Section
[section:tokenizing-and-tagging] to at least determine that a word in a
sentence is a noun or a verb, and thus limit the mapping of possible
synonyms for the word in its current context.

Suggested Project: Using WordNet Synonyms to Improve Document Clustering

Another suggestion for a WordNet-based project is to use the Tagger to
identify the probable part of speech for each word in all text documents
that you want to cluster, and augment the documents with sysnset
(synonym) data. You can then cluster the documents similarly to how we
will calculate document similarity in the Section on clustering text documents by content.

Automatically Assigning Tags to Text

By tagging I mean assigning zero or more categories like “politics”,
“economy”, etc. to text based on the words contained in the text. While
the code for doing this is simple there is usually much work to do to
build a word count database for different classifications.

I have been working on commercial products for automatic tagging and
semantic extraction for about ten years (see www.knowledgebooks.com if
you are interested). In this section I will show you some simple
techniques for automatically assigning tags or categories to text using
some code snippets from my own commercial product. We will use a set of
tags for which I have collected word frequency statistics. For example,
a tag of “Java” might be associated with the use of the words “Java,”
“JVM,” “Sun,” etc. You can find my pre-trained tag data in the file:

1 test_data/classification_tags.xml

The Java source code for the class AutoTagger is in the file:

1 src-statistical-nlp/
2 com/knowledgebooks/nlp/AutoTagger.java

The AutoTagger class uses a few data structures to keep track of both the names of tags
and the word count statistics for words associated with each tag name. I
use a temporary hash table for processing the XML input data:

1 private static
2 Hashtable<String, Hashtable<String, Float>>
3 tagClasses;

The names of tags used are defined in the XML tag data file: change this
file, and you alter both the tags and behavior of this utility class.
Please note that the data in this XML file is from a small set of hand-labeled (i.e., I labelled articles as being about “religion”, “politics”, etc.) that I use for development. I use a much larger tagged data set in my commercial product that you can experiment with at [kbsportal.com]{#http://kbsportal.com}.

Here is a snippet of data defined in the XML tag data file describing
some words (and their scores) associated with the tag
“religion_buddhism”:

 1 <tags>
 2 <topic name="religion_buddhism">
 3 <term name="buddhism" score="52" />
 4 <term name="buddhist" score="50" />
 5 <term name="mind" score="50" />
 6 <term name="medit" score="41" />
 7 <term name="buddha" score="37" />
 8 <term name="practic" score="31" />
 9 <term name="teach" score="15" />
10 <term name="path" score="14" />
11 <term name="mantra" score="14" />
12 <term name="thought" score="14" />
13 <term name="school" score="13" />
14 <term name="zen" score="13" />
15 <term name="mahayana" score="13" />
16 <term name="suffer" score="12" />
17 <term name="dharma" score="12" />
18 <term name="tibetan" score="11" />
19 . . .
20 </topic>
21 . . .
22 </tags>

Notice that the term names are stemmed words and all lower case. There
are 28 tags defined in the input XML file included in the ZIP file for
this book.

For data access, I also maintain an array of tag names and an associated
list of the word frequency hash tables for each tag name:

1 private static String[] tagClassNames;
2 private static
3 List<Hashtable<String, Float>> hashes =
4 new ArrayList<Hashtable<String, Float>>();

The XML data is read and these data structures are filled during static
class load time so creating multiple instances of the class AutoTagger has no performance penalty in either memory use or processing time.
Except for an empty default class constructor, there is only one public
API for this class, the method getTags:

1 public List<NameValue<String, Float>>
2 getTags(String text) {

The utility class NameValue is defined in the file:

1 src-statistical-nlp/
2 com/knowledgebooks/nlp/util/NameValue.java

To determine the tags for input text, we keep a running score for each
defined tag type. I use the internal class SFtriple to hold triple
values of word, score, and tag index. I choose the tags with the highest
scores as the automatically assigned tags for the input text. Scores for
each tag are calculated by taking each word in the input text, stemming
it, and if the stem is in the word frequency hash table for the tag then
add the score value in the hash table to the running sum for the tag.
You can refer to the AutoTagger.java source code for details. Here is an
example use of class AutoTagger:

 1 AutoTagger test = new AutoTagger();
 2 String s = "The President went to Congress to argue
 3 for his tax bill before leaving on a
 4 vacation to Las Vegas to see some shows
 5 and gamble.";
 6 List<NameValue<String, Float>> results =
 7 test.getTags(s);
 8 for (NameValue<String, Float> result : results) {
 9 System.out.println(result);
10 }

The output looks like:

1 [NameValue: news_economy : 1.0]
2 [NameValue: news_politics : 0.84]

Text Clustering

Clustering text documents refers to associating similar text documents with each other. The text clustering system that I have written for my own projects, in
simplified form, will be used in the section. (I converted my commercial NLP product kbsportal.com from Java to the Clojure programming language in 2012.)

The example code in this section is inherently inefficient when clustering a large number of text documents because I
perform significant semantic processing on each text document and then
compare all combinations of documents. The runtime performance is O(N2) where N
is the number of text documents. If you need to cluster or compare a
very large number of documents you will probably want to use a K-Mean
clustering algorithm (search for “K-Mean clustering Java” for some open
source projects).

I use a few different algorithms to rate the similarity of any two text
documents and I will combine these depending on the requirements of the
project that I am working on:

 	Calculate the intersection of common words in the two documents.

 	Calculate the intersection of common word stems in the two documents.

 	Calculate the intersection of tags assigned to the two documents.

 	Calculate the intersection of human and place names in the two documents.

In this section we will implement the second option: calculate the
intersection of word stems in two documents. Without showing the package
and import statements, it takes just a few lines of code to implement
this algorithm when we use the Stemmer class.

The following listing shows the implementation of class
ComparableDocument with comments. We start by defining constructors
for documents defined by a File object and a String object:

 1 public class ComparableDocument {
 2 // disable default constructor calls:
 3 private ComparableDocument() { }
 4 public ComparableDocument(File document)
 5 throws FileNotFoundException {
 6 this(new Scanner(document).
 7 useDelimiter("\\Z").next());
 8 }
 9 public ComparableDocument(String text) {
10 List<String> stems =
11 new Stemmer().stemString(text);
12 for (String stem : stems) {
13 stem_count++;
14 if (stemCountMap.containsKey(stem)) {
15 Integer count = stemCountMap.get(stem);
16 stemCountMap.put(stem, 1 + count);
17 } else {
18 stemCountMap.put(stem, 1);
19 }
20 }
21 }

In the last constructor, I simply create a count of how many times each
stem occurs in the document.

The public API allows us to get the stem count hash table, the number of
stems in the original document, and a numeric comparison value for
comparing this document with another (this is the first version – we
will add an improvement later):

 1 public Map<String, Integer> getStemMap() {
 2 return stemCountMap;
 3 }
 4 public int getStemCount() {
 5 return stem_count;
 6 }
 7 public float
 8 compareTo(ComparableDocument otherDocument) {
 9 long count = 0;
10 Map<String,Integer> map2 = otherDocument.getStemMap();
11 Iterator iter = stemCountMap.keySet().iterator();
12 while (iter.hasNext()) {
13 Object key = iter.next();
14 Integer count1 = stemCountMap.get(key);
15 Integer count2 = map2.get(key);
16 if (count1!=null && count2!=null) {
17 count += count1 * count2;
18 }
19 }
20 return (float) Math.sqrt(
21 ((float)(count*count) /
22 (double)(stem_count *
23 otherDocument.getStemCount())))
24 / 2f;
25 }
26 private Map<String, Integer> stemCountMap =
27 new HashMap<String, Integer>();
28 private int stem_count = 0;
29 }

I normalize the return value for the method compareTo to return a
value of 1.0 if compared documents are identical (after stemming) and
0.0 if they contain no common stems. There are four test text documents
in the test_data directory and the following test code compares various
combinations. Note that I am careful to test the case of comparing
identical documents:

 1 ComparableDocument news1 =
 2 new ComparableDocument("testdata/news_1.txt");
 3 ComparableDocument news2 =
 4 new ComparableDocument("testdata/news_2.txt");
 5 ComparableDocument econ1 =
 6 new ComparableDocument("testdata/economy_1.txt");
 7 ComparableDocument econ2 =
 8 new ComparableDocument("testdata/economy_2.txt");
 9 System.out.println("news 1 - news1: " +
10 news1.compareTo(news1));
11 System.out.println("news 1 - news2: " +
12 news1.compareTo(news2));
13 System.out.println("news 2 - news2: " +
14 news2.compareTo(news2));
15 System.out.println("news 1 - econ1: " +
16 news1.compareTo(econ1));
17 System.out.println("econ 1 - econ1: " +
18 econ1.compareTo(econ1));
19 System.out.println("news 1 - econ2: " +
20 news1.compareTo(econ2));
21 System.out.println("econ 1 - econ2: " +
22 econ1.compareTo(econ2));
23 System.out.println("econ 2 - econ2: " +
24 econ2.compareTo(econ2));

The following listing shows output that indicates mediocre results; we
will soon make an improvement that makes the results better. The output
for this test code is:

1 news 1 - news1: 1.0
2 news 1 - news2: 0.4457711
3 news 2 - news2: 1.0
4 news 1 - econ1: 0.3649214
5 econ 1 - econ1: 1.0
6 news 1 - econ2: 0.32748842
7 econ 1 - econ2: 0.42922822
8 econ 2 - econ2: 1.0

There is not as much differentiation in comparison scores between
political news stories and economic news stories. What is up here? The
problem is that I did not remove common words (and therefore common word
stems) when creating stem counts for each document. I wrote a utility
class NoiseWords for identifying both common words and their stems;
you can see the implementation in the file NoiseWords.java. Removing
noise words improves the comparison results (I added a few tests since
the last printout):

1 news 1 - news1: 1.0
2 news 1 - news2: 0.1681978
3 news 1 - econ1: 0.04279895
4 news 1 - econ2: 0.034234844
5 econ 1 - econ2: 0.26178515
6 news 2 - econ2: 0.106673114
7 econ 1 - econ2: 0.26178515

Much better results! The API for com.knowledgebooks.nlp.util.NoiseWords
is:

1 public static boolean checkFor(String stem)

You can add additional noise words to the data section in the file
NoiseWords.java, depending on your application.

Spelling Correction

Automating spelling correction is a task that you may use for many types
of projects. This includes both programs that involve users entering
text that will be automatically processed with no further interaction
with the user and for programs that keep the user “in the loop” by
offering them possible spelling choices that they can select. I have
used five different approaches in my own work for automating spelling
correction and getting spelling suggestions:

 	An old project of mine (overly complex, but with good accuracy)

 	Embedding the GNU ASpell utility

 	Use the LGPL licensed Jazzy spelling checker (a port of the GNU
ASpell spelling system to Java)

 	Using Peter Norvig’s statistical spelling correction algorithm

 	Using Norvig’s algorithm, adding word pair statistics

We will use the last three options of these five options in
the following three sections.

GNU ASpell Library and Jazzy

The GNU ASpell system is a hybrid system combining letter substitution
and addition (which we will implement as a short example program in
the next section), the Soundex algorithm, and dynamic
programming. I consider ASpell to be a best of breed spelling utility
and I use it fairly frequently with scripting languages like Ruby where
it is simple to “shell out” and run external programs.

You can also “shell out” external commands to new processes in Java but
there is no need to do this if we use the LGPLed Jazzy library that is
similar to ASpell and written in pure Java. For the sake of
completeness, here is a simple example of how you would use ASpell as an
external program; first, we will run ASpell on in a command shell (not
all output is shown):

1 markw** echo "ths doog" | /usr/local/bin/aspell -a list
2 @(#) International Ispell (but really Aspell 0.60.5)
3 & ths 22 0: Th's, this, thus, Th, \ldots
4 & doog 6 4: dog, Doug, dong, door, \ldots

This output is easy enough to parse; here is an example in Ruby (Python,
Perl, or Java would be similar):

 1 def ASpell text
 2 s = `echo "#{text}" | /usr/local/bin/aspell -a list`
 3 s = s.split("\n")
 4 s.shift
 5 results = []
 6 s.each {|line|
 7 tokens = line.split(",")
 8 header = tokens[0].gsub(':','').split(' ')
 9 tokens[0] = header[4]
10 results <<
11 [header[1], header[3],
12 tokens.collect {|tt| tt.strip}] if header[1]
13 }
14 results
15 end

I include the source code to the LGPLed Jazzy library and a test class
in the directory src-spelling-Jazzy. The Jazzy library source code is in
the sub-directory com/swabunga. We will spend no time looking at the
implementation of the Jazzy library: this short section is simply meant
to get you started quickly using Jazzy.

Here is the test code from the file SpellingJazzyTester.java:

 1 File dict =
 2 new File("test_data/dictionary/english.0");
 3 SpellChecker checker =
 4 new SpellChecker(new SpellDictionaryHashMap(dict));
 5 int THRESHOLD = 10; // computational cost threshold
 6 System.out.println(checker.getSuggestions("runnng",
 7 THRESHOLD));
 8 System.out.println(checker.getSuggestions("season",
 9 THRESHOLD));
10 System.out.println(checker.getSuggestions(
11 "advantagius", THRESHOLD));

The method getSuggestions returns an ArrayList of spelling suggestions. This example code produces the following
output:

1 [running]
2 [season, seasons, reason]
3 [advantageous, advantages]

The file test_data/dictionary/english.0 contains an alphabetically
ordered list of words, one per line. You may want to add words
appropriate for the type of text that your applications use. For
example, if you were adding spelling correction to a web site for
selling sailboats then you would want to insert manufacturer and product
names to this word list in the correct alphabetical order.

