

Haskell Tutorial and Cookbook

Mark Watson

This book is for sale at http://leanpub.com/haskell-cookbook

This version was published on 2021-02-14

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2021 Mark Watson

http://leanpub.com/haskell-cookbook
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Cover Material, Copyright, and License . 1

Preface . 2
Additional Material in the Second Edition . 2
A Request from the Author . 2
Structure of the Book . 3
Code Examples . 4
Functional Programming Requires a Different Mind Set . 4
eBooks Are Living Documents . 4
Setting Up Your Development Environment . 5
Why Haskell? . 6
Enjoy Yourself . 7
Acknowledgements . 7

Section 1 - Tutorial . 8

Tutorial on Pure Haskell Programming . 9
Interactive GHCi Shell . 9
Introduction to Haskell Types . 17
Functions Are Pure . 21
Using Parenthesis or the Special $ Character and Operator Precedence 23
Lazy Evaluation . 25
Understanding List Comprehensions . 26
Haskell Rules for Indenting Code . 28
Understanding let and where . 29
Conditional do Expressions and Anonymous Functions . 30
Maps . 36
Sets . 37
More on Functions . 38
Comments on Dealing With Immutable Data and How to Structure Programs 40
Error Handling . 41
Testing Haskell Code . 42
Pure Haskell Wrap Up . 45

Tutorial on Impure Haskell Programming . 46

CONTENTS

Hello IO () Monad . 46
A Note About >> and >>= Operators . 49
Console IO Example with Stack Configuration . 51
File IO . 54
Error Handling in Impure Code . 56
Network IO . 58
A Haskell Game Loop that Maintains State Functionally . 61
A More Detailed Look at Monads . 63
Using Applicative Operators <$> and <*>: Finding Common Words in Files 65
List Comprehensions Using the do Notation . 68
Dealing With Time . 69
Using Debug.Trace . 70
Wrap Up . 72

Section 2 - Cookbook . 73

Text Processing . 74
CSV Spreadsheet Files . 74
JSON Data . 76
Cleaning Natural Language Text . 78

Natural Language Processing Tools . 81
Resolve Entities in Text to DBPedia URIs . 82
Bag of Words Classification Model . 87
Text Summarization . 92
Part of Speech Tagging . 94
Natural Language Processing Wrap Up . 98

Linked Data and the Semantic Web . 99
The SPARQL Query Language . 100
A Haskell HTTP Based SPARQL Client . 101
Querying Remote SPARQL Endpoints . 103
Linked Data and Semantic Web Wrap Up . 106

Web Scraping . 107
Using the Wreq Library . 107
Using the HandsomeSoup Library for Parsing HTML . 111
Web Scraping Wrap Up . 113

Using Relational Databases . 114
Database Access for Sqlite . 114
Database Access for Postgres . 115

Haskell Program to Play the Blackjack Card Game . 120

CONTENTS

Section 3 - Larger Projects . 131

Knowledge Graph Creator . 132
Code Layout For the KGCreator Project and strategies for sharing Haskell code between

projects . 134
The Main Event: Detecting Entities in Text . 136
Utility Code for Generating RDF . 138
Utility Code for Generating Cypher Input Data for Neo4J . 145
Top Level API Code for Handling Knowledge Graph Data Generation 150
Wrapup for Automating the Creation of Knowledge Graphs 152

Hybrid Haskell and Python Natural Language Processing . 153
Example Use of the Haskell NLP Client . 153
Setting up the Python NLP Server . 153
Understanding the Haskell NLP Client Code . 154
Wrapup for Using the Python SpaCy NLP Service . 156

Hybrid Haskell and Python For Coreference Resolution . 157
Installing the Python Coreference Server . 157
Understanding the Haskell Coreference Client Code . 158
Wrapup for Using the Python Coreference NLP Service . 160

Book Wrap Up . 161

Appendix A - Haskell Tools Setup . 162
stack . 162
Emacs Setup . 163
Do you want more of an IDE-like Development Environment? 163
hlint . 163

Cover Material, Copyright, and
License
Copyright 2016 Mark Watson. All rights reserved. This book may be shared using the Creative
Commons “share and share alike, no modifications, no commercial reuse” license.

This eBook will be updated occasionally so please periodically check the leanpub.com web page for
this book¹ for updates.

Please visit the author’s website².

If you found a copy of this book on the web and find it of value then please consider buying a copy
at leanpub.com/haskell-cookbook³ to support the author and fund work for future updates.

¹https://leanpub.com/haskell-cookbook
²http://markwatson.com
³https://leanpub.com/haskell-cookbook

https://leanpub.com/haskell-cookbook
https://leanpub.com/haskell-cookbook
http://markwatson.com/
https://leanpub.com/haskell-cookbook
https://leanpub.com/haskell-cookbook
http://markwatson.com/
https://leanpub.com/haskell-cookbook

Preface
This is the preface to the new second edition released summer of 2019.

It tookme over a year learning Haskell before I became comfortable with the language because I tried
to learn too much at once. There are two aspects to Haskell development: writing pure functional
code and writing impure code that needs to maintain state and generally deal with the world non-
deterministically. I usually find writing pure functional Haskell code to be easy and a lot of fun.
Writing impure code is sometimes a different story. This is why I am taking a different approach
to teaching you to program in Haskell: we begin techniques for writing concise, easy to read and
understand efficient pure Haskell code. I will then show you patterns for writing impure code to
deal with file IO, network IO, database access, and web access. You will see that the impure code
tends to be (hopefully!) a small part of your application and is isolated in the impure main program
and in a few impure helper functions used by the main program. Finally, we will look at a few larger
Haskell programs.

Additional Material in the Second Edition

In addition to updating the introduction to Haskell and tutorial material, I have added a few larger
projects to the second edition.

The project knowledge_graph_creator helps to automate the process of creating Knowledge
Graphs from raw text input and generates data for both the Neo4J open source graph database
as well as RDF data for use in semantic web and linked data applications.

The projectHybridHaskellPythonNlp is a hybrid project: a Python web service that provides access
to the SpaCy natural language processing (NLP) library and select NLP deep learning models and a
Haskell client for accessing this service. It sometimes makes sense to develop polyglot applications
(i.e., applications written in multiple programming languages) to take advantage of language specific
libraries and frameworks. We will also use a similar hybrid example HybridHaskellPythonCore-
fAnaphoraResolution that uses another deep learning model to replace pronouns in text with the
original nouns that the pronouns refer to. This is a common processing step for systems that extract
information from text.