The title of this book contains the word “Practical,” so I feel fine
about showing you how to use a useful Open Source package like Jazzy
without digging into its implementation or APsell’s implementation. The
next section contains the implementation of a simple algorithm and we
will study its implementation some detail.

Peter Norvig’s Spelling Algorithm

Peter Norvig designed and implemented a spelling corrector in about 20
lines of Python code. I will implement his algorithm in Java in this
section and in the next section I will
extend my implementation to also use word pair statistics (i.e., use word pairs in addition to single words).

The class SpellingSuggestions uses static data to create an in-memory spelling dictionary. This
initialization will be done at class load time so creating instances of
this class will be inexpensive. Here is the static initialization code
with error handling removed for brevity:

 1 private static Map<String, Integer> wordCounts =
 2 new HashMap<String, Integer>();
 3 static {
 4 // Use Peter Norvig's training file big.txt:
 5 // http://www.norvig.com/spell-correct.html
 6 FileInputStream fstream =
 7 new FileInputStream("/tmp/big.txt");
 8 DataInputStream in = new DataInputStream(fstream);
 9 BufferedReader br =
10 new BufferedReader(new InputStreamReader(in));
11 String line;
12 while ((line = br.readLine()) != null) {
13 List<String> words = Tokenizer.wordsToList(line);
14 for (String word : words) {
15 if (wordCounts.containsKey(word)) {
16 Integer count = wordCounts.get(word);
17 wordCounts.put(word, count + 1);
18 } else {
19 wordCounts.put(word, 1);
20 }
21 }
22 }
23 in.close();
24 }

The class has two static methods that implement the algorithm. The first
method edits seen in the following listing is private and returns a
list of permutations for a string containing a word. Permutations are
created by removing characters, by reversing the order of two adjacent
characters, by replacing single characters with all other characters,
and by adding all possible letters to each space between characters in
the word:

 1 private static List<String> edits(String word) {
 2 int wordL = word.length(), wordLm1 = wordL - 1;
 3 List<String> possible = new ArrayList<String>();
 4 // drop a character:
 5 for (int i=0; i < wordL; ++i) {
 6 possible.add(word.substring(0, i) +
 7 word.substring(i+1));
 8 }
 9 // reverse order of 2 characters:
10 for (int i=0; i < wordLm1; ++i) {
11 possible.add(word.substring(0, i) +
12 word.substring(i+1, i+2) +
13 word.substring(i, i+1) +
14 word.substring(i+2));
15 }
16 // replace a character in each location in the word:
17 for (int i=0; i < wordL; ++i) {
18 for (char ch='a'; ch <= 'z'; ++ch) {
19 possible.add(word.substring(0, i) + ch +
20 word.substring(i+1));
21 }
22 }
23 // add in a character in each location in the word:
24 for (int i=0; i <= wordL; ++i) {
25 for (char ch='a'; ch <= 'z'; ++ch) {
26 possible.add(word.substring(0, i) + ch +
27 word.substring(i));
28 }
29 }
30 return possible;
31 }

Here is a sample test case for the method edits where we call it with the word “cat” and get a list of 187 permutations:

1 [at, ct, ca, act, cta, aat, bat, cat, .., fat, ..,
2 cct, cdt, cet, .., caty, catz]

The public static method correct has four possible return values:

 	If the word is in the spelling hash table, simply return the word.

 	Generate a permutation list of the input word using the method
edits. Build a hash table candidates from the permutation list
with keys being the word count in the main hashtable wordCounts
with values of the words in the permutation list. If the hash table
candidates is not empty then return the permutation with the best
key (word count) value.

 	For each new word in the permutation list, call the method edits
with the word, creating a new candidates hash table with
permutations of permutations. If candidates is not empty then return
the word with the highest score.

 	Return the value of the original word (no suggestions).

 1 public static String correct(String word) {
 2 if(wordCounts.containsKey(word)) return word;
 3 List<String> list = edits(word);
 4 /**
 5 * Candidate hash has word counts as keys,
 6 * word as value:
 7 */
 8 HashMap<Integer, String> candidates =
 9 new HashMap<Integer, String>();
10 for (String testWord : list) {
11 if(wordCounts.containsKey(testWord)) {
12 candidates.put(wordCounts.get(testWord),
13 testWord);
14 }
15 }
16 /**
17 * If candidates is not empty, then return
18 * the word with the largest key (word
19 * count) value:
20 */
21 if(candidates.size() > 0) {
22 return candidates.get(
23 Collections.max(candidates.keySet()));
24 }
25 /**
26 * If the edits method does not provide a
27 * candidate word that matches then we will
28 * call edits again with each previous
29 * permutation words.
30 *
31 * Note: this case occurs only about 20%
32 * of the time and obviously increases
33 * the runtime of method correct.
34 */
35 candidates.clear();
36 for (String editWords : list) {
37 for (String wrd : edits(editWords)) {
38 if(wordCounts.containsKey(wrd)) {
39 candidates.put(wordCounts.get(wrd),wrd);
40 }
41 }
42 }
43 if (candidates.size() > 0) {
44 return candidates.get(
45 Collections.max(candidates.keySet()));
46 }
47 return word;
48 }

Although Peter Norvig’s spelling algorithm is much simpler than the
algorithm used in ASpell it works well. I have used Norvig’s spelling
algorithm for one customer project that had a small specific vocabulary
instead of using ASpell. We will extend Norvig’s spelling algorithm in
the next section to also take advantage of word pair statistics.

Extending the Norvig Algorithm by Using Word Pair Statistics

It is possible to use statistics for which words commonly appear
together to improve spelling suggestions. In my experience this is only
worthwhile when applications have two traits:

 	The vocabulary for the application is specialized. For example, a social networking site for people interested in boating might want a more accurate spelling system than one that has to handle more general English text. In this example, common word pairs might be multi-word boat and manufacturer names, boating locations, etc.

 	There is a very large amount of text in this limited subject area to use for training. This is because there will be many more combinations of word pairs than words and a very large training set helps to determine which pairs are most common, rather than just coincidental.

We will proceed in a similar fashion to the implementation in the last
section but we will also keep an additional hash table containing counts
for word pairs. Since there will be many more word pair combinations
than single words, you should expect both the memory requirements and
CPU time for training to be much larger. For one project, there was so
much training data that I ended up having to use disk-based hash tables
to store word pair counts.

To make this training process take less training time and less memory to
hold the large word combination hash table, we will edit the input file
big.txt from the last section deleting the 1200 lines that contain
random words added to the end of the Project Gutenberg texts.
Furthermore, we will experiment with an even smaller version of this
file (renamed small.txt) that is about ten percent of the size of the
original training file. Because we are using a smaller training set we
should expect marginal results. For your own projects you should use as
much data as possible.

In principle, when we collect a word pair hash table where the hash
values are the number of times a word pair occurs in the training test,
we would want to be sure that we do not collect word pairs across
sentence boundaries and separate phrases occurring inside of
parenthesis, etc. For example consider the following text fragment:

1 He went to Paris. The weather was warm.

Optimally, we would not want to collect statistics on word (or token)
pairs like “Paris .” or “Paris The” that include the final period in a
sentence or span a sentence. In a practical sense, since we will be
discarding seldom occurring word pairs, it does not matter too much so
in our example we will collect all tokenized word pairs at the same time
that we collect single word frequency statistics:

 1 Pattern p = Pattern.compile("[,.()'\";:\\s]+");
 2 Scanner scanner =
 3 new Scanner(new File("/tmp/small.txt"));
 4 scanner.useDelimiter(p);
 5 String last = "ahjhjhdsgh";
 6 while (scanner.hasNext()) {
 7 String word = scanner.next();
 8 if (wordCounts.containsKey(word)) {
 9 Integer count = wordCounts.get(word);
10 wordCounts.put(word, count + 1);
11 } else {
12 wordCounts.put(word, 1);
13 }
14 String pair = last + " " + word;
15 if (wordPairCounts.containsKey(pair)) {
16 Integer count = wordPairCounts.get(pair);
17 wordPairCounts.put(pair, count + 1);
18 } else {
19 wordPairCounts.put(pair, 1);
20 }
21 last = word;
22 }
23 scanner.close();

For the first page of text in the test file, if we print out word pairs
that occur at least two times using this code:

1 for (String pair : wordPairCounts.keySet()) {
2 if (wordPairCounts.get(pair) > 1) {
3 System.out.println(pair + ": " +
4 wordPairCounts.get(pair));
5 }
6 }

then we get this output:

 1 Arthur Conan: 3
 2 by Sir: 2
 3 of Sherlock: 2
 4 Project Gutenberg: 5
 5 how to: 2
 6 The Adventures: 2
 7 Sherlock Holmes: 2
 8 Sir Arthur: 3
 9 Adventures of: 2
10 information about: 2
11 Conan Doyle: 3

The words “Conan” and “Doyle” tend to appear together frequently. If we
want to suggest spelling corrections for “the author Conan Doyyle
wrote” it seems intuitive that we can prefer the correction “Doyle”
since if we take the possible list of corrections for “Doyyle” and
combine each with the preceding word “Conan” in the text, then we notice
that the hash table wordPairCounts has a relatively high count for the key “Conan Doyle” that is a single
string containing a word pair.

In theory this may look like a good approach, but there are a few things
that keep this technique from being generally practical:

 	It is computationally expensive to train the system for large
training text.

 	It is more expensive computationally to perform spelling
suggestions.

 	The results are not likely to be much better than the single word
approach unless the text is in one narrow domain and you have a lot
of training text.

In the example of misspelling Doyyle, calling the method edits: edits(“Doyyle”) returns a list with 349 elements.

The method edits is identical to the one word spelling corrector in the last section. I
changed the method correct by adding an argument for the previous word, factoring in statistics
from the word pair count hash table, and for this example by not
calculating “edits of edits” as we did in the last section. Here is the
modified code:

 1 public String correct(String word,
 2 String previous_word) {
 3 if(wordCounts.containsKey(word)) return word;
 4 List<String> list = edits(word);
 5 // candidate hash has as word counts
 6 // as keys, word as value:
 7 HashMap<Integer, String> candidates =
 8 new HashMap<Integer, String>();
 9 for (String testWord : list) {
10 // look for word pairs with testWord in the
11 // second position:
12 String word_pair = previous_word + " " + testWord;
13 int count_from_1_word = 0;
14 int count_from_word_pairs = 0;
15 if(wordCounts.containsKey(testWord)) {
16 count_from_1_word += wordCounts.get(testWord);
17 candidates.put(wordCounts.get(testWord),
18 testWord);
19 }
20 if (wordPairCounts.containsKey(word_pair)) {
21 count_from_word_pairs +=
22 wordPairCounts.get(word_pair);
23 }
24 // look for word pairs with testWord in the
25 // first position:
26 word_pair = testWord + " " + previous_word;
27 if (wordPairCounts.containsKey(word_pair)) {
28 count_from_word_pairs +=
29 wordPairCounts.get(word_pair);
30 }
31 int sum = count_from_1_word +
32 count_from_word_pairs;
33 if (sum > 0) {
34 candidates.put(sum, testWord);
35 }
36 }
37 /**
38 * If candidates is not empty, then return the
39 * word with the largest key (word count) value:
40 */
41 if(candidates.size() > 0) {
42 return candidates.get(
43 Collections.max(candidates.keySet()));
44 }
45 return word;
46 }

Using word pair statistics can be a good technique if you need to build
an automated spelling corrector that only needs to work on text in one
subject area. You will need a lot of training text in your subject area
and be prepared for extra work performing the training: as I mentioned
before, for one customer project I could not fit the word pair hash
table in memory (on the server that I had to use) so I had to use a
disk-based hash table – the training run took a long while. Another good
alternative for building systems for handling text in one subject area
is to augment a standard spelling library like ASpell or Jazzy with
custom word dictionaries.

Hidden Markov Models

We previously used a set of rules to
assign parts of speech tags to words in English text. The rules that we
used were a subset of the automatically generated rules that Eric
Brill’s machine learning thesis project produced. His thesis work used
Markov modeling to calculate the most likely tag of words, given
preceding words. He then generated rules for tagging – some of which we
saw when tokenizing and tagging text where we saw Brill’s
published results of the most useful learned rules made writing a fast
tagger relatively easy.

In this section we will use word-use statistics to assign word type tags
to each word in input text. We will look in some detail at one of the
most popular approaches to tagging text: building Hidden Markov Models
(HMM) and then evaluating these models against input text to assign word
use (or part of speech) tags to words.

A complete coverage of the commonly used techniques for training and
using HMM is beyond the scope of this section. A full reference for
these training techniques is Foundations of Statistical Natural
Language Processing [Manning, Schutze, 1999]. We will discuss the
training algorithms and sample Java code that implements HMM. The
example in this chapter is purposely pedantic: the example code is
intended to be easy to understand and experiment with.

In Hidden Markov Models (HMM), we speak of an observable sequence of
events that moves a system through a series of states. We attempt to
assign transition probabilities based on the recent history of states of
the system (or, the last few events).

In this example, we want to develop an HMM that attempts to assign part
of speech tags to English text. To train an HMM, we will assume that we
have a large set of training data that is a sequence of words and a
parallel sequence of manually assigned part of speech tags. We will see
an example of this marked up training text that looks like “John/NNP
chased/VB the/DT dog/NN” later in this section.