A Request from the Author

I spent time writing this book to help you, dear reader. I release this book under the Creative
Commons “share and share alike, no modifications, no commercial reuse” license and set the
minimum purchase price to $5.00 in order to reach the most readers. You can also download a

Preface 3

free copy from my website⁴. Under this license you can share a PDF version of this book with your
friends and coworkers. If you found this book on the web (or it was given to you) and if it provides
value to you then please consider doing one of the following to support my future writing efforts
and also to support future updates to this book:

• Purchase a copy of this book at leanpub.com/haskell-cookbook⁵
• Hire me as a consultant⁶

I enjoy writing and your support helps me write new editions and updates for my books and to
develop new book projects. Thank you!

Structure of the Book

The first section of this book contains two chapters:

• A tutorial on pure Haskell development: no side effects.
• A tutorial on impure Haskell development: dealing with the world (I/O, network access,
database access, etc.). This includes examples of file IO and network programming as well
as writing short applications: a mixture of pure and impure Haskell code.

After working through these tutorial chapters you will understand enough of Haskell development
to understand and be able to make modifications for your own use of the cookbook examples in
the second section. Some of the general topics will be covered again in the second book section
that contains longer sample applications. For example, you will learn the basics for interacting with
Sqlite and Postgres databases in the tutorial on impure Haskell code but you will see a much longer
example later in the book when I provide code that implements a natural language processing (NLP)
interface to relational databases.

The second section contains the following recipes implemented as complete programs:

• Textprocessing CSV Files
• Textprocessing JSON Files
• Natural Language Processing (NLP) interface to relational databases, including annotating
English text with Wikipedia/DBPedia URIs for entities in the original text. Entities can be
people, places, organizations, etc.

• Accessing and Using Linked Data
• Querying Semantic Web RDF Data Sources
• Web scraping data on web sites
• Using Sqlite and Postgres relational databases
• Play a simple version of Blackjack card game

A new third section (added in 2019 for the second edition) has three examples that were derived by
my own work.

⁴https://markwatson.com/books
⁵https://leanpub.com/haskell-cookbook
⁶http://markwatson.com/

https://markwatson.com/books
https://leanpub.com/haskell-cookbook
http://markwatson.com/
https://markwatson.com/books
https://leanpub.com/haskell-cookbook
http://markwatson.com/

Preface 4

Code Examples

The code examples in this book are licensed under two software licenses and you can choose the
license that works best for your needs: Apache 2 and GPL 3. To be clear, you can use the examples in
commercial projects under the Apache 2 license and if you like to write Free (Libre) software then
use the GPL 3 license.

We will use stack as a build system for all code examples. The code examples are provided as 22
separate stack based projects. These examples are found on github⁷.

Functional Programming Requires a Different Mind Set

You will learn to look at problems differently when you write functional programs. We will use
a bottom up approach in most of the examples in this book. I like to start by thinking of the
problem domain and decide how I can represent the data required for the problem at hand. I prefer
to use native data structures. This is the opposite approach to object oriented development where
considerable analysis effort and coding effort is required to define class hierachies to represent data.
In most of the code we use simple native data types like lists and maps.

Once we decide how to represent data for a program we then start designing and implementing
simple functions to operate on and transform data. If we find ourselves writing functions that are
too long or too complex, we can break up code into simpler functions. Haskell has good language
support for composing simple functions into more complex operations.

I have spent many years engaged in object oriented programming starting with CLOS for Common
Lisp, C++, Java, and Ruby. I now believe that in general, and I know it is sometimes a bad
idea to generalize too much, functional programming is a superior paradigm to object oriented
programming. Convincing you of this belief is one of my goals in writing this book!

eBooks Are Living Documents

I wrote printed books for publishers like Springer-Verlag,McGraw-Hill, andMorgan Kaufman before
I started self-publishingmy own books. I prefer eBooks because I can update already published books
and update the code examples for eBooks.

I encourage you to periodically check for free updates to both this book and the code examples on
the leanpub.com web page for this book⁸.

⁷https://github.com/mark-watson/haskell_tutorial_cookbook_examples
⁸https://leanpub.com/haskell-cookbook

https://github.com/mark-watson/haskell_tutorial_cookbook_examples
https://leanpub.com/haskell-cookbook
https://github.com/mark-watson/haskell_tutorial_cookbook_examples
https://leanpub.com/haskell-cookbook

Preface 5

Setting Up Your Development Environment

I strongly recommend that you use the stack tool from the stack website⁹. This web site has
instructions for installing stack on OS X, Windows, and Linux. If you don’t have stack installed yet
please do so now and follow the “getting started” instructions for creating a small project. Appendix
A contains material to help get you set up.

It is important for you to learn the basics of using stack before jumping into this book because I
have set up all of the example programs using stack.

The github repository for the examples in this book is located at github.com/mark-watson/haskell_-
tutorial_cookbook_examples¹⁰.

Many of the example listings for code examples are partial or full listing of files in my github
repository. I show the file name, the listing, and the output. To experiment with the example yourself
you need to load it and execute the main function; for example, if the example file is TestSqLite1.hs
in the sub-directory Database, then from the top level directory in the git repository for the book
examples you would do the following:

$ haskell_tutorial_cookbook_examples git:(master) > cd Database

$ Database git:(master) > stack build --exec ghci

GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

Prelude> :l TestSqLite1

[1 of 1] Compiling Main (TestSqLite1.hs, interpreted)

Ok, modules loaded: Main.

*Main> main

"Table names in database test.db:"

"test"

"SQL to create table 'test' in database test.db:"

"CREATE TABLE test (id integer primary key, str text)"

"number of rows in table 'test':"

1

"rows in table 'test':"

(1,"test string 2")

*Main>

If you don’t want to run the example in a REPL in order to experiment with it interactively you can
then just run it via stack using:

⁹http://docs.haskellstack.org/en/stable/README.html
¹⁰https://github.com/mark-watson/haskell_tutorial_cookbook_examples

http://docs.haskellstack.org/en/stable/README.html
https://github.com/mark-watson/haskell_tutorial_cookbook_examples
https://github.com/mark-watson/haskell_tutorial_cookbook_examples
http://docs.haskellstack.org/en/stable/README.html
https://github.com/mark-watson/haskell_tutorial_cookbook_examples

Preface 6

$ Database git:(master) > stack build --exec TestSqlite1

"Table names in database test.db:"

"test"

"SQL to create table 'test' in database test.db:"

"CREATE TABLE test (id integer primary key, str text)"

"number of rows in table 'test':"

1

"rows in table 'test':"

(1,"test string 2")

I include README.md files in the project directories with specific instructions.