For developing a sample Java program to learn how to train a HMM, we
assume that we have two Java lists words and tags that are of the same
length. So, we will have one list of words like [“John”, “chased”,
“the”, “dog”] and an associated list of part of speech tags like [“NNP”,
“VB”, “DT”, “NN”].

Once the HMM is trained, we will write another method test_model that takes as input a Java vector of words and returns a Java vector of
calculated part of speech tags.

We now describe the assumptions made for Markov Models and Hidden Markov
Models using this part of speech tagging problem. First, assume that the
desired part of speech tags are an observable sequence like:

1 t[1], t[2], t[3], ..., t[N]

and the original word sequence is:

1 w[1], w[2], w[3], ..., w[N]

We will also assume that the probability of tag t[M] having a specific
value is only a function of:

1 t[M-1]

and:

1 w[M] and w[M-1]

Here we are only using the last state: in some applications, instead of
using the last observed state, we might use the last two states, greatly
increasing the resources (CPU time and memory) required for training.

For our example, we will assume that we have a finite lexicon of words.
We will use a hash table that uses the words in the lexicon as keys and
the values are the possible parts of speech.

For example, assuming the lexicon hash table is named lexicon, we use
the notation:

1 lexicon["a-word"] -> list of possible tags

The following table shows some of the possible tags used in our
example system.

 	Tag Name
 	Part of Speech

 	VB
 	verb

 	NN
 	noun

 	ADJ
 	adjective

 	ADV
 	adverb

 	IN
 	preposition

 	NNP
 	noun

As an example, we might have a lexicon entry:

lexicon[“bank”] -> NN, VB

where the work “bank” could be a noun (“I went to the bank”) or a verb
(“To turn, bank the airplane”). In the example program, I use a hash
table to hold the lexicon in the file Markov.java:

1 Map<String,List<String>> lexicon =
2 new Hashtable<String,List<String>>();

Another hash table keeps a count of how frequently each tag is used:

1 Map<String, Integer> tags =
2 new Hashtable<String, Integer>();
3 Map<String, Integer> words =
4 new Hashtable<String, Integer>();

As you will see in the next three tables
we will be operating on 2D arrays where in the first two tables the rows
and columns represent unique tag names and in the last table the columns
represent unique words and the columns represent unique tag names. We
use the following data structures to keep a list of unique tags and
words (a hash table will not work since we need an ordered sequence):

1 List<String> uniqueTags = new ArrayList<String>();
2 List<String> uniqueWords = new ArrayList<String>();

We will look at the training algorithm and implementation in the next
section. The following table shows the counts in the training data for transitioning from one part of speech to another. For example, the are 16 training examples of a NNP (proper noun) followed by a VB (verb) - fairly common. On the other hand, for example, there are no cases in the training data showing transitions like JJ -> JJ, IN -> JJ, etc.

 	
 	JJ
 	IN
 	VB
 	VBN
 	TO
 	NNP
 	PRP
 	NN
 	RB
 	VBG
 	DT

 	JJ
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	1.0
 	1.0
 	0.0
 	0.0

 	IN
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	1.0
 	0.0
 	2.0
 	0.0
 	0.0
 	4.0

 	VB
 	0.0
 	3.0
 	0.0
 	0.0
 	3.0
 	3.0
 	0.0
 	1.0
 	1.0
 	0.0
 	14.0

 	VBN
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	1.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0

 	TO
 	0.0
 	0.0
 	2.0
 	0.0
 	0.0
 	1.0
 	0.0
 	0.0
 	0.0
 	0.0
 	2.0

 	NNP
 	0.0
 	1.0
 	16.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0

 	PRP
 	0.0
 	0.0
 	2.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0

 	NN
 	0.0
 	3.0
 	5.0
 	1.0
 	2.0
 	0.0
 	0.0
 	1.0
 	0.0
 	0.0
 	0.0

 	RB
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	1.0
 	1.0
 	0.0
 	0.0
 	0.0
 	0.0

 	VBG
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	1.0

 	DT
 	1.0
 	0.0
 	1.0
 	0.0
 	0.0
 	0.0
 	0.0
 	25.0
 	0.0
 	0.0
 	0.0

Training Hidden Markov Models

We will be using code in the file Markov.java and I will show snippets
of this file with comments in this section. You can refer to the source
code for the complete implementation. There are four main methods in the
class Markov:

 	build_words_and_tags()

 	print_statistics()

 	train_model

 	test_model

In order to train a Markov model to tag parts of speech, we start by
building a two-dimensional array using the method build_words_and_tags that uses the following 2D array to count transitions; part of this
array was seen in Figure [tab:markov~t~ransition]:

1 tagToTagTransitionCount[uniqueTagCount][uniqueTagCount]

where the first index is the index of tag~n~ and the second index is the index of tag~n+1~.

We will see later how to calculate the values in this array and then
how the values in this two-dimensional array will be used to calculate
the probabilities of transitioning from one tag to another. First
however, we simply use this array for counting transitions between pairs
of tags. The purpose of the training process is to fill this array with
values based on the hand-tagged training file:

training_data/markov/tagged_text.txt

That looks like this:

1 John/NNP chased/VB the/DT dog/NN down/RP the/DT
2 street/NN ./. I/PRP saw/VB John/NNP dog/VB
3 Mary/NNP and/CC later/RB Mary/NNP throw/VB
4 the/DT ball/NN to/TO John/NNP on/IN the/DT
5 street/NN ./.

The method build_words_and_tags parses this text file and fills the uniqueTags and uniqueWords collections.

The method train_model starts by filling the tag to tag transition count array(see the table
showing counts in the training data for transitioning from one part of speech to another in the last section):

1 tagToTagTransitionCount[][]

The element tagToTagTransitionCount[indexTag0][indexTag1]
is incremented whenever we find a transition of tag_n to tag_{n+1}
in the input training text. The example program writes a spreadsheet
style CSV file for this and other two-dimensional arrays that are useful
for viewing intermediate training results in any spreadsheet program. We
normalized the data seen in Table [tab:markov~t~ransition] by dividing
each element by the count of the total number of tags. This normalized
data can be seen in the table for counts in the training data for transitioning from one part of speech to another seen in the last section. The code
for this first step is:

 1 // start by filling in the tag to tag transition
 2 // count matrix:
 3 tagToTagTransitionCount =
 4 new float[uniqueTagCount][uniqueTagCount];
 5 p("tagCount="+tagCount);
 6 p("uniqueTagCount="+uniqueTagCount);
 7 for (int i = 0; i < uniqueTagCount; i++) {
 8 for (int j = 0; j < uniqueTagCount; j++) {
 9 tagToTagTransitionCount[i][j] = 0;
10 }
11 }
12 String tag1 = (String) tagList.get(0);
13 int index1 = uniqueTags.indexOf(tag1); // inefficient
14 int index0;
15 for (int i = 0, size1 = wordList.size() - 1;
16 i < size1; i++) {
17 index0 = index1;
18 tag1 = (String) tagList.get(i + 1);
19 index1 = uniqueTags.indexOf(tag1); // inefficient
20 tagToTagTransitionCount[index0][index1]++;
21 }
22 WriteCSVfile(uniqueTags, uniqueTags,
23 tagToTagTransitionCount, "tag_to_tag");

Note that all calls to the utility method WriteCSVfile are for debug only: if you use this example on a large training set
(i.e., a large text corpus like Treebank of hand-tagged text) then these
2D arrays containing transition and probability values will be very
large so viewing them with a spreadsheet is convenient.

Then the method train_model calculates the probabilities of transitioning from tag[N] to tag[M] (see
the table showing the raw transition counts in the last section; the following data is the same except that it is normalized to probabilities).

 	
 	JJ
 	IN
 	VB
 	VBN
 	TO
 	NNP
 	PRP
 	NN
 	RB
 	VBG
 	DT

 	JJ
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.5
 	0.5
 	0.0
 	0.0

 	IN
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.14
 	0.0
 	0.29
 	0.0
 	0.0
 	0.57

 	VB
 	0.0
 	0.11
 	0.0
 	0.0
 	0.11
 	0.11
 	0.0
 	0.04
 	0.04
 	0.0
 	0.52

 	VBN
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	1.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0

 	TO
 	0.0
 	0.0
 	0.40
 	0.0
 	0.0
 	0.20
 	0.0
 	0.0
 	0.0
 	0.0
 	0.40

 	NNP
 	0.0
 	0.05
 	0.76
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0

 	PRP
 	0.0
 	0.0
 	0.67
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0

 	NN
 	0.0
 	3.0
 	0.16
 	0.03
 	0.06
 	0.0
 	0.0
 	0.03
 	0.0
 	0.0
 	0.0

 	RB
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.33
 	0.33
 	0.0
 	0.0
 	0.0
 	0.0

 	VBG
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	0.0
 	1.0

 	DT
 	0.04
 	0.0
 	0.04
 	0.0
 	0.0
 	0.0
 	0.0
 	0.93
 	0.0
 	0.0
 	0.0

Here is the code for calculating these transition probabilities:

 1 // now calculate the probabilities of transitioning
 2 // from tag[N] to tag[M]:
 3 probabilityTag1ToTag2 =
 4 new float[uniqueTagCount][uniqueTagCount];
 5 for (int i = 0; i < uniqueTagCount; i++) {
 6 int count =
 7 ((Integer)tags.get(
 8 (String)uniqueTags.get(i))).intValue();
 9 p("tag: " + uniqueTags.get(i) + ", count="+count);
10 for (int j = 0; j < uniqueTagCount; j++) {
11 probabilityTag1ToTag2[i][j] =
12 0.0001f + tagToTagTransitionCount[i][j]
13 / (float)count;
14 }
15 }
16 WriteCSVfile(uniqueTags, uniqueTags,
17 probabilityTag1ToTag2,
18 "test_data/markov/prob_tag_to_tag");

Finally, in the method train_model we complete the training by defining the array

probabilityWordGivenTag[uniqueWordCount][uniqueTagCount]

which shows the probability of a tag at index N producing a word at
index N in the input training text as output by the example program as shown here:

 1 *JJ* *IN* *VB* *VBN* *TO* *NNP* *PRP* *NN* *RB*
 2 --------- ------ ------ ------ ------- ------ ------- ------- ------ ----
 3 went 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00
 4 mary 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00
 5 played 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00
 6 river 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
 7 leave 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.03 0.00
 8 dog 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.23 0.00
 9 away 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33
10 chased 0.00 0.00 0.11 1.00 0.00 0.00 0.00 0.00 0.00
11 at 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 tired 0.50 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
13 good 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 had 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
15 throw 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.03 0.00
16 from 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 so 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33
18 stayed 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
19 absense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
20 street 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00
21 john 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00
22 ball 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.06 0.00
23 on 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 cat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00
25 later 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33
26 she 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00
27 of 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 with 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00
29 saw 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.03 0.00

Here is the code for this last training step:

 1 // now calculate the probability of a word, given
 2 // a proceeding tag:
 3 probabilityWordGivenTag =
 4 new float[uniqueWordCount][uniqueTagCount];
 5 for (int i = 0; i < uniqueWordCount; i++) {
 6 String tag = uniqueTags.get(j);
 7 for (int j = 0; j < uniqueTagCount; j++) {
 8 String tag = uniqueTags.get(j);
 9 // note: index of tag is one less than index
10 // of emitted word we are testing:
11 int countTagOccurence = tags.get(tag);
12 float wordWithTagOccurence = 0;
13 for (int n=0, sizem1=wordList.size()-1;
14 n<sizem1; n++) {
15 String testWord = wordList.get(n);
16 String testTag = tagList.get(n);
17 if (testWord.equals(word) &&
18 testTag.equals(tag)) {
19 wordWithTagOccurence++;
20 }
21 }
22 probabilityWordGivenTag[i][j] =
23 wordWithTagOccurence / (float)countTagOccurence;
24 }
25 }
26 WriteCSVfile(uniqueWords, uniqueTags,
27 probabilityWordGivenTag,
28 "test_data/markov/prob_word_given_tag");

Using the Trained Markov Model to Tag Text

From Section [section:markov~t~raining] we have the probabilities of a
given tag being assigned to words in the lexicon and we have the
probability of a given tag, given the preceding tag. We will use this
information in a “brute force” way in the method test_model : we will iterate through all possible tagging possibilities and rate
them using the formula from Foundations of Statistical Natural Language
Processing [Manning/Schutze, 1999] page 347:

 Rating = Product of terms: (P(word-i |tag-i) * P(tag-i |tag-(i-1)))

(P(word-i |tag-i) is the probability of word having a tag value tag and P(tag-i |tag-(i-1)) is the probability of tag-i following tag-(i-1). We can simply implement two nested loops over all possible tags for
each input word and use the tag for each word with the highest rating
(score).

The arrays for these probabilities in Markov.java are probabilityWordGivenTag and
probabilityTag1ToTag2. The logic for scoring a specific tagging possibility for a sequence of
words in the method score.

The method exponential_tagging_algorithm is the top level API for tagging words. Please note that the word
sequence that you pass to exponential_tagging_algorithm must not contain any words that were not in the original training data
(i.e., in the file tagged_text.txt).