I now use VSCode for most of my Haskell development. With the Haskell plugins VSCode offers
auto-completion while typing and highlights syntax errors. Previously I use other editor for Haskell
development. If you are an Emacs user I recommend that you follow the instructions in Appendix
A, load the tutorial files into an Emacs buffer, build an example and open a REPL frame. If one is not
already open type control-c control-l, switch to the REPL frame, and run themain function. When
you make changes to the tutorial files, doing another control-c control-l will re-build the example
in less than a second. In addition to using Emacs I occasionally use the IntelliJ Community Edition
(free) IDE with the Haskell plugin, the TextMate editor (OS X only) with the Haskell plugin, or the
GNU GEdit editor (Linux only).

Appendix A also shows you how to setup the *stack Haskell build tool.

Whether you use Emacs/VSCode or run a REPL in a terminal window (command window if you are
using Windows) the important thing is to get used to and enjoy the interactive style of development
that Haskell provides.

Why Haskell?

I have been using Lisp programming languages professionally since 1982. Lisp languages are flexible
and appropriate for many problems. Some might dissagree with me but I find that Haskell has most
of the advantages of Lisp with the added benefit of being strongly typed. Both Lisp and Haskell
support a style of development using an interactive shell (or “repl”).

What does being a strongly typed language mean? In a practical sense it means that you will often
encounter syntax errors caused by type mismatches that you will need to fix before your code will
compile (or run in the GHCi shell interpreter). Once your code compiles it will likely work, barring
a logic error. The other benefit that you can get is having to write fewer unit tests - at least that is
my experience. So, using a strongly typed language is a tradeoff. When I don’t use Haskell I tend to
use dynamic languages like Common Lisp or Python.

Preface 7

Enjoy Yourself

I have worked hard to make learning Haskell as easy as possible for you. If you are new to the
Haskell programming language then I have something to ask of you, dear reader: please don’t rush
through this book, rather take it slow and take time to experiment with the programming examples
that most interest you.

Acknowledgements

I would like to thank my wife Carol Watson for editing the manuscript for this book. I would like
to thank Roy Marantz, Michel BÃ©nard, and Daniel KrÃ¶ni for reporting an errors.

Section 1 - Tutorial
The first section of this book contains two chapters:

• A tutorial on pure Haskell development: no side effects.
• A tutorial on impure Haskell development: dealing with the world (I/O, network access,
database access, etc.)

After working through these two tutorial chapters you will have sufficient knowledge of Haskell
development to understand the cookbook examples in the second section and be able to modify
them for your own use. Some of the general topics will be covered again in the second book section
that contains longer example programs.

Tutorial on Pure Haskell
Programming
Pure Haskell code has no side effects and if written properly is easy to read and understand. I am
assuming that you have installed stack using the directions in Appendix A. It is important to keep
a Haskell interactive repl open as you read the material in this book and experiment with the code
examples as you read. I don’t believe that you will be able to learn the material in this chapter unless
you work along trying the examples and experimenting with them in an open Haskell repl!

The directory Pure in the git repository contains the examples for this chapter. Many of the examples
contain a small bit of impure code in a main function. We will cover how this impure code works
in the next chapter. Here is an example of impure code, contained inside a main function that you
will see in this chapter:

main = do

putStrLn ("1 + 2 = " ++ show (1 + 2))

I ask you to treat these small bits of impure code in this chapter as a “black box” and wait for the
next chapter for a fuller explanation.

Pure Haskell code performs no I/O, network access, access to shared in-memory datastructures, etc.

The first time you build an example program with stack it may take a while since library
dependencies need to be loaded from the web. In each example directory, after an initial stack
build or stack ghci (to run the repl) then you should not notice this delay.

Interactive GHCi Shell

The interactive shell (often called a “repl”) is very useful for learning Haskell: understanding types
and the value of expressions. While simple expressions can be typed directly into the GHCi shell, it
is usually better to use an external text editor and load Haskell source files into the shell (repl). Let’s
get started. Assuming that you have installed stack as described in Appendix A, please try:

Tutorial on Pure Haskell Programming 10

1 ~/$ cd haskell_tutorial_cookbook_examples/Pure

2 ~/haskell_tutorial_cookbook_examples/Pure$ stack ghci

3 Using main module: Package `Pure' component exe:Simple with main-is file: /home/mark\

4 w/BITBUCKET/haskell_tutorial_cookbook_examples/Pure/Simple.hs

5 Configuring GHCi with the following packages: Pure

6 GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

7 [1 of 1] Compiling Main (/home/markw/BITBUCKET/haskell_tutorial_cookboo\

8 k_examples/Pure/Simple.hs, interpreted)

9 Ok, modules loaded: Main.

10 *Main> 1 + 2

11 3

12 *Main> (1 + 2)

13 3

14 *Main> :t (1 + 2)

15 (1 + 2) :: Num a => a

16 *Main> :l Simple.hs

17 [1 of 1] Compiling Main (Simple.hs, interpreted)

18 Ok, modules loaded: Main.

19 *Main> main

20 1 + 2 = 3

21 *Main>

If you are working in a repl and edit a file you just loaded with :l, you can then reload the last file
loaded using :r without specifying the file name. This makes it quick and easy to edit a Haskell file
with an external editor like Emacs or Vi and reload it in the repl after saving changes to the current
file.

Here we have evaluated a simple expression “1 + 2” in line 10. Notice that in line 12 we can always
place parenthesis around an expression without changing its value. We will use parenthesis when
we need to change the default orders of precedence of functions and operators and make the code
more readable.

In line 14 we are using the ghci :t command to show the type of the expression (1 + 2). The type
Num is a type class (i.e., a more general purpose type that other types can inherit from) that contains
several sub-types of numbers. As examples, two subtypes of Num are Fractional (e.g., 3.5) and
Integer (e.g., 123). Type classes provide a form of function overloading since existing functions can
be redefined to handle arguments that are instances of new classes.

In line 16 we are using the ghci command :l to load the external file Simple.hs. This file contains a
function called main so we can execute main after loading the file. The contents of Simple.hs is:

Tutorial on Pure Haskell Programming 11

1 module Main where

2

3 sum2 x y = x + y

4

5 main = do

6 putStrLn ("1 + 2 = " ++ show (sum2 1 2))

Line 1 defines a module namedMain. The rest of this file is the definition of the module. This form
of the module do expression exports all symbols so other code loading this module has access to
sum2 and main. If we only wanted to export main then we could use:

module Main (main) where

The function sum2 takes two arguments and adds them together. I didn’t define the type of this
function so Haskell does it for us using type inference.