 1 public List<String>
 2 exponential_tagging_algorithm(List<String> words) {
 3 possibleTags = new ArrayList<ArrayList<String>>();
 4 int num = words.size();
 5 indices = new int[num];
 6 counts = new int[num];
 7 int [] best_indices = new int[num];
 8 for (int i=0; i<num; i++) {
 9 indices[i] = 0; counts[i] = 0;
10 }
11 for (int i=0; i<num; i++) {
12 String word = "" + words.get(i);
13 List<String> v = lexicon.get(word);
14 // possible tags at index i:
15 ArrayList<String> v2 = new ArrayList<String>();
16 for (int j=0; j<v.size(); j++) {
17 String tag = "" + v.get(j);
18 if (v2.contains(tag) == false) {
19 v2.add(tag); counts[i]++;
20 }
21 }
22 // possible tags at index i:
23 possibleTags.add(v2);
24 System.out.print("^^ word: " + word + ",
25 tag count: " + counts[i] +
26 ", tags: ");
27 for (int j=0; j<v2.size(); j++) {
28 System.out.print(" " + v2.get(j));
29 }
30 System.out.println();
31 }
32 float best_score = -9999;
33 do {
34 System.out.print("Current indices:");
35 for (int k=0; k<num; k++) {
36 System.out.print(" " + indices[k]);
37 }
38 System.out.println();
39 float score = score(words);
40 if (score > best_score) {
41 best_score = score;
42 System.out.println(" * new best score: " +
43 best_score);
44 for (int m=0; m<num; m++) {
45 best_indices[m] = indices[m];
46 }
47 }
48 } while (incrementIndices(num)); // see text below
49
50 List<String> tags = new ArrayList<String>(num);
51 for (int i=0; i<num; i++) {
52 List<String> v = possibleTags.get(i);
53 tags.add(v.get(best_indices[i]));
54 }
55 return tags;
56 }

The method incrementIndices is responsible for generating the next possible tagging for a sequence
of words. Each word in a sequence can have one or more possible tags.
The method incrementIndices counts with a variable base per digit
position. For example, if we had four words in an input sequence with
the first and last words only having one possible tag value and the
second having two possible tag values and the third word having three
possible tag values, then incrementIndices would count like this:

1 0 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 1 1 0
5 0 0 2 0
6 0 1 1 0

The generated indices (i.e., each row in this listing) are stored in the
class instance variable indices which is used in method **score:

 1 /**
 2 * Increment the class variable indices[] to point
 3 * to the next possible set of tags to check.
 4 */
 5 private boolean incrementIndices(int num) {
 6 for (int i=0; i<num; i++) {
 7 if (indices[i] < (counts[i] - 1)) {
 8 indices[i] += 1;
 9 for (int j=0; j<i; j++) {
10 indices[j] = 0;
11 }
12 return true;
13 }
14 }
15 return false;
16 }

We are not using an efficient algorithm if the word sequence is long. In
practice this is not a real problem because you can break up long texts
into smaller pieces for tagging; for example, you might want to tag just
one sentence at a time. Production systems use the Viterbi algorithm.

Wrapup

If you have not used NLP technologies before I hope that this chapter provided a good introduction
and sufficient Java code examples to get you experimenting on your own. As I mentioned earlier
if you also program in Python you might consider installing and experimenting the
NLTK NLP framework.

If you are a Haskell programmer you might enjoy my Haskell NLP tools
that I released with an open source license in the sprint of 2014.

TBD: web url for the githug repo for my Haskell code

Information Gathering

We saw techniques for extracting semantic information in the chapter
on Statistical Natural Language Processing and we will augment that
material in this chapter with the
use of Reuters Open Calais web services for information extraction from
text. We will then look at information discovery in relational databases,
indexing and search tools and techniques. A good alternative to storing
gathered information in a relational database would be to use an RDF
datastore - I leave that as an exercise for you.

Open Calais

The Open Calais system was developed by Clear Forest (later acquired by
Reuters). Reuters allows free use (with registration) of their named
entity extraction web service; you can make 20,000 web service calls a
day. You need to sign up and get an access key at: www.opencalais.com.
Starting in 1999, I have developed a similar named entity extraction
system (see www.knowledgebooks.com) and I sometimes use both Open Calais
and my own system together.

The example program in this section (OpenCalaisClient.java) expects the
key to be set in your environment; on my MacBook I set (here I show a
fake key – get your own):

1 OPEN_CALAIS_KEY=al4345lkea48586dgfta3129aq

You will need to make sure that this value can be obtained from a
System.getenv() call.

The Open Calais web services support JSON, REST, and SOAP calls. I will
use the REST architectural style in this example. The Open Calais server
returns an XML RDF payload that can be directly loaded into RDF data
stores like Sesame (see Chapter on Semantic Web). The example
class OpenCalaisClient depends on a trick that may break in future
versions of the Open Calais web service: an XML comment block at the top
of the returned RDF payload lists the types of entities and their
values. For example, here is a sample of the header comments with most
of the RDF payload removed for brevity:

 1 <?xml version="1.0" encoding="utf-8"?>
 2 <string xmlns="http://clearforest.com/">
 3 <!--Use of the Calais Web Service is governed by the Terms
 4 of Service located at http://www.opencalais.com. By
 5 using this service or the results of the service you
 6 agree to these terms of service.
 7 -->
 8 <!--Relations:
 9 Country: France, United States, Spain
10 Person: Hillary Clinton, Doug Hattaway, Al Gore
11 City: San Francisco
12 ProvinceOrState: Texas
13 -->
14 <rdf:RDF xmlns:rdf="http://www.w3.org/1 ..."
15 xmlns:c="http://s.opencalais.com/1/pred/">
16 ...
17 <rdf:type ...>
18
19 </rdf:RDF>
20 </string>

Here we will simply parse out the relations from the comment block. If
you want to use Sesame to parse the RDF payload and load it into a local
RDF repository then you can alternatively load the returned Open Calais
response by modifying the example code from the chapter
on the Semantic Web by using:

1 StringReader sr = new StringReader(result);
2 RepositoryConnection connection =
3 repository.getConnection();
4 connection.add(sr, "", RDFFormat.RDFXML);

Here are a few code snippets (incomplete code: please see the Java
source file for more details) from the file OpenCalaisClient.java:

1 public Hashtable<String, List<String>>
2 getPropertyNamesAndValues(String text)
3 throws MalformedURLException, IOException {
4 Hashtable<String, List<String>> ret =
5 new Hashtable<String, List<String>>();

You need an Open Calais license key. The following code sets up the data
for a REST style web service call and opens a connection to the server,
makes the request, and retrieves the response in the string variable payload.

The Java libraries for handling HTTP connections make it simple to
make a architecture style web service call and get the response as a
text string:

 1 String licenseID = System.getenv("OPEN_CALAIS_KEY");
 2 String content = text;
 3 String paramsXML = "<c:params ... </c:params>";
 4 StringBuilder sb =
 5 new StringBuilder(content.length() + 512);
 6 sb.append("licenseID=").append(licenseID);
 7 sb.append("&content=").append(content);
 8 sb.append("¶msXML=").append(paramsXML);
 9 String payload = sb.toString();
10 URLConnection connection =
11 new URL("http://api.opencalais.com ...").
12 openConnection();
13 connection.addRequestProperty("Content-Type",
14 "application/x-www-form-urlencoded");
15 connection.addRequestProperty("Content-Length",
16 String.valueOf(payload.length()));
17 connection.setDoOutput(true);
18 OutputStream out = connection.getOutputStream();
19 OutputStreamWriter writer =
20 new OutputStreamWriter(out);
21 writer.write(payload);
22 writer.flush();
23 // get response from Open Calais server:
24 String result = new Scanner(
25 connection.getInputStream()).
26 useDelimiter("\\Z").next();
27 result = result.replaceAll("<", "<").
28 replaceAll(">", ">");

The text that we are parsing looks like:

1 Country: France, United States, Spain
2 Person: Hillary Clinton, Doug Hattaway, Al Gore

so the text response is parsed to extract a list of values for each
property name contained in the string variable result:

 1 int index1 =
 2 result.indexOf("terms of service.-->");
 3 index1 = result.indexOf("<!--", index1);
 4 int index2 = result.indexOf("-->", index1);
 5 result =
 6 result.substring(index1 + 4, index2 - 1 + 1);
 7 String[] lines = result.split("\\n");
 8 for (String line : lines) {
 9 int index = line.indexOf(":");
10 if (index > -1) {
11 String relation = line.substring(0, index).trim();
12 String[] entities =
13 line.substring(index + 1).trim().split(",");
14 for (int i = 0, size = entities.length;
15 i < size; i++) {
16 entities[i] = entities[i].trim();
17 }
18 ret.put(relation, Arrays.asList(entities));
19 }
20 }
21 return ret;
22 }

Again, I want to point out that the above code depends on the format of
XML comments in the returned XML payload so this code may break in the
future and require modification. Here is an example use of this API:

1 String content =
2 "Hillary Clinton likes to remind Texans that ...";
3 Map<String, List<String>> results =
4 new OpenCalaisClient().
5 getPropertyNamesAndValues(content);
6 for (String key : results.keySet()) {
7 System.out.println(" " + key + ": " +
8 results.get(key));
9 }

In this example the string value assigned to the variable content was
about 500 words of text from a news article; the full text can be seen
in the example data files. The output of this example code is:

1 Person: [Hillary Clinton, Doug Hattaway, Al Gore]
2 Relations: []
3 City: [San Francisco]
4 Country: [France, United States, Spain]
5 ProvinceOrState: [Texas]

There are several ways that you might want to use named entity
identification. One idea is to create a search engine that identifies
people, places, and products in search results and offers users a linked
set of documents or web pages that discuss the same people, places,
and/or products. Another idea is to load the RDF payload returned by the
Open Calais web service calls to an RDF repository and support SPARQL
queries. You may also want to modify any content management systems
(CMS) that you use to add tags for documents maintained in a CMS; using
Open Calais you are limited to the types of entities that they extract.
This limitation is one reason why I maintain and support my own system
for named entity and classification – I like some
flexibility in the type of semantic information that I extract from text
data. I covered some of the techniques that I use in my own work in
the Section on named entity extraction in the the Chapter on
[Statistical Natural Language Processing]{#statistical-nlp} if you decide to implement
your own system to replace or augment Open Calais.

Information Discovery in Relational Databases

We will look at some techniques for using the JDBC meta-data APIs to
explore relational database resources where you at least have read
access rights. In order to make installation of the example programs
easier we will use the Derby pure Java database that is bundled with JDK
1.6. If you are still using JDK 1.5, please download the derby.jar file
and copy it to the “lib” directory for the Java book examples:

http://db.apache.org/derby/

There are small differences in setting up a JDBC connection to an
embedded Derby instance rather than accessing a remote server: these
differences are not important to the material in this section, it is
mostly a matter of changing a connection call.

I will use two XML data sources (data on US states and the CIA World
FactBook) for these examples, and start with the program to insert these
XML data files into the relational database:

1 src-info-disc-rdbs/CreateSampleDatabase.java

and continue with a program to print out all metadata that is
implemented in the files:

1 src-info-disc-rdbs/DumpMetaData.java
2 src-info-disc-rdbs/DatabaseDiscovery.java

We will not implement any specific “database spidering” applications but
I will provide some basic access techniques and give you some ideas for
using database meta data in your own projects.

Creating a Test Derby Database Using the CIA World FactBook and Data on US States

The file test_data/XML/FactBook.xml contains data that I obtained from
the FactBook web site and converted to XML. This XML file contains data
for individual countries and a few general regions:

 1 <FactBook year="2001">
 2 <country name="Aruba"
 3 location="Caribbean, island in the ..."
 4 background="Discovered and claimed ..."
 5 climate="tropical marine; little seasonal ..."
 6 terrain="flat; scant vegetation"
 7 resources="NEGL; white sandy beaches"
 8 hazards="lies outside the Caribbean
 9 hurricane belt"
10 population="70,007 (July 2001 est.)"
11 government="parliamentary democracy"
12 economy="Tourism is the mainstay
13 of the Aruban ..."
14 inflation="4.2% (2000 est.)"
15 languages="Dutch (official), Papiamento ..."
16 religions="Roman Catholic 82%,
17 Protestant 8%, ..."
18 capital="Oranjestad"
19 unemployment="0.6% (1999 est.)"
20 industries="tourism, transshipment
21 facilities, ..."
22 agriculture="aloes; livestock; fish"
23 exports="**2.2 billion (including oil
24 reexports) ..."
25 imports="**2.5 billion (2000 est.)"
26 debt="**285 million (1996)"
27 aid="**26 million (1995); note -
28 the Netherlands ..."
29 internet_code=".aw"
30 />
31 ...
32 </FactBook>

The other sample XML file USstates.xml contains information on
individual states:

1 <USstates year="2003">
2 <state name="Alabama"
3 abbrev="AL"
4 capital="Montgomery"
5 industry="Paper, lumber and wood products ..."
6 agriculture="Poultry and eggs, cattle, ..."
7 population="4447100">
8 ...
9 </USstates>

The example class CreateSampleDatabases reads both the files FactBook.xml and USsattes.xml and creates two
tables “factbook” and “states” in a test database. The implementation of
this utility class is simple: just parsing XML data and making JDBC
calls to create and populate the two tables. You can look at the Java
source file for details.

Using the JDBC Meta Data APIs

This chapter is about processing and using data from multiple sources.
With the wealth of data stored in relational database systems, it is
important to know how to “spider” databases much as you might need to
spider data stored on specific web sites. The example class
DumpMetaData shows you how to discover tables, information about table
columns, and query all tables in a specific database.

The constructor of class DumpMetaData is called with a database URI
and prints meta data and data to standard output. This code should be
portable to database systems other than Derby by changing the driver
name.

 1 class DumpMetaData {
 2 public DumpMetaData(String connectionUrl)
 3 throws SQLException, ClassNotFoundException {
 4 Class.forName("org.apache.derby.jdbc.EmbeddedDriver");
 5 Connection conn =
 6 DriverManager.getConnection(connectionUrl);
 7 System.out.println("conn: " + conn);
 8 Statement s = conn.createStatement();
 9 DatabaseMetaData md = conn.getMetaData();
10
11 // Discovery all table names in this database:
12 List<String> tableNames = new ArrayList<String>(5);

We will use the method getTables() to fetch a list of all tables in
the database. The four arguments are:

 	String catalog: can be used when database systems support catalogs.
We will use null to act as a wildcard match.

 	String schemaPattern: can be used when database systems support
schemas. We will use null to act as a wildcard match.

 	String tableNamePattern: a pattern to match table names; we will use
“%” as a wildcard match.

 	String types[]: the types of table names to return. Possible values
include TABLE, VIEW, ALIAS, SYNONYM, and SYSTEM TABLE.

The method getTables() returns a ResultSet so we iterate through
returned values just as you would in a regular SQL query using the JDBC
APIs:

 1 ResultSet table_rs =
 2 md.getTables(null, null, "%",
 3 new String[]{"TABLE"});
 4 while (table_rs.next()) {
 5 System.out.println("Table: " +
 6 table_rs.getString(3));
 7 tableNames.add(table_rs.getString(3));
 8 }
 9
10 // Loop over all tables printing column meta data and
11 // the first row:
12 for (String tableName : tableNames) {
13 System.out.println("\n\n** Processing table " +
14 tableName + "\n");
15 String query = "SELECT * from " + tableName;
16 System.out.println(query);
17 ResultSet rs = s.executeQuery(query);
18 ResultSetMetaData table_meta = rs.getMetaData();
19 int columnCount = table_meta.getColumnCount();
20 System.out.println("\nColumn meta data for table:");
21 List<String> columnNames = new ArrayList<String>(10);
22 columnNames.add("");
23 for (int col=1; col<=columnCount; col++) {
24 System.out.println("Column " + col + " name: " +
25 table_meta.getColumnLabel(col));
26 System.out.println(" column data type: " +
27 table_meta.getColumnTypeName(col));
28 columnNames.add(table_meta.getColumnLabel(col));
29 }
30 System.out.println("\nFirst row in table:");
31 if (rs.next()) {
32 for (int col=1; col<=columnCount; col++) {
33 System.out.println(" " + columnNames.get(col) +
34 ": " + rs.getString(col));
35 }
36 }
37 }
38 }
39 }

Output looks like this:

 1 Table: FACTBOOK
 2 Table: USSTATES
 3
 4 ** Processing table FACTBOOK
 5
 6 SELECT * from FACTBOOK
 7
 8 Column meta data for table:
 9 Column 1 name: NAME
10 column data type: VARCHAR
11 Column 2 name: LOCATION
12 column data type: VARCHAR
13 Column 3 name: EXPORT
14 column data type: BIGINT
15 Column 4 name: IMPORT
16 column data type: BIGINT
17 Column 5 name: DEBT
18 column data type: BIGINT
19 Column 6 name: AID
20 column data type: BIGINT
21 Column 7 name: UNEMPLOYMENT_PERCENT
22 column data type: INTEGER
23 Column 8 name: INFLATION_PERCENT
24 column data type: INTEGER
25
26 First row in table:
27 NAME: Aruba
28 LOCATION: Caribbean, island in the Caribbean Sea,
29 north of Venezuela
30 EXPORT: 2200000000
31 IMPORT: 2500000000
32 DEBT: 285000000
33 AID: 26000000
34 UNEMPLOYMENT_PERCENT: 0
35 INFLATION_PERCENT: 4
36
37 ** Processing table USSTATES
38
39 SELECT * from USSTATES
40
41 Column meta data for table:
42 Column 1 name: NAME
43 column data type: VARCHAR
44 Column 2 name: ABBREVIATION
45 column data type: CHAR
46 Column 3 name: INDUSTRY
47 column data type: VARCHAR
48 Column 4 name: AGRICULTURE
49 column data type: VARCHAR
50 Column 5 name: POPULATION
51 column data type: BIGINT
52
53 First row in table:
54 NAME: Alabama
55 ABBREVIATION: AL
56 INDUSTRY: Paper, lumber and wood products, mining,
57 rubber and plastic products, transportation
58 equipment, apparel
59 AGRICULTURE: Poultry and eggs, cattle, nursery stock,
60 peanuts, cotton, vegetables, milk,
61 soybeans
62 POPULATION: 4447100

Using the JDBC meta data APIs is a simple technique but can be very
useful for both searching many tables for specific column names and for
pulling meta data and row data into local search engines. While most
relational databases provide support for free text search of text fields
in a database it is often better to export specific text columns in a
table to an external search engine.

We will spend the rest of this chapter on index and search techniques.
While we usually index web pages and local document repositories, keep
in mind that data in relational databases can also easily be indexed
either with hand written export utilities or automated techniques using
the JDBC meta-data APIs that we used in this section.

Using the Meta Data APIs to Discern Entity Relationships

When database schemas are defined it is usually a top down approach:
entities and their relationships are modeled and then represented as
relational database tables. When automatically searching remote
databases for information we might need to discern which entities and
their relationships exist depending on table and column names.

This is likely to be a domain specific development effort. While it is
feasible and probably useful to build a “database spider” for databases
in a limited domain (for example car parts or travel destinations) to
discern entity models and their relations, it is probably not possible
without requiring huge resources to build a system that handles multiple
data domains.

The expression “dark web” refers to information on the web that is
usually not “spidered” – information that lives mostly in relational
databases and often behind query forms. While there are current efforts
by search engine companies to determine the data domains of databases
hidden behind user entry forms using surrounding text, for most
organizations this is simply too large a problem to solve. On the other
hand, using the meta data of databases that you or your organization
have read access to for “database spidering” is a more tractable
problem.

Down to the Bare Metal: In-Memory Index and Search

Indexing and search technology is used in a wide range of applications.
In order to get a good understanding of index and search we will design
and implement an in-memory library in this section. In Section
[section:lucene] we will take a quick look at the Lucene library and in
the Section on Nutch we will look at client programs using the Nutch
indexing and search system that is based on Lucene.

We need a way to represent data to be indexed. We will use a simple
package-visible class (no getters/setters, assumed to be in the same
package as the indexing and search class):

 1 class TestDocument {
 2 int id;
 3 String text;
 4 static int count = 0;
 5 TestDocument(String text) {
 6 this.text = text;
 7 id = count++;
 8 }
 9 public String toString() {
10 int len = text.length();
11 if (len > 25) len = 25;
12 return "[Document id: " + id + ": " +
13 text.substring(0,len) + "...]";
14 }
15 }

We will write a class InMemorySearch that indexes instances of the
TestDocument class and supplies an API for search. The first decision
to make is how to store the index that maps search terms to documents
that contain the search terms. One simple idea would be to use a map to
maintain a set of document IDs for each search term; something like:

1 Map<String, Set<Integer>> index;

This would be easy to implement but leaves much to be desired so we will
take a different approach. We would like to rank documents by relevance
but a relevance measure just based on containing all (or most) of the
search terms is weak. We will improve the index by also storing a score
of how many times a search term occurs in a document, scaled by the
number of words in a document. Since our document model does not contain
links to other documents we will not use a Google-like page ranking
algorithm that increases the relevance of search results based on the
number of incoming links to matched documents. We will use a utility
class (again, assuming same package data visibility) to hold a document
ID and a search term count. I used generics for the first version of
this class to allow alternative types for counting word use in a
document and later changed the code to hardwiring the types for ID and
word count to native integer values for runtime efficiency and to use
less memory. Here is the second version of the code:

 1 class IdCount implements Comparable<IdCount> {
 2 int id = 0;
 3 int count = 0;
 4 public IdCount(int k, int v) {
 5 this.id = k;
 6 this.count = v;
 7 }
 8 public String toString() {
 9 return "[IdCount: " + id + " : " + count + "]";
10 }
11 @Override
12 public int compareTo(IdCount o) {
13 // don't use o.count - count: avoid overflows
14 if (o.count == count) return 0;
15 if (o.count > count) return 1;
16 return -1;
17 }
18 }

We can now define the data structure for our index:

1 Map<String,TreeSet<IdCount>> index =
2 new Hashtable<String, TreeSet<IdCount>>();

The following code is used to add documents to the index. I score word
counts by dividing by the maximum word size I expect for documents; in
principle it would be better to use a Float value but I prefer working
with and debugging code using integers – debug output is more readable.
The reason why the number of times a word appears in a document needs to
be scaled by the the size of the document is fairly obvious: if a given
word appears once in a document with 10 words and once in another
document with 1000 words, then the word is much more relevant to finding
the first document.

 1 public void add(TestDocument document) {
 2 Map<String,Integer> wcount =
 3 new Hashtable<String,Integer>();
 4 StringTokenizer st =
 5 new StringTokenizer(document.text.toLowerCase(),
 6 " .,;:!");
 7 int num_words = st.countTokens();
 8 if (num_words == 0) return;
 9 while (st.hasMoreTokens()) {
10 String word = st.nextToken();
11 System.out.println(word);
12 if (wcount.containsKey(word)) {
13 wcount.put(word, wcount.get(word) +
14 (MAX_WORDS_PER_DOCUMENT / num_words));
15 } else {
16 wcount.put(word, MAX_WORDS_PER_DOCUMENT
17 / num_words);
18 }
19 }
20 for (String word : wcount.keySet()) {
21 TreeSet<IdCount> ts;
22 if (index.containsKey(word)) {
23 ts = index.get(word);
24 } else {
25 ts = new TreeSet<IdCount>();
26 index.put(word, ts);
27 }
28 ts.add(new IdCount(document.id, wcount.get(word) *
29 MAX_WORDS_PER_DOCUMENT / num_words));
30 }
31 }

If a word is in the index hash table then the hash value will be a
sorted TreeSet of IdCount objects. Sort order is in decreasing size
of the scaled word count. Notice that I converted all tokenized words in
document text to lower case but I did not stem the words. For some
applications you may want to use a word stemmer as we did in Section
the Section on tokenizing and tagging in the Chapter on
[Statistical Natural Language Processing]{#statistical-nlp}.
I used the temporary hash table wcount
to hold word counts for the document being indexed and once wcount was
created and filled, then looked up the TreeSet for each word (creating
it if it did not yet exist) and added in new IdCount objects to
represent the currently indexed document and the scaled number of
occurrences for the word that is the index hash table key.

For development it is good to have a method that prints out the entire
index; the following method serves this purpose:

 1 public void debug() {
 2 System.out.println(
 3 "*** Debug: dump of search index:\n");
 4 for (String word : index.keySet()) {
 5 System.out.println("\n* " + word);
 6 TreeSet<IdCount> ts = index.get(word);
 7 Iterator<IdCount> iter = ts.iterator();
 8 while (iter.hasNext()) {
 9 System.out.println(" " + iter.next());
10 }
11 }
12 }

Here are a few lines of example code to create an index and add three
test documents:

 1 InMemorySearch ims = new InMemorySearch();
 2 TestDocument doc1 =
 3 new TestDocument("This is a test for index and
 4 a test for search.");
 5 ims.add(doc1);
 6 TestDocument doc2 =
 7 new TestDocument("Please test the index code.");
 8 ims.add(doc2);
 9 TestDocument doc3 =
10 new TestDocument("Please test the index code
11 before tomorrow.");
12 ims.add(doc3);
13 ims.debug();

The method debug produces the following output (most is not shown for
brevity). Remember that the variable IdCount contains a data pair: the
document integer ID and a scaled integer word count in the document.
Also notice that the TreeSet is sorted in descending order of scaled
word count.

 1 *** Debug: dump of search index:
 2
 3 * code
 4 [IdCount: 1 : 40000]
 5 [IdCount: 2 : 20285]
 6
 7 * please
 8 [IdCount: 1 : 40000]
 9 [IdCount: 2 : 20285]
10
11 * index
12 [IdCount: 1 : 40000]
13 [IdCount: 2 : 20285]
14 [IdCount: 0 : 8181]
15
16 ...

Given the hash table index it is simple to take a list of search words
and return a sorted list of matching documents. We will use a temporary
hash table ordered_results that maps document IDs to the current
search result score for that document. We tokenize the string containing
search terms, and for each search word we look up (if it exists) a score
count in the temporary map ordered_results (creating a new IdCount
object otherwise) and increment the score count. Note that the map
ordered_results is ordered later by sorting the keys by the hash
table value:

 1 public List<Integer> search(String search_terms,
 2 int max_terms) {
 3 List<Integer> ret = new ArrayList<Integer>(max_terms);
 4 // temporary tree set to keep ordered search results:
 5 final Map<Integer,Integer> ordered_results =
 6 new Hashtable<Integer,Integer>(0);
 7 StringTokenizer st =
 8 new StringTokenizer(search_terms.toLowerCase(),
 9 " .,;:!");
10 while (st.hasMoreTokens()) {
11 String word = st.nextToken();
12 Iterator<IdCount> word_counts =
13 index.get(word).iterator();
14 while (word_counts.hasNext()) {
15 IdCount ts = word_counts.next();
16 Integer id = ts.id;
17 if (ordered_results.containsKey(id)) {
18 ordered_results.put(id,
19 ordered_results.get(id) + ts.count);
20 } else {
21 ordered_results.put(id, ts.count);
22 }
23 }
24 }
25 List<Integer> keys =
26 new ArrayList<Integer>(ordered_results.keySet());
27 Collections.sort(keys, new Comparator<Integer>() {
28 public int compare(Integer a, Integer b) {
29 return -ordered_results.get(a).
30 compareTo(ordered_results.get(b)) ;
31 }
32 });
33 int count = 0;
34 result_loop:
35 for (Integer id : keys) {
36 if (count++ >= max_terms) break result_loop;
37 ret.add(id);
38 }
39 return ret;
40 }

For the previous example using the three short test documents, we can
search the index, in this case for a maximum of 2 results, using:

1 List<Integer> search_results =
2 ims.search("test index", 2);
3 System.out.println("result doc IDs: "+search_results);

getting the results:

1 result doc IDs: [1, 2]

If you want to use this “bare metal” indexing and search library, there
are a few details that still need to be implemented. You will probably
want to persist the TestDocument objects and this can be done simply
by tagging the class with the Serializable interface and writing
serialized files using the document ID as the file name. You might also
want to serialize the InMemorySearch class.