1 *Main> :l Simple.hs

2 [1 of 1] Compiling Main (Simple.hs, interpreted)

3 Ok, modules loaded: Main.

4 *Main> :t sum2

5 sum2 :: Num a => a -> a -> a

6 *Main> sum2 1 2

7 3

8 *Main> sum2 1.0 2

9 3.0

10 *Main> :t 3.0

11 3.0 :: Fractional a => a

12 *Main> :t 3

13 3 :: Num a => a

14 *Main> (toInteger 3)

15 3

16 *Main> :t (toInteger 3)

17 (toInteger 3) :: Integer

18 *Main>

What if you want to build a standalone executable program from the example in Smple.hs? Here is
an example:

Tutorial on Pure Haskell Programming 12

1 $ stack ghc Simple.hs

2 [1 of 1] Compiling Main (Simple.hs, Simple.o)

3 Linking Simple ...

4 $./Simple

5 1 + 2 = 3

Most of the time we will use simple types built into Haskell: characters, strings, lists, and tuples.
The type Char is a single character. One type of string is a list of characters [Char]. (Another type
ByteString will be covered in later chapters.) Every element in a list must have the same type. A
Tuple is like a list but elements can be different types. Here is a quick introduction to these types,
with many more examples later:

1 *Main> :t 's'

2 's' :: Char

3 *Main> :t "tree"

4 "tree" :: [Char]

5 *Main> 's' : "tree"

6 "stree"

7 *Main> :t "tick"

8 "tick" :: [Char]

9 *Main> 's' : "tick"

10 "stick"

11 *Main> :t [1,2,3,4]

12 [1,2,3,4] :: Num t => [t]

13 *Main> :t [1,2,3.3,4]

14 [1,2,3.3,4] :: Fractional t => [t]

15 *Main> :t ["the", "cat", "slept"]

16 ["the", "cat", "slept"] :: [[Char]]

17 *Main> ["the", "cat", "slept"] !! 0

18 "the"

19 *Main> head ["the", "cat", "slept"]

20 "the"

21 *Main> tail ["the", "cat", "slept"]

22 ["cat","slept"]

23 *Main> ["the", "cat", "slept"] !! 1

24 "cat"

25 *Main> :t (20, 'c')

26 (20, 'c') :: Num t => (t, Char)

27 *Main> :t (30, "dog")

28 (30, "dog") :: Num t => (t, [Char])

29 *Main> :t (1, "10 Jackson Street", 80211, 77.5)

30 (1, "10 Jackson Street", 80211, 77.5)

31 :: (Fractional t2, Num t, Num t1) => (t, [Char], t1, t2)

Tutorial on Pure Haskell Programming 13

The GHCi repl command :t tells us the type of any expression or function. Much of your time
developing Haskell will be spent with an open repl and you will find yourself checking types many
times during a development session.

In line 1 you see that the type of ’s‘ is ’s’ :: Char and in line 3 that the type of the string “tree”
is [Char] which is a list of characters. The abbreviation String is defined for [Char]; you can use
either. In line 9 we see the “cons” operator : used to prepend a character to a list of characters. The
cons : operator works with all types contained in any lists. All elements in a list must be of the same
type.

The type of the list of numbers [1,2,3,4] in line 11 is [1,2,3,4] :: Num t ⇒ [t]. The type Num is a
general number type. The expression Num t⇒ [t] is read as: “t is a type variable equal to Num and
the type of the list is [t], or a list of Num values”. It bears repeating: all elements in a list must be of
the same type. The functions head and tail used in lines 19 and 21 return the first element of a list
and return a list without the first element.

You will use lists frequently but the restriction of all list elements being the same type can be too
restrictive so Haskell also provides a type of sequence called tuplewhose elements can be of different
types as in the examples in lines 25-31.

Tuples of length 2 are special because functions fst and snd are provided to access the first and
second pair value:

*Main> fst (1, "10 Jackson Street")

1

*Main> snd (1, "10 Jackson Street")

"10 Jackson Street"

*Main> :info fst

fst :: (a, b) -> a -- Defined in ‘Data.Tuple’

*Main> :info snd

snd :: (a, b) -> b -- Defined in ‘Data.Tuple’

Please note that fst and snd will not work with tuples that are not of length 2. Also note that if you
use the function length on a tuple, the result is always one because of the way tuples are defined as
Foldable types, which we will use later.

Haskell provides a concise notation to get values out of long tuples. This notation is called
destructuring:

Tutorial on Pure Haskell Programming 14

1 *Main> let geoData = (1, "10 Jackson Street", 80211, 77.5)

2 *Main> let (_,_,zipCode,temperature) = geoData

3 *Main> zipCode

4 80211

5 *Main> temperature

6 77.5

Here, we defined a tuple geoData with values: index, street address, zip code, and temperature. In
line two we extract the zip code and temperature. Another reminder: we use let in lines 1-2 because
we are in a repl.

Like all programming languages, Haskell has operator precedence rules as these examples show:

1 *Main> 1 + 2 * 10

2 21

3 *Main> 1 + (2 * 10)

4 21

5 *Main> length "the"

6 3

7 *Main> length "the" + 10

8 13

9 *Main> (length "the") + 10

10 13

The examples in lines 1-4 illustrate that the multiplication operator has a higher precidence than the
addition operator.

*Main> :t length

length :: Foldable t => t a -> Int

*Main> :t (+)

(+) :: Num a => a -> a -> a

Note that the function length starts with a lower case letter. All Haskell functions start with a lower
case letter except for type constructor functions that we will get to later. A Foldable type can be
iterated through and be processed with map functions (which we will use shortly).

We saw that the function + acts as an infix operator. We can convert infix functions to prefix
functions by enclosing them in parenthesis:

Tutorial on Pure Haskell Programming 15

*Main> (+) 1 2

3

*Main> div 10 3

3

*Main> 10 `div` 3

3

In this last example we also saw how a prefix function div can be used infix by enclosing it in back
tick characters.

1 *Main> let x3 = [1,2,3]

2 *Main> x3

3 [1,2,3]

4 *Main> let x4 = 0 : x3

5 *Main> x4

6 [0,1,2,3]

7 *Main> x3 ++ x4

8 [1,2,3,0,1,2,3]

9 *Main> x4

10 [0,1,2,3]

11 *Main> x4 !! 0

12 0

13 *Main> x4 !! 100

14 *** Exception: Prelude.!!: index too large

15 *Main> let myfunc1 x y = x ++ y

16 *Main> :t myfunc1

17 myfunc1 :: [a] -> [a] -> [a]

18 *Main> myfunc1 x3 x4

19 [1,2,3,0,1,2,3]

Usually we define functions in files and load them as we need them. Here is the contents of the file
myfunc1.hs:

1 myfunc1 :: [a] -> [a] -> [a]

2 myfunc1 x y = x ++ y

The first line is a type signature for the function and is not required; here the input arguments are
two lists and the output is the two lists concatenated together. In line 1 note that a is a type variable
that can represent any type. However, all elements in the two function input lists and the output list
are constrained to be the same type.