While I sometimes implement custom indexing and search libraries for
projects that require a lightweight and flexible approach to indexing
and search as we did in this section, I usually use either the Lucene
search library or a combination of the Hibernate Object Relational
Mapping (ORM) library with Lucene (Hibernate Search). We will look at
Lucene in Section [section:lucene].

Indexing and Search Using Embedded Lucene

[section:lucene]

Books have been written on the Lucene indexing and search library and in
this short section we will look at a brief application example that you
can use for a quick reference for starting Lucene based projects. I
consider Lucene to be an important tool for building intelligent text
processing systems.

Lucene supports the concept of a document with one or more fields.
Fields can either be indexed or not, and optionally stored in a
disk-based index. Searchable fields can be automatically tokenized using
either one of Lucene’s built in text tokenizers or you can supply your
customized tokenizer.

When I am starting a new project using Lucene I begin by using a
template class LuceneManager that you can find in the file
src-index-search/LuceneManager.java. I usually clone this file and make
any quick changes for adding fields to documents, etc. We will look at a
few important code snippets in the class LuceneManager and you can
refer to the source code for more details. We will start by looking at
how indices are stored and managed on disk. The class constructor stores
the file path to the Lucene disk index. You can optionally use method
createAndClearLuceneIndex to delete an existing Lucene index (if it
exists) and creates an empty index.

 1 public LuceneManager(String data_store_file_root) {
 2 this.data_store_file_root = data_store_file_root;
 3 }
 4
 5 public void createAndClearLuceneIndex()
 6 throws CorruptIndexException,
 7 LockObtainFailedException,
 8 IOException {
 9 deleteFilePath(new File(data_store_file_root +
10 "/lucene_index"));
11 File index_dir = new File(data_store_file_root +
12 "/lucene_index");
13 new IndexWriter(index_dir,
14 new StandardAnalyzer(), true).close();
15 }

If you are using an existing disk-based index that you want to reuse,
then do not call method createAndClearLuceneIndex. The last
argument to the class IndexWriter constructor is a flag to create a
new index, overwriting any existing indices. I use the utility method
deleteFilePath to make sure that all files from any previous indices
using the same top level file path are deleted. The method
addDocumentToIndex is used to add new documents to the index. Here we
call the constructor for the class IndexWriter with a value of false
for the last argument to avoid overwriting the index each time method
addDocumentToIndex is called.

 1 public void addDocumentToIndex(
 2 String document_original_uri,
 3 String document_plain_text)
 4 throws CorruptIndexException, IOException {
 5 File index_dir =
 6 new File(data_store_file_root + "/lucene_index");
 7 writer = new IndexWriter(index_dir,
 8 new StandardAnalyzer(), false);
 9 Document doc = new Document();
10 // store URI in index; do not index
11 doc.add(new Field("uri",
12 document_original_uri,
13 Field.Store.YES,
14 Field.Index.NO));
15 // store text in index; index
16 doc.add(new Field("text",
17 document_plain_text,
18 Field.Store.YES,
19 Field.Index.TOKENIZED));
20 writer.addDocument(doc);
21 writer.optimize(); // optional
22 writer.close();
23 }

You can add fields as needed when you create individual Lucene
Document objects but you will want to add the same fields in your
application: it is not good to have different documents in an index with
different fields. There are a few things that you may want to change if
you use this class as an implementation example in your own projects. If
you are adding many documents to the index in a short time period, then
it is inefficient to open the index, add one document, and then optimize
and close the index. You might want to add a method that passes in
collections of URIs and document text strings for batch inserts. You
also may not want to store the document text in the index if you are
already storing document text somewhere else, perhaps in a database.

There are two search methods in my LuceneManager class: one just
returns the document URIs for search matches and the other returns both
URIs and the original document text. Both of these methods open an
instance of IndexReader for each query. For high search volume
operations in a multi-threaded environment, you may want to create a
pool of IndexReader instances and reuse them. There are several text
analyzer classes in Lucene and you should use the same analyzer class
when adding indexed text fields to the index as when you perform
queries. In the two search methods I use the same StandardAnalyzer
class that I used when adding documents to the index. The following
method returns a list of string URIs for matched documents:

 1 public List<String>
 2 searchIndexForURIs(String search_query)
 3 throws ParseException, IOException {
 4 reader = IndexReader.open(data_store_file_root +
 5 "/lucene_index");
 6 List<String> ret = new ArrayList<String>();
 7 Searcher searcher = new IndexSearcher(reader);
 8 Analyzer analyzer = new StandardAnalyzer();
 9 QueryParser parser =
10 new QueryParser("text", analyzer);
11 Query query = parser.parse(search_query);
12 Hits hits = searcher.search(query);
13 for (int i = 0; i < hits.length(); i++) {
14 System.out.println(
15 " * * searchIndexForURIs: hit: " + hits.doc(i));
16 Document doc = hits.doc(i);
17 String uri = doc.get("uri");
18 ret.add(uri);
19 }
20 reader.close();
21 return ret;
22 }

The Lucene class Hits is used for returned search matches and here we
use APIs to get the number of hits and for each hit get back an instance
of the Lucene class Document. Note that the field values are retrieved
by name, in this case “uri.” The other search method in my utility class
searchIndexForURIsAndDocText is almost the same as
searchIndexForURIs so I will only show the differences:

 1 public List<String[]>
 2 searchIndexForURIsAndDocText(
 3 String search_query) throws Exception {
 4 List<String[]> ret = new ArrayList<String[]>();
 5 ...
 6 for (int i = 0; i < hits.length(); i += 1) {
 7 Document doc = hits.doc(i);
 8 System.out.println(" * * hit: " +
 9 hits.doc(i));
10 String [] pair =
11 new String[]{doc.get("uri"), doc.get("text")};
12 ret.add(pair);
13 }
14 ...
15 return ret;
16 }

Here we also return the original text from matched documents that we get
by fetching the named field “text.” The following code snippet is an
example for using the LuceneManager class:

 1 LuceneManager lm = new LuceneManager("/tmp");
 2 // start fresh: create a new index:
 3 lm.createAndClearLuceneIndex();
 4 lm.addDocumentToIndex("file://tmp/test1.txt",
 5 "This is a test for index and a test for search.");
 6 lm.addDocumentToIndex("file://tmp/test2.txt",
 7 Please test the index code.");
 8 lm.addDocumentToIndex("file://tmp/test3.txt",
 9 "Please test the index code before tomorrow.");
10 // get URIs of matching documents:
11 List<String> doc_uris =
12 lm.searchIndexForURIs("test, index");
13 System.out.println("Matched document URIs: "+doc_uris);
14 // get URIs and document text for matching documents:
15 List<String[]> doc_uris_with_text =
16 lm.searchIndexForURIsAndDocText("test, index");
17 for (String[] uri_and_text : doc_uris_with_text) {
18 System.out.println("Matched document URI: " +
19 uri_and_text[0]);
20 System.out.println(" document text: " +
21 uri_and_text[1]);
22 }

and here is the sample output (with debug printout from deleting the old
test disk-based index removed):

 1 Matched document URIs: [file://tmp/test1.txt,
 2 file://tmp/test2.txt,
 3 file://tmp/test3.txt]
 4 Matched document URI: file://tmp/test1.txt
 5 document text: This is a test for index
 6 and a test for search.
 7 Matched document URI: file://tmp/test2.txt
 8 document text: Please test the index code.
 9 Matched document URI: file://tmp/test3.txt
10 document text: Please test the index code
11 before tomorrow.

I use the Lucene library frequently on customer projects and although
tailoring Lucene to specific applications is not simple, the wealth of
options for analyzing text and maintaining disk-based indices makes
Lucene a very good tool. Lucene is also very efficient and scales well
to very large indices.

In the Section on Nutch we will look at the Nutch system that is
built on top of Lucene and provides a complete turnkey (but also highly
customizable) solution to implementing search in large scale projects
where it does not make sense to use Lucene in an embedded mode as we did
in this Section.

Indexing and Search with Nutch Clients

This is the last section in this book, and we have a great topic for
finishing the book: the Nutch system that is a very useful tool for
information storage and retrieval. Out of the box, it only takes about
15 minutes to set up a “vanilla” Nutch server with the default web
interface for searching documents. Nutch can be configured to index
documents on a local file system and contains utilities for processing a
wide range of document types (Microsoft Office, OpenOffice.org, PDF,
TML, etc.). You can also configure Nutch to spider remote and local
private (usually on a company LAN) web sites.

The Nutch web site http://lucene.apache.org/nutch contains binary
distributions and tutorials for quickly setting up a Nutch system and I
will not repeat all of these directions here. What I do want to show you
is how I usually use the Nutch system on customer projects: after I
configure Nutch to periodically “spider” customer specific data sources
I then use a web services client library to integrate Nutch with other
systems that need both document repository and search functionality.

Although you can tightly couple your Java applications with Nutch using
the Nutch API, I prefer to use the OpenSearch API that is an extension
of RSS 2.0 for performing search using web service calls. OpenSearch was
originally developed for Amazon’s A9.com search engine and may become
widely adopted since it is a reasonable standard. More information on
the OpenSearch standard can be found at http://www.opensearch.org but I
will cover the basics here.

Nutch Server Fast Start Setup

For completeness, I will quickly go over the steps I use to set up
Tomcat version 6 with Nutch. For this discussion, I assume that you have
unpacked Tomcat and changed the directory name to Tomcat6_Nutch, that
you have removed all files from the directory Tomcat6_Nutch/webapps/,
and that you have then moved the nutch-0.9.war file (I am using Nutch
version 0.9) to the Tomcat webapps directory changing its name to
ROOT.war:

1 Tomcat6_Nutch/webapps/ROOT.war

I then move the directory nutch-0.9 to:

1 Tomcat6_Nutch/nutch

The file Tomcat6_Nutch/nutch/conf/crawl-urlfilter.txt needs to be
edited to specify a combination of local and remote data sources; here I
have configured it to spider just my http://knowledgebooks.com web site
(the only changes I had to make are the two lines, one being a comment
line containing the string “knowledgebooks.com”):

 1 # skip file:, ftp:, & mailto: urls
 2 -^(file|ftp|mailto):
 3 # skip image and other suffixes we can't yet parse
 4 -\.(gif|GIF|jpg|JPG| ...)**
 5 # skip URLs containing certain characters as probable
 6 # queries, etc.
 7 -[?*!@=]
 8 # skip URLs with slash-delimited segment that repeats
 9 # 3+ times, to break loops
10 -.*(/.+?)/.*?\1/.*?\1/
11 # accept hosts in knowledgebooks.com
12 +^http://([a-z0-9]*\.)*knowledgebooks.com/
13 # skip everything else
14 -.

Additional regular expression patterns can be added for more root web
sites. Nutch will not spider any site that does not match any regular
expression pattern in the configuration file. It is important that web
search spiders properly identify themselves so it is important that you
also edit the file Tomcat6_Nutch/nutch/conf/nutch-site.xml, following
the directions in the comments to identify yourself or your company to
web sites that you spider.

 1 <?xml version="1.0"?>
 2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
 3
 4 <configuration>
 5 <property>
 6 <name>http.agent.name</name>
 7 <value>YOUR NAME Nutch spider</value>
 8 <description>Test spider</description>
 9 </property>
10
11 <property>
12 <name>http.agent.url</name>
13 <value>http://YOURDOMAIN.com</value>
14 <description>URL of spider server</description>
15 </property>
16
17 <property>
18 <name>http.agent.email</name>
19 <value>YOUR EMAIL ADDRESS</value>
20 <description>markw at markwatson dot com</description>
21 </property>
22 </configuration>

Then create an empty directory:

1 Tomcat6_Nutch/nutch/urls

and create a text file (any file name is fine) with a list of starting
URLs to spider; in this case, I will just add:

1 http://knowledgebooks.com

Then make a small test spider run to create local indices in the
subdirectory ./crawl and start the Tomcat server interactively:

1 cd nutch/
2 bin/nutch crawl urls -dir crawl -depth 3 -topN 80
3 ../bin/catalina.sh run

You can run Tomcat as a background service using “start” instead of
“run” in production mode. If you rerun the spidering process, you will
need to first delete the subdirectory ./crawl or put the new index in a
different location and copy it to ./crawl when the new index is
complete. The Nutch web app running in Tomcat will expect a subdirectory
named ./crawl in the directory where you start Tomcat.