Tutorial on Pure Haskell Programming 16

1 *Main> :l myfunc1.hs

2 [1 of 1] Compiling Main (myfunc1.hs, interpreted)

3 Ok, modules loaded: Main.

4 *Main> myfunc1 ["the", "cat"] ["ran", "up", "a", "tree"]

5 ["the","cat","ran","up","a","tree"]

Please note that the stack repl auto-completes using the tab character. For example, when I was
typing in “:l myfunc1.hs” I actually just typed “:l myf” and then hit the tab character to complete
the file name. Experiment with auto-completion, it will save you a lot of typing. In the following
example, for instance, after defining the variable sentence I can just type “se” and the tab character
to auto-complete the entire variable name:

1 *Main> let sentence = myfunc1 ["the", "cat"] ["ran", "up", "a", "tree"]

2 *Main> sentence

3 ["the","cat","ran","up","a","tree"]

The function head returns the first element in a list and the function tail returns all but the first
elements in a list:

1 *Main> head sentence

2 "the"

3 *Main> tail sentence

4 ["cat","ran","up","a","tree"]

We can create new functions from existing arguments by supplying few arguments, a process known
as “currying”:

1 *Main> let p1 = (+ 1)

2 *Main> :t p1

3 p1 :: Num a => a -> a

4 *Main> p1 20

5 21

In this last example the function + takes two arguments but if we only supply one argument a
function is returned as the value: in this case a function that adds 1 to an input value.

We can also create new functions by composing existing functions using the infix function . that
when placed between two function names produces a new function that combines the two functions.
Let’s look at an example that uses . to combine the partial function (+ 1) with the function length:

Tutorial on Pure Haskell Programming 17

1 *Main> let lengthp1 = (+ 1) . length

2 *Main> :t lengthp1

3 lengthp1 :: Foldable t => t a -> Int

4 *Main> lengthp1 "dog"

5 4

Note the order of the arguments to the inline function .: the argument on the right side is the first
function that is applied, then the function on the left side of the . is applied.

This is the second example where we have seen the type Foldable which means that a type can be
mapped over, or iterated over. We will look at Haskell types in the next section.

Introduction to Haskell Types

This is a good time to spend more time studying Haskell types. We will see more material on Haskell
types throughout this book so this is just an introduction using the data expression to define a Type
MyColors defined in the fileMyColors.hs:

1 data MyColors = Orange | Red | Blue | Green | Silver

2 deriving (Show)

This example is incomplete so we will modify it soon. Line 1 defines the possible values for our new
typeMyColors. On line 2, we are asking the Haskell compiler to automatically generate a function
show that can convert a value to a string. show is a standard function and in general we want it
defined for all types. show converts an instance to a string value.

1 Prelude> :l colors.hs

2 [1 of 1] Compiling Main (colors.hs, interpreted)

3 Ok, modules loaded: Main.

4 *Main> show Red

5 "Red"

6 *Main> let c1 = Green

7 *Main> c1

8 Green

9 *Main> :t c1

10 c1 :: MyColors

11 *Main> Red == Green

12

13 <interactive>:60:5:

14 No instance for (Eq MyColors) arising from a use of ‘==’

15 In the expression: Red == Green

16 In an equation for ‘it’: it = Red == Green

Tutorial on Pure Haskell Programming 18

What went wrong here? The infix function == checks for equality and we did not define equality
functions for our new type. Let’s fix the definition in the file colors.hs:

1 data MyColors = Orange | Red | Blue | Green | Silver

2 deriving (Show, Eq)

Because we are deriving Eq we are also asking the compiler to generate code to see if two instances
of this class are equal. If we wanted to be able to order our colors then we would also derive Ord.

Now our new type has show, ==, and /= (inequality) defined:

1 Prelude> :l colors.hs

2 [1 of 1] Compiling Main (colors.hs, interpreted)

3 Ok, modules loaded: Main.

4 *Main> Red == Green

5 False

6 *Main> Red /= Green

7 True

Let’s also now derive Ord to have the compile generate a default function compare that operates
on the typeMyColors:

1 data MyColors = Orange | Red | Blue | Green | Silver

2 deriving (Show, Eq, Ord)

Because we are now derivingOrd the compiler will generate functions to calculate relative ordering
for values of typeMyColors. Let’s experiment with this:

1 *Main> :l MyColors.hs

2 [1 of 1] Compiling Main (MyColors.hs, interpreted)

3 Ok, modules loaded: Main.

4 *Main> :t compare

5 compare :: Ord a => a -> a -> Ordering

6 *Main> compare Green Blue

7 GT

8 *Main> compare Blue Green

9 LT

10 *Main> Orange < Red

11 True

12 *Main> Red < Orange

13 False

14 *Main> Green < Red

Tutorial on Pure Haskell Programming 19

15 False

16 *Main> Green < Silver

17 True

18 *Main> Green > Red

19 True

Notice that the compiler generates a compare function for the type MyColors that orders values
by the order that they appear in the data expression. What if you wanted to order them in string
sort order? This is very simple: we will remove Ord from the deriving clause and define our own
function compare for typeMyColors instead of letting the compiler generate it for us:

1 data MyColors = Orange | Red | Blue | Green | Silver

2 deriving (Show, Eq)

3

4 instance Ord MyColors where

5 compare c1 c2 = compare (show c1) (show c2)

In line 5 I am using the function show to convert instances of MyColors to strings and then the
version of compare that is called in line 5 is the version the compiler wrote for us because we derived
Show. Now the ordering is in string ascending sort order because we are using the compare function
that is supplied for the type String:

1 *Main> :l MyColors.hs

2 [1 of 1] Compiling Main (MyColors.hs, interpreted)

3 Ok, modules loaded: Main.

4 *Main> Green > Red

5 False

Our new type MyColors is a simple type. Haskell also supports hierarchies of types called Type
Classes and the type we have seen earlier Foldable is an example of a type class that other types
can inherit from. For now, consider sub-types of Foldable to be collections like lists and trees that
can be iterated over.

I want you to get in the habit of using :type and :info (usually abbreviated to :t and :i) in the GHCi
repl. Stop reading for a minute now and type :info Ord in an open repl. You will get a lot of output
showing you all of the types that Ord is defined for. Here is a small bit of what gets printed:

Tutorial on Pure Haskell Programming 20

1 *Main> :i Ord

2 class Eq a => Ord a where

3 compare :: a -> a -> Ordering

4 (<) :: a -> a -> Bool

5 (<=) :: a -> a -> Bool

6 (>) :: a -> a -> Bool

7 (>=) :: a -> a -> Bool

8 max :: a -> a -> a

9 min :: a -> a -> a

10 -- Defined in ‘ghc-prim-0.4.0.0:GHC.Classes’

11 instance Ord MyColors -- Defined at MyColors.hs:4:10

12 instance (Ord a, Ord b) => Ord (Either a b)

13 -- Defined in ‘Data.Either’

14 instance Ord a => Ord [a]

15 -- Defined in ‘ghc-prim-0.4.0.0:GHC.Classes’

16 instance Ord Word -- Defined in ‘ghc-prim-0.4.0.0:GHC.Classes’

17 instance Ord Ordering -- Defined in ‘ghc-prim-0.4.0.0:GHC.Classes’

18 instance Ord Int -- Defined in ‘ghc-prim-0.4.0.0:GHC.Classes’

19 instance Ord Float -- Defined in ‘ghc-prim-0.4.0.0:GHC.Classes’

20 instance Ord Double -- Defined in ‘ghc-prim-0.4.0.0:GHC.Classes’

Lines 1 through 8 show you that Ord is a subtype of Eq that defines functions compare, max, and
min as well as the four operators <, <=, >=, and >=. When we customized the compare function for
the typeMyColors, we only implemented compare. That is all that we needed to do since the other
operators rely on the implementation of compare.

Once again, I ask you to experiment with the example typeMyColors in an open GHCi repl:

1 *Main> :t max

2 max :: Ord a => a -> a -> a

3 *Main> :t Green

4 Green :: MyColors

5 *Main> :i Green

6 data MyColors = ... | Green | ... -- Defined at MyColors.hs:1:39

7 *Main> max Green Red

8 Red

The following diagram shows a partial type hierarchy of a few types included in the standard Haskell
Prelude (this is derived from the Haskell Report at haskell.org¹¹):

¹¹https://www.haskell.org/onlinereport/basic.html

https://www.haskell.org/onlinereport/basic.html
https://www.haskell.org/onlinereport/basic.html

Tutorial on Pure Haskell Programming 21

Example Haskell Type Hierarchy

Here you see that type Num and Ord are sub-types of type Eq, Real is a sub-type of Num, etc. We
will see the typesMonad and Functor in the next chapter.

Functions Are Pure

Again, it is worth pointing out that Haskell functions do not modify their inputs values. The common
pattern is to pass immutable values to a function andmodified values are returned. As a first example
of this pattern we will look at the standard functionmap that takes two arguments: a function that
converts a value of any type a to another type b, and a list of type a. Functions that take other
functions as arguments are called higher order functions. The result is another list of the same
length whose elements are of type b and the elements are calulated using the function passed as the
first argument. Let’s look at a simple example using the function (+ 1) that adds 1 to a value:

1 *Main> :t map

2 map :: (a -> b) -> [a] -> [b]

3 *Main> map (+ 1) [10,20,30]

4 [11,21,31]

5 *Main> map (show . (+ 1)) [10,20,30]

6 ["11","21","31"]

In the first example, types a and b are the same, a Num. The second example used a composed
function that adds 1 and then converts the example to a string. Remember: the function show

Tutorial on Pure Haskell Programming 22

converts a Haskell data value to a string. In this second example types a and b are different because
the function is mapping a number to a string.

The directory haskell_tutorial_cookbook_examples/Pure contains the examples for this chapter. We
previously used the example file Simple.hs. Please note that in the rest of this book I will omit the
git repository top level directory name haskell_tutorial_cookbook_examples and just specify the
sub-directory name:

1 module Main where

2

3 sum2 x y = x + y

4

5 main = do

6 putStrLn ("1 + 2 = " ++ show (sum2 1 2))

For now let’s just look at the mechanics of executing this file without using the REPL (started with
stack ghci). We can simply build and run this example using stack, which is covered in some detail
in Appendix A:

stack build --exec Simple

This command builds the project defined in the configuration files Pure.cabal and stack.yaml
(the format and use of these files is briefly covered in detail in Appendix A and there is more
reference material here¹²). This example defines two functions: sum2 and main. sum2 is a pure
Haskell function with no state, no interaction with the outside world like file IO, etc., and no non-
determinism. main is an impure function, and we will look at impure Haskell code in some detail
in the next chapter. As you might guess the output of this code snippet is

1 + 2 = 3

To continue the tutorial on using pure Haskell functions, once again we will use stack to start an
interactive repl during development:

¹²https://docs.haskellstack.org/en/stable/yaml_configuration/

https://docs.haskellstack.org/en/stable/yaml_configuration/
https://docs.haskellstack.org/en/stable/yaml_configuration/

Tutorial on Pure Haskell Programming 23

1 markw@linux:~/haskell_tutorial_cookbook_examples/Pure$ stack ghci

2 *Main> :t 3

3 3 :: Num a => a

4 *Main> :t "dog"

5 "dog" :: [Char]

6 *Main> :t main

7 main :: IO ()

8 *Main>

In this last listing I don’t show the information about your Haskell environment and the packages
that were loaded. In repl listings in the remainder of this book I will continue to edit out this Haskell
environment information for brevity.

Line 4 shows the use of the repl shortcut :t to print out the type of a string which is an array of
[Char], and the type of the function main is of type IO Action, which we will explain in the next
chapter. An IO action contains impure code where we can read and write files, perform a network
operation, etc. and we will look at IO Action in the next chapter.

Using Parenthesis or the Special $ Character and
Operator Precedence

We will look at operator and function precedence and the use of the $ character to simplify using
parenthesis in expessions. By the way, in Haskell there is not much difference between operators
and function calls except operators like +, etc. which are by default infix while functions are usually
prefix. So except for infix functions that are enclosed in backticks (e.g., 10 div 3) Haskell usually
uses prefix functions: a function followed by zero or more arguments. You can also use $ that acts
as an opening parenthesis with a not-shown closing parenthesis at the end of the current expression
(which may be multi-line). Here are some examples:

1 *Main> print (3 * 2)

2 6

3 *Main> print $ 3 * 2

4 6

5 *Main> last (take 10 [1..])

6 10

7 *Main> last $ take 10 [1..]

8 10

9 *Main> ((take 10 [1..]) ++ (take 10 [1000..]))

10 [1,2,3,4,5,6,7,8,9,10,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009]

11 *Main> take 10 [1..] ++ take 10 [1000..]

12 [1,2,3,4,5,6,7,8,9,10,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009]

13 *Main> 1 + 2 * (4 * 5)

Tutorial on Pure Haskell Programming 24

14 41

15 *Main> 2 * 3 + 10 * 30

16 306

I use the GHCi command :info (:i is an abbreviation) to check both operator precedence and the
function signature if the operator is converted to a function by enclosing it in parenthessis:

1 *Main> :info *

2 class Num a where

3 ...

4 (*) :: a -> a -> a

5 ...

6 -- Defined in ‘GHC.Num’

7 infixl 7 *

8 *Main> :info +

9 class Num a where

10 (+) :: a -> a -> a

11 ...