Just to test that you have Nutch up and running with a valid index,
access the following URL (specifying localhost, assuming that you are
running Tomcat on your local computer to try this):

1 http://localhost:8080

You can then try the OpenSearch web service interface by accessing the
URL:

1 http://localhost:8080/opensearch?query=Java%20RDF

Since I indexed my own web site that I often change, the RSS 2.0 XML
that you get back may look different than what we see in this example:

 1 <?xml version="1.0" encoding="UTF-8"?>
 2
 3 <rss xmlns:nutch="http://www.nutch.org/ ...>
 4 <channel>
 5 <title>Nutch: Java RDF</title>
 6 <description>Nutch search results for
 7 query: Java RDF</description>
 8 <link>http://localhost:8080/search ...</link>
 9 <opensearch:totalResults>1</opensearch:totalResults>
10 <opensearch:startIndex>0</opensearch:startIndex>
11 <opensearch:itemsPerPage>10</opensearch:itemsPerPage>
12
13 <nutch:query>Java RDF</nutch:query>
14 <item>
15 <title>Knowledgebooks.com: AI ...</title>
16 <description> ... HTML snippet ... </description>
17 <link>http://knowledgebooks.com/</link>
18 <nutch:site>knowledgebooks.com</nutch:site>
19 <nutch:cache> ... </nutch:cache>
20 <nutch:explain> ... </nutch:explain>
21 <nutch:segment>20080930151220</nutch:segment>
22 <nutch:digest>923fb80f9f8fd66f47d70</nutch:digest>
23 <nutch:tstamp>20080930221225918</nutch:tstamp>
24 <nutch:boost>1.0</nutch:boost>
25 </item>
26 </channel>
27 </rss>

For multiple search results, there are multiple <item>elements in the
returned XML data. We will write web service clients to submit remote
queries and process the returned RSS 2.0 XML data in the following section.

Using the Nutch OpenSearch Web APIs

A Java OpenSearch web services client is fairly easy to write: build a
REST query URL with the search phrase URL encoded, open a
HttpURLConnection for this query URL, read the response, and then use
an XML parser to process the returned RSS 2.0 XML payload. We will first
look at an implementation of a Nutch client and then look at some
interesting things you can do, given your own Nutch server installation
and a client. The client class NutchClient has three public static
APIs:

 	
search – Returns a list of Maps, each map having values for keys
“title,” “description,” ``cache_uri,” and “link.” The title is
the web page title, the description is an HTM snippet showing search
terms in original web page text, the cache URI is a Nutch cache of
the original web page, and the link is the URL to the matched web
page.

 	
searchGetCache – Like search but each Map also contains a key
``cache_content” with a value equal to the cached HTML for the
original web page.

 	
getCacheContent – Use this API if you first used search and
later want the cached web page.

The implementation is in the file src-index-search/NutchClient.java.
Here are a few code snippets showing the public APIs:

 1 static public List<Hashtable<String,String>>
 2 searchGetCache(String opensearch_url, String query)
 3 throws IOException,
 4 ParserConfigurationException,
 5 SAXException {
 6 return search_helper(opensearch_url, query, true);
 7 }
 8 static public List<Hashtable<String,String>>
 9 search(String opensearch_url, String query)
10 throws IOException,
11 ParserConfigurationException,
12 SAXException {
13 return search_helper(opensearch_url, query, false);
14 }
15 static public String
16 getCacheContent(String cache_uri)
17 throws IOException {
18 URL url = new URL(cache_uri);
19 URLConnection uc = url.openConnection();
20 return new Scanner(uc.getInputStream()).
21 useDelimiter("\\Z").next();
22 }

The implementation of the private helper method is (reformatted to fit
the page width and with comments on the code):

1 static private List<Hashtable<String,String>>
2 search_helper(String opensearch_url,
3 String query,
4 boolean return_cache) throws ... {
5 List<Hashtable<String,String>> ret =
6 new ArrayList<Hashtable<String,String>>();

We are using a REST style call so we need to URL encode the search
terms. This involves replacing space characters with “+,” etc. A search
for “Java AI” using a Nutch server on my local laptop on port 8080 would
look like:

1 http://localhost:8080/opensearch?query=Java+AI

Java code to sccess this URI would like like:

1 String url_str = opensearch_url + "?query=" +
2 URLEncoder.encode(query, "UTF-8");
3 URL url = new URL(url_str);
4 URLConnection uc = url.openConnection();
5 BufferedInputStream bis =
6 new BufferedInputStream(uc.getInputStream());

While I usually prefer SAX XML parsers for less memory use and
efficiency, it is easier for small XML payloads just to use the
DOM-based APIs:

1 DocumentBuilder docBuilder =
2 DocumentBuilderFactory.newInstance().
3 newDocumentBuilder();
4 Document doc = docBuilder.parse(bis);
5 doc.getDocumentElement().normalize();

Here we use the DOM XML APIs to get all “item” tags and for each “item”
tag get the text for the child nodes:

 1 NodeList listItems = doc.getElementsByTagName("item");
 2 int numItems = listItems.getLength();
 3 for (int i=0; i<numItems; i++) {
 4 Node item = listItems.item(i);
 5 Hashtable<String,String> new_item =
 6 new Hashtable<String,String>();
 7 ret.add(new_item);
 8 NodeList item_data = item.getChildNodes();
 9 int num = item_data.getLength();
10 for (int n=0; n<num; n++) {
11 Node data = item_data.item(n);
12 String name = data.getNodeName();

Nutch returns many extra parameters encoded as items that we do not
need. Here we just keep what we need:

1 if (name.equals("title") ||
2 name.equals("description") ||
3 name.equals("link")) {
4 new_item.put(name, data.getTextContent());
5 }
6 if (name.equals("nutch:cache")) {
7 new_item.put("cache_uri", data.getTextContent());
8 }
9 }

We may want to optionally make another web service call to get the
cached web page for this search result. Doing this approximately doubles
the time required for a search query:

1 if (return_cache &&
2 new_item.get("cache_uri")!=null) {
3 new_item.put("cache_content",
4 getCacheContent(new_item.get("cache_uri")));
5 }
6 }
7 return ret;
8 }

Here is a sample use of the client class:

1 List<Hashtable<String,String>> results =
2 NutchClient.search(
3 "http://localhost:8080/opensearch", "Java");
4 System.out.println("results: " + results);

and the output (edited for brevity):

1 results:
2 [{cache_uri=http://localhost:8080/cached.jsp?idx=0&id=0,
3 link=http://knowledgebooks.com/,
4 description= ... Java AI ...,
5 title=Knowledgebooks.com: AI Technology for ...},
6 {cache_uri=http://localhost:8080/cached.jsp?idx=0&id=1,
7 link=http://knowledgebooks.com/license.txt,
8 description= .. using Java ..,
9 title=http://knowledgebooks.com/license.txt}]

The average time for a Nutch client web service call on my MacBook is
130 milliseconds when I ran both Tomcat and the Nutch web services
client are on the same laptop. Average response times will only increase
slightly when the client and the server are on the same local area
network. Average response times will be longer and less predictable when
using any of the public OpenSearch servers on the Internet.

What can you use a search client for? Here are a few ideas based on
my own work projects:

 	Roughly determine if two words or phrases are associated with each
other by concatenating the words or phrases and counting the number
of search results for the combined search query.

 	Determine if a product name or ID code is spelled correctly or if a
company carries a product by setting up a custom Nutch instance that
only spiders the company’s web site(s). Always follow the terms and
conditions of a web site when setting up a spider.

 	Improve search results by adding a list of project-specific synonyms
to the search client. Expand search terms using the synonym list.

 	If you need access to public information, spider the information
infrequently and then perform local search queries and use the local
page caches.

For very little effort you can set up Nutch server instances that spider
specific information servers. You can often add significant value to
application programs by adding search functionality and by using Nutch
you can locally control the information.

Data Science Techniques

I added this chapter to the fourth edition of this book for two reasons:

 	The material we already covered on information extraction, machine learning and the semantic web is the basis for understanding how data science techniques have influenced many fields that were previously not considered to be “hard science.”

 	The availability of public data sets and relevant open source software packages has drastically reduced the cost of extracting useful information from data.

Data is constantly collected on our actions when we make a purchase, when we post to social media like Twitter, Google+, and Facebook, mobile applications, and the many small devices that we interact with in our lives. This data is collected automatically by software without the cost of human labor. Large companies exploit this data on a massive scale but in my work (and probably in your work also) there are many opportunities for what I think of small big data that are data sources that do not require huge budgets.

While large data sets are collected automatically the exploration and exploitation of big data is very much a human and interactive activity.

Much of the literature on data science covers interactive tools like R, Octave (or the commercial MATLAB product), Hadoop Pig, etc. because data science is experimental in nature and it is important to be able to explore data and test hypothesis quickly. However if you are primarily a Java developer you should at least consider using as your custom data science working environment a combination of available open source Java libraries, your own application specific code, and interactive JVM languages like Scala, Clojure, and JRuby. I believe that the key requirement is using an interactive repl for quick experiments and exploration.

If you use the Clojure language then I strongly suggest learning Incanter. Just like using an interactive shell in Octave and R, with Incanter you use Clojure’s interactive repl for exploratory development. If Clojure is your primary development language then I suggest that you quickly read through this chapter to hopefully get some useful ideas and then head over to the Incanter web site, install Incanter and use it.

This chapter is for readers who want to remain Java centric to build up their own working environments. So if you primarily use Clojure then you might be better off using Clojure and Incanter. If you primarily use Scala then you might want to use a library like ScalaLab.

A Mix of Open Source and Proprietary Tools

I can safely say that almost no one builds large data science projects from scratch: they are usually built with open source tools or less commonly around proprietary products. There are two approaches that I have used for different requirements and types of projects:

 	Use open source tools and open source the tools that you build in order to both share and to get help from other people. I share my open source projects on my github account.

 	Build proprietary application specific extensions and applications. Two examples of my own proprietary projects are KBSPortal.com and KnowledgeBooks.com. Open source projects licensed under the Apache 2 and MIT licenses can be incorporated into proprietart projects so you don’t necessarily have to write all of the code yourself.

As a consultant I offer clients the same advice I give to you: unless you are fairly sure that you will make money from proprietary software projects, you may be able to save money by developing open source software if you can get other people to join the project and share the work.

It is as important to have a good open source (and perhaps proprietary development) strategy for code that you will write as selecting the best set of tools and libraries to build your projects on top of.

I mentioned that tools like Octave and R are often used for Data Science projects because of built in Linear Algebra and Visualization support. When developing in a Java environment, jBLAS is a useful wrapper for the Blass Linear Algebra package.

There are also useful Java tools for visualization. Prefuse is an older project that uses the Java2D library for rendering. While not Java, the Javascript D3 toolkit is excellent for web based visualization. Typically you will write a web service that serves JSON data that is consumed by a web based Javascript application that uses D3. Play with the D3 examples and look at the example source code to see if there is a canned example that is close to what you need. For charts and data graphs you can use JFreeChart.

I also use and recommend the Graphviz program for displaying graphs. Graphviz uses a simple format for input data files so it is very easy write Graphviz data files in any programming language. The Graphviz application will redraw a graph display when an input data file is updated, so you can get interactive graph displays, for some loose sense of the word interactive. There is also a utility project that makes Graphviz directly callable from Java.

In any case, even though languages like Octave have built in linear algebra and visualization tools, you can build up your Java development environment with similar functionality - you just need to put together what you need yourself.

Handling “small big data” in a Cost Effective Way

I use two very different techniques when I need to deal with small big data that I will discuss in the rest of this chapter. When all of the data I need to process can fit into physical memory on a large server, I lease a large memory server for a short period of time for specific projects. For larger datasets I very much like map reduce applications and the easiest way to run large map reduce problems is with Amazon Elastic MapReduce but you might find it less expensive to set up your own Hadoop cluster.

Unless you have a large budget you are unlikely going to be processing huge data sets like a complete crawl of the web. However you are likely to have smaller data sets for customer data, web logs, sensor data, etc. that you do need to process and you will want to analyze these “small big data” as inexpensively as possible.

If you do ever have an application that requires processing a very large portion of the web, you will want to look at the Common Crawl project that makes a vast amount of web pages available for processing on Amazon AWS. Users of the Common Crawl data set report that it costs between $200 and $500 in Amazon AWS charges to filter the data set.

Writing and Testing MapReduce Applications

I use MapReduce applications for both customer projects and my own research projects.

The following figure shows an overview of a production Hadoop setup using a number of (usually low cost) networked computers. The Hadoop File System (HDFS) is a low cost distributed store for any structured and unstructured data that your business may use. MapReduce applications perform specific calculations to generate reports, add processed data to a relational database, etc.

 [image: Hadoop MapReduce Overview]
 Hadoop MapReduce Overview

If you are using Amazon Elastic MapReduce, then typically both your input data and generated output data will be stored in S3.

MapReduce applications are not real time since you might only run a specific application a few times a day depending on how important up to date results are and also the cost of running the application. However as seen in the last figure, the output of a MapReduce job may be a business or user model that can be used in real time.

There are three Hadoop configurations that I use in my own work:

 	
Hadoop Single Node Setup that I run on my laptop for development and debugging MapReduce applications.

 	
Hadoop Cluster Setup that is usually kept running long term for running batched MapReduce jobs.

 	Amazon Elastic MapReduce

MapReduce jobs are most useful for handling very large amounts of data; some examples are:

 	Processing customer data that might include personal information like sex, age, marital status, job category, etc., and data specific to transactions like purchases and product returns.

 	Web blogs for a web site where you might do localization based on IP address, look for navigation patterns through your web site, etc.

 	Recommendation systems that cluster similar users and try to predict the types of products that each user might purchase.

Example Application: MapReduce Application for Finding Proper Names in Text

Assuming that you have cloned the github repository for this book the following files can be used for the example in this section:

The file namefinder.jar in the top level directory contains all compiled code and data that you need to run this example.