12 -- Defined in ‘GHC.Num’

13 infixl 6 +

14 *Main> :info `div`

15 class (Real a, Enum a) => Integral a where

16 ...

17 div :: a -> a -> a

18 ...

19 -- Defined in ‘GHC.Real’

20 infixl 7 `div`

21 *Main> :i +

22 class Num a where

23 (+) :: a -> a -> a

24 ...

25 -- Defined in ‘GHC.Num’

26 infixl 6 +

Notice how + has lower precedence than *.

Just to be clear, understand how operators are used as functions and also how functions can be used
as infix operators:

Tutorial on Pure Haskell Programming 25

1 *Main> 2 * 3

2 6

3 *Main> (*) 2 3

4 6

5 *Main> 10 `div` 3

6 3

7 *Main> div 10 3

8 3

Especially when you are just starting to use Haskell it is a good idea to also use :info to check the
type signatures of standard functions that you use. For example:

1 *Main> :info last

2 last :: [a] -> a -- Defined in ‘GHC.List’

3 *Main> :info map

4 map :: (a -> b) -> [a] -> [b] -- Defined in ‘GHC.Base’

Lazy Evaluation

Haskell is refered to as a lazy language because expressions are not evaluated until they are used.
Consider the following example:

1 $ stack ghci

2 *Main> [0..10]

3 [0,1,2,3,4,5,6,7,8,9,10]

4 *Main> take 11 [0..]

5 [0,1,2,3,4,5,6,7,8,9,10]

6 *Main> let xs = [0..]

7 *Main> :sprint xs

8 xs = _

9 *Main> take 5 xs

10 [0,1,2,3,4]

11 *Main> :sprint xs

12 xs = _

13 *Main>

In line 2 we are creating a list with 11 elements. In line 4 we are doing two things:

• Creating an infinitely long list containing ascending integers starting with 0.
• Fetching the first 11 elements of this infinitely long list. It is important to understand that in
line 4 only the first 11 elements are generated because that is all the take function requires.

Tutorial on Pure Haskell Programming 26

In line 6 we are assigning another infinitely long list to the variable xs but the value of xs is
unevaluated and a placeholder is stored to calculate values as required. In line 7 we use GHCi’s
:sprint command to show a value without evaluating it. The output in line 8 _ indicated that the
expression has yet to be evaluated.

Lines 9 through 12 remind us that Haskell is a functional language: the take function used in line 9
does not change the value of its argument so xs as seen in lines 10 and 12 is still unevaluated.

Understanding List Comprehensions

Effectively using list comprehensions makes your code shorter, easier to understand, and easier to
maintain. Let’s start out with a few GHCi repl examples. You will learn a new GHCi repl trick in
this section: entering multiple line expressions by using :{ and :} to delay evaluation until an entire
expression is entered in the repl (listings in this section are reformatted to fit the page width):

1 *Main> [x | x <- ["cat", "dog", "bird"]]

2 ["cat","dog","bird"]

3 *Main> :{

4 *Main| [(x,y) | x <- ["cat", "dog", "bird"],

5 *Main| y <- [1..2]]

6 *Main| :}

7 [("cat",1),("cat",2),("dog",1),("dog",2),("bird",1),("bird",2)]

The list comprehension on line 1 assigns the elements of the list [“cat”, “dog”, “bird”] one at a time
to the variable x and then collects all these values of x in a list value that is the value of the list
comprehension. The list comprehension in line 1 is hopefully easy to understand but when we bind
and collect multiple variables the situation, as seen in the example in lines 4 and 5, is not as easy to
understand. The thing to remember is that the first variable gets iterated as an “outer loop” and the
second variable is iterated as the “inner loop.” List comprehensions can use many variables and the
iteration ordering rule is the same: last variable iterates first, etc.

*Main> :{

*Main| [(x,y) | x <- [0..3],

*Main| y <- [1,3..10]]

*Main| :}

[(0,1),(0,3),(0,5),(0,7),(0,9),(1,1),(1,3),(1,5),(1,7),

(1,9),(2,1),(2,3),(2,5),(2,7),(2,9),(3,1),(3,3),(3,5),

(3,7),(3,9)]

*Main> [1,3..10]

[1,3,5,7,9]

In this last example we are generating all combinations of [0..3] and [1,3..10] and storing the
combinations as two element tuples. You could also store then as lists:

Tutorial on Pure Haskell Programming 27

1 *Main> [[x,y] | x <- [1,2], y <- [10,11]]

2 [[1,10],[1,11],[2,10],[2,11]]

List comprehensions can also contain filtering operations. Here is an example with one filter:

1 *Main> :{

2 *Main| [(x,y) | x <- ["cat", "dog", "bird"],

3 *Main| y <- [1..10],

4 *Main| y `mod` 3 == 0]

5 *Main| :}

6 [("cat",3),("cat",6),("cat",9),

7 ("dog",3),("dog",6),("dog",9),

8 ("bird",3),("bird",6),("bird",9)]

Here is a similar example with two filters (we are also filtering out all possible values of x that start
with the character ‘d’):

1 *Main> :{

2 *Main| [(x,y) | x <- ["cat", "dog", "bird"],

3 *Main| y <- [1..10],

4 *Main| y `mod` 3 == 0,

5 *Main| x !! 0 /= 'd']

6 *Main| :}

7 [("cat",3),("cat",6),("cat",9),("bird",3),("bird",6),("bird",9)]

For simple filtering cases I usually use the filter function but list comprehensions are more versatile.
List comprehensions are extremely useful - I use them frequently.

Lists are instances of the classMonad that we will cover in the next chapter (check out the section
“List Comprehensions Using the do Notation”).

List comprehensions are powerful. I would like to end this section with another trick that does not
use list comprehensions for building lists of tuple values: using the zip function:

1 *Main> let animals = ["cat", "dog", "bird"]

2 *Main> zip [1..] animals

3 [(1,"cat"),(2,"dog"),(3,"bird")]

4 *Main> :info zip

5 zip :: [a] -> [b] -> [(a, b)] -- Defined in ‘GHC.List’

The function zip is often used in this way when we have a list of objects and we want to operate on
the list while knowing the index of each element.

Tutorial on Pure Haskell Programming 28

Haskell Rules for Indenting Code

When a line of code is indented relative to the previous line of code, or several lines of code with
additional indentation, then the indented lines act as if they were on the previous line. In other
words, if code that should all be on one line must be split to multiple lines, then use indentation as
a signal to the Haskell compiler.