If you want to rebuild this JAR file, then use the following assets in the github repo:

 	The data for human names is in test_data/peoplenames.ser

 	The code for finding names in text is in:
– src/com/knowledgebooks/nlp/ExtractNames.java
– src/com/knowledgebooks/nlp/util/ScoredList.java
– src/com/knowledgebooks/nlp/util/Tokenizer.java

 	The code for the Hadoop Map Reduce job is in src/com/knowledgebooks/mapreduce/NameFinder.java

To make it easier for you to write your own MapReduce applications while working in the git repository for this book, I created a Unix style Makefile with a target for building a JAR file with all dependencies (I have split long lines in the following listing to fit the page width):

 1 mapreduce_example:
 2 	rm -r -f mr_temp
 3 	mkdir -p mr_temp/nlp/com/knowledgebooks/mapreduce
 4 	mkdir -p mr_temp/nlp/com/knowledgebooks/nlp/util
 5 	cp src/nlp/com/knowledgebooks/mapreduce/NameFinder.java \
 6 	 mr_temp/nlp/com/knowledgebooks/mapreduce/
 7 	cp src/nlp/com/knowledgebooks/nlp/util/ScoredList.java \
 8 	 mr_temp/nlp/com/knowledgebooks/nlp/util/
 9 	cp src/nlp/com/knowledgebooks/nlp/util/Tokenizer.java \
10 	 mr_temp/nlp/com/knowledgebooks/nlp/util/
11 	cp src/nlp/com/knowledgebooks/nlp/ExtractNames.java \
12 	 mr_temp/nlp/com/knowledgebooks/nlp/
13 	mkdir -p mr_temp/test_data
14 	cp test_data/propername.ser mr_temp/test_data/
15 	(cd mr_temp; jar xvf ../lib/hadoop-core-1.1.2.jar)
16 	(cd mr_temp; javac nlp/com/knowledgebooks/mapreduce/NameFinder.java)
17 	(cd mr_temp; jar cvf ../namefinder.jar .)

Remember that when you package your MapReduce application in a JAR file that you have to place everything the application needs in the JAR file. For namefinder.jar, I added the compiled Java class files in the core Hadoop JAR file hadoop-core-1.1.2.jar and also the serialized data the NLP code needs in the file test_data/propername.ser.

This same JAR file can be run on Amazon Elastic MapReduce with a few additional steps:

 	Create an empty S3 bucket for the output

 	Copy the input text files to a new S3 bucket

 	Using the AWS Admin Console web app you can run a Elastic MapReduce job entirely from Amazon’s web app or by using the AWS command line tools.

If you have not used Hadoop before, please do install a single node setup and follow these directions for running my Names Finder sample MapReduce application:

There is a JAR file $$namefinder.jar$$ at the top level of the git repository for this book. Assuming that you have installed Hadoop as a single cluster, copy this JAR file to the top level directory of your Hadoop installation:

1 cp namefinder.jar $HADOOP_HOME/
2 cd $HADOOP_HOME

Then create an empty output directory and an input directory full of any number of text files:

1 rm -r -f output
2 mkdir input

And, from the top level directory for the git repository for this book, copy some input data to test with:

1 cp test_data/mapreduce_input.txt $HADOOP_HOME/input/

Then run Hadoop in the development mode in the Hadoop home directory:

bin/hadoop jar namefinder.jar nlp.com.knowledgebooks.mapreduce.NameFinder input output

Please note that you must remove the output directory before running this MapReduce application. The output from this small test run will be in the file $$HADOOP_HOME/output/part-00000$$.

Using Inexpensive Large Memory Leased Servers

Although there is some overhead for setting up servers I like to rent a large memory server, and after saving my results, terminate the server to save money. I like to use two different strategies:

 	Rent a large memory server by the month for long running experiments and work tasks.

 	Allocate a large memory instance AWS EC2 instance and snapshot it when I am done if the server configuration is likely useful in the future. I use this strategy when I only need a server for a day or two at a time.

By shopping around I usually can find 64 GB of RAM physical servers for about a $100/month, which is much much less expensive than using AWS but also a lot less convenient. Most recently I have leased servers from hetzner.de but you should shop around for a good price. I favor using AWS for projects that are a good fit for Elastic MapReduce, S3 and perhaps other AWS services like DynamoDB or SimpleDB.

I discuss two projects that I have done with fairly large data sets using large memory servers in the next two sections.

Example Application Idea: Using the Google Book Project NGRAM Data Sets

Google has made public ngram data from scanned books that have been published in the last few hundred years. This highly compressed data set is over two terabytes. How does one go about fetching and processing this much data? I placed a few files in the directory google_book_ngram_data in the git repository for this book.

I rented a large memory server with two terabytes of disk space. The compressed data would not fit on a two terabyte disk, and the uncompressed data would require a whopping 10 to 12 terabytes of disk space.

If you go to the web page for the ngram data you will find different versions of the data set, with the most recent first. I copied the HTML source for this page and cut the text for for 1gram, 2gram, 3gram, 4gram, and 5gram links and put this in the file google_book_ngram_data/ngrams_uris.txt. The file google_book_ngram_data/best_ngrams.rb is a script for fetching the Google ngram files in small batches, uncompressing them, and keeping ngrams with a count above a set CUTOFF value that is set at the top of the script. The other value that needs to be set is the value of the variable $$match$$, also at the top of the Ruby script file.

You will need to run the script $$best_ngrams.rb$$ five times, setting the variable $$match$$ to:

 	1gram

 	2gram

 	3gram

 	4gram

 	5gram

And Adjusting the value of $$CUTOFF$$.

Also, on the leased Linux server I used, I was putting the best ngram data (best in the sense that I only kept ngrams with a use count greater than $$CUTOFF$$) in my home directory “/home/markw” - you will want to change the target directory for your system.

Here are the first few lines of the $$best_ngrams.rb$$ script:

 1 match = "3gram"
 2 CUTOFF = 500
 3
 4 $words = "====="
 5 $count = 0
 6
 7 $out = File.new("/home/markw/#{match}.txt", 'w')
 8
 9 File.new("ngrams_uris.txt").lines.each do |line|
10 if line.index("<a href='") && line.index(match)

This script shows an inexpensive way to process a lot of data without spending much money or having to run a MapReduce application using Hadoop. The key point is that I only needed to process each compressed file one time, and used Google’s naming convention where all 1gram files contain the string “1gram”, etc.

Example Application Idea: Using Wikipedia Data Dumps

As you may know, you can download a data dump of all Wikipedia data with or without version information and comments. When I want to process the entire Wikipedia set of English language articles I choose the second option and just get the current pages with no comments of versioning information. This is the direct download link for current Wikipedia articles. There are no comments or user pages in this GZIP file. This is not as much data as you might think, only about 9 gigabytes compressed or about 42 gigabytes uncompressed.

For my own work and research, I use both the NLP code from this book and also my commercial NLP product KBSportal.com to perform named entity detection for each article, cluster articles by similarity, and generate RDF meta data for Wikipedia articles.

While you might think that these applications are a good fit for Hadoop MapReduce applications, I find that since the current Wikipedia wrticles are only about 42 gigabytes, it is easier to write one off applications that make one or more passes through the articles and collect whatever data my application needs.

If you are interested in NLP and text mining then the Wikipedia article data dump is a great resource!

Conclusion

The term Data Science is a catch all phrase covering data collection and data cleansing, statistical analysis, machine learning, and data visualization. I hope that in this short chapter I have given you a few useful ideas for implementing your own projects.

When you start a new project make sure that you clearly understand:

 	What problem are you trying to solve?

 	How much data is available?

 	How much data cleansing is required?

 	What options do you have for processing data? (e.g., available servers that are lightly used, use of Amazon AWS, etc.)

As usual, it is always best to create relatively small data sets for use during software development.

Conclusions

The material in this book was informed by my own work experience
designing systems and writing software for artificial intelligence and information processing. If
you enjoyed reading this book and you make practical use of at least some of
the material I covered, then I consider my effort to be worthwhile.

Writing software is a combination of a business activity, promoting good
for society, and an exploration to try out new ideas for self
improvement. I believe that there is sometimes a fine line between
spending too many resources tracking many new technologies versus
getting stuck using old technologies at the expense of lost
opportunities. My hope is that reading this book was an efficient and
pleasurable use of your time, letting you try some new techniques and
technologies that you had not considered before.

When we do expend resources to try new things it is almost always best
to perform many small experiments and then dig deeper into areas that
have a good chance of providing high value and capturing your interest.

Fail fast is a common meme but failure that we do not learn from is a
waste.

I have been using the Java platform from the very beginning and although
I also use many other programming languages in my work and studies, both
the Java language and the Java platform provide high efficiency, scalability,
many well-trained developers, and a wealth of existing infrastructure
software and libraries. Investment in Java development also pays when
using alternative JVM languages like JRuby, Scala, and Clojure.

If we never get to meet in person or talk on the telephone, then I would
like to thank you now for taking the time to read my book.

OEBPS/Images/image00258.jpeg

OEBPS/Images/image00257.jpeg

OEBPS/Images/image00256.jpeg

OEBPS/Images/image00255.jpeg

OEBPS/Images/image00254.jpeg

OEBPS/Images/image00253.jpeg

OEBPS/Images/image00252.jpeg

OEBPS/Images/image00251.jpeg

OEBPS/Images/image00250.jpeg

OEBPS/Images/image00249.jpeg

OEBPS/Images/cover00271.jpeg

OEBPS/Text/nav.xhtml

 Guide

 		Begin Reading

 		Cover

 Table of contents

 		Preface

 		Introduction

 		Other JVM Languages

 		Github Repository for Book Software

 		Use of Java Generics and Native Types

 		Notes on Java Coding Styles Used in this Book

 		Book Summary

 		Search

 		Representation of Search State Space and Search Operators

 		Finding Paths in Mazes

 		Finding Paths in Graphs

 		Adding Heuristics to Breadth First Search

 		Search and Game Playing: Tic-Tac-Toe and Chess

 		Reasoning

 		Logic

 		PowerLoom Overview

 		Running PowerLoom Interactively

 		Using the PowerLoom APIs in Java Programs

 		Suggestions for Further Study

 		Semantic Web

 		Relational Database Model Has Problems Dealing with Rapidly Changing Data Requirements

 		RDF: The Universal Data Format

 		Extending RDF with RDF Schema

 		The SPARQL Query Language

 		Using Sesame

 		OWL: The Web Ontology Language

 		Knowledge Representation and REST

 		Material for Further Study

 		Expert Systems

 		Production Systems

 		The Drools Rules Language

 		Using Drools in Java Applications

 		Example Drools Expert System: Blocks World

 		Example Drools Expert System: Help Desk System

 		Notes on the Craft of Building Expert Systems

 		Genetic Algorithms

 		Theory

 		Java Library for Genetic Algorithms

 		Finding the Maximum Value of a Function

 		Machine Learning with Weka

 		Using Weka’s Interactive GUI Application

 		Interactive Command Line Use of Weka

 		Embedding Weka in a Java Application

 		Suggestions for Further Study

 		Neural Networks

 		Hopfield Neural Networks

 		Java Classes for Hopfield Neural Networks

 		Testing the Hopfield Neural Network Class

 		Back Propagation Neural Networks

 		A Java Class Library for Back Propagation

 		Adding Momentum to Speed Up Back-Prop Training

 		Statistical Natural Language Processing

 		Tokenizing, Stemming, and Part of Speech Tagging Text

 		Named Entity Extraction From Text

 		Using the WordNet Linguistic Database

 		Automatically Assigning Tags to Text

 		Text Clustering

 		Spelling Correction

 		Hidden Markov Models

 		Wrapup

 		Information Gathering

 		Open Calais

 		Information Discovery in Relational Databases

 		Down to the Bare Metal: In-Memory Index and Search

 		Indexing and Search Using Embedded Lucene

 		Indexing and Search with Nutch Clients

 		Data Science Techniques

 		A Mix of Open Source and Proprietary Tools

 		Handling “small big data” in a Cost Effective Way

 		Writing and Testing MapReduce Applications

 		Example Application: MapReduce Application for Finding Proper Names in Text

 		Using Inexpensive Large Memory Leased Servers

 		Example Application Idea: Using the Google Book Project NGRAM Data Sets

 		Example Application Idea: Using Wikipedia Data Dumps

 		Conclusion

 		Conclusions

OEBPS/Images/image00248.jpeg

OEBPS/Images/image00247.jpeg

OEBPS/Images/image00246.jpeg

OEBPS/Images/image00245.gif

OEBPS/Images/image00244.jpeg

OEBPS/Images/image00243.jpeg

OEBPS/Images/image00242.jpeg

OEBPS/Images/image00241.jpeg

OEBPS/Images/image00240.jpeg

OEBPS/Images/image00239.jpeg

OEBPS/Images/image00238.jpeg

OEBPS/Images/image00237.jpeg

OEBPS/Images/image00236.jpeg

OEBPS/Images/image00270.jpeg

OEBPS/Images/image00269.jpeg

OEBPS/Images/image00268.jpeg

OEBPS/Images/image00267.jpeg

OEBPS/Images/image00266.jpeg

OEBPS/Images/image00265.jpeg

OEBPS/Images/image00264.jpeg

OEBPS/Images/image00263.jpeg

OEBPS/Images/image00262.jpeg

OEBPS/Images/image00261.gif

OEBPS/Images/image00260.gif

OEBPS/Images/image00259.jpeg