Indentation of continuation lines should be uniform, starting in the same column. Here are some
examples of good code, and code that will not compile:

1 let a = 1 -- good

2 b = 2 -- good

3 c = 3 -- good

4

5 let

6 a = 1 -- good

7 b = 2 -- good

8 c = 3 -- good

9 in a + b + c -- good

10

11 let a = 1 -- will not compile (bad)

12 b = 2 -- will not compile (bad)

13 c = 3 -- will not compile (bad)

14

15 let

16 a = 1 -- will not compile (bad)

17 b = 2 -- will not compile (bad)

18 c = 3 -- will not compile (bad)

19

20 let {

21 a = 1; -- compiles but bad style (good)

22 b = 2; -- compiles but bad style (good)

23 c = 3; -- compiles but bad style (good)

24 }

If you use C style braces and semicolons to mark end of expressions, then indenting does not matter
as seen in lines 20 through 24. Otherwise, uniform indentation is a hint to the compiler.

The same indenting rules apply to other types of do expressions which we will see throughout this
book for do, if, and other types of do expressions.

Tutorial on Pure Haskell Programming 29

Understanding let and where

At first glance, let and where seem very similar in that they allow us to create temporary variables
used inside functions. As the examples in the file LetAndWhere.hs show, there are important
differences.

In the following code notice that when we use let in pure code inside a function, we then use in to
indicate the start of an expression to be evaluated that uses any variables defined in a let expression.
Inside a do code block the in token is not needed and will cause a parse error if you use it. do code
blocks are a syntactic sugar for use in impure Haskell code and we will use it frequently later in the
book.

You also do not use in inside a list comprehension as seen in the function testLetComprehension
in the next code listing:

1 module Main where

2

3 funnySummation w x y z =

4 let bob = w + x

5 sally = y + z

6 in bob + sally

7

8 testLetComprehension =

9 [(a,b) | a <- [0..5], let b = 10 * a]

10

11 testWhereBlocks a =

12 z * q

13 where

14 z = a + 2

15 q = 2

16

17 functionWithWhere n =

18 (n + 1) * tenn

19 where

20 tenn = 10 * n

21

22 main = do

23 print $ funnySummation 1 2 3 4

24 let n = "Rigby"

25 print n

26 print testLetComprehension

27 print $ testWhereBlocks 11

28 print $ functionWithWhere 1

Tutorial on Pure Haskell Programming 30

Compare the let do expressions starting on line 4 and 24. The first let occurs in pure code and uses
in to define one or more do expressions using values bound in the let. In line 24 we are inside a
monad, specifically using the do notation and here let is used to define pure values that can be used
later in the do do expression.

Loading the last code example and running the main function produces the following output:

1 *Main> :l LetAndWhere.hs

2 [1 of 1] Compiling Main (LetAndWhere.hs, interpreted)

3 Ok, modules loaded: Main.

4 *Main> main

5 10

6 "Rigby"

7 [(0,0),(1,10),(2,20),(3,30),(4,40),(5,50)]

8 26

9 20

This output is self explanatory except for line 7 that is the result of calling testLetComprehension
that retuns an example list comprehension [(a,b)|a<-[0..5],letb=10*a]

Conditional do Expressions and Anonymous Functions

The examples in the next three sub-sections can be found in haskell_tutorial_cookbook_exam-
ples/Pure/Conditionals.hs. You should read the following sub-sections with this file loaded (some
GHCi repl output removed for brevity):

1 haskell_tutorial_cookbook_examples/Pure$ stack ghci

2 *Main> :l Conditionals.hs

3 [1 of 1] Compiling Main (Conditionals.hs, interpreted)

4 Ok, modules loaded: Main.

5 *Main>

Simple Pattern Matching

We previously used the built-in functions head that returns the first element of a list and tail that
returns a list with the first element removed. We will define these functions ourselves using what
is called wild card pattern matching. It is common to append the single quote character ‘ to built-in
functions when we redefine them so we name our new functions head’ and tail’. Remember when
we used destructuring to access elements of a tuple? Wild card pattern matching is similar:

Tutorial on Pure Haskell Programming 31

head'(x:_) = x

tail'(_:xs) = xs

The underscore character _ matches anything and ignores the matched value. Our head and tail
definitions work as expected:

1 *Main> head' ["bird","dog","cat"]

2 "bird"

3 *Main> tail' [0,1,2,3,4,5]

4 [1,2,3,4,5]

5 *Main> :type head'

6 head' :: [t] -> t

7 *Main> :t tail'

8 tail' :: [t] -> [t]

Of course we frequently do not want to ignore matched values. Here is a contrived example that
expects a list of numbers and doubles the value of each element. As for all of the examples in this
chapter, the following function is pure: it can not modify its argument(s) and always returns the
same value given the same input argument(s):

1 doubleList [] = []

2 doubleList (x:xs) = (* 2) x : doubleList xs

In line 1 we start by defining a pattern to match the empty list. It is necessary to define this
terminating condition because we are using recursion in line 2 and eventually we reach the end
of the input list and make the recursive call doubleList []. If you leave out line 1 you then will see
a runtime error like “Non-exhaustive patterns in function doubleList.” As a Haskell beginner you
probably hate Haskell error messages and as you start to write your own functions in source files
and load them into a GHCi repl or compile them, you will initially probably hate compilation error
messages also. I ask you to take on faith a bit of advice: Haskell error messages and warnings will
end up saving you a lot of effort getting your code to work properly. Try to develop the attitude
“Great! The Haskell compiler is helping me!” when you see runtime errors and compiler errors.

In line 2 notice how I didn’t need to use extra parenthesis because of the operator and function
application precedence rules.

1 *Main> doubleList [0..5]

2 [0,2,4,6,8,10]

3 *Main> :t doubleList

4 doubleList :: Num t => [t] -> [t]

This function doubleList seems very unsatisfactory because it is so specific. What if we wanted to
triple or quadruple the elements of a list? Do we want to write two new functions? You might think
of adding an argument that is the multiplier like this:

Tutorial on Pure Haskell Programming 32

1 bumpList n [] = []

2 bumpList n (x:xs) = n * x : bumpList n xs

is better, being more abstract and more general purpose. However, we will do much better.

Before generalizing the list manipuation process further, I would like to make a comment on coding
style, specifically on not using unneeded parenthesis. In the last exmple defining bumpList if you
have superfluous parenthesis like this:

bumpList n (x:xs) = (n * x) : bumpList (n xs)

then the code still works correctly and is fairly readable. I would like you to get in the habit
of avoiding extra uneeded parenthesis and one tool for doing this is running hlint (installing
hlint is covered in Appendix A) on your Haskell code. Using hlint source file will provide
warnings/suggestions like this:

haskell_tutorial_cookbook_examples/Pure$ hlint Conditionals.hs

Conditionals.hs:7:21: Warning: Redundant bracket

Found:

((* 2) x) : doubleList (xs)

Why not:

(* 2) x : doubleList (xs)

Conditionals.hs:7:43: Error: Redundant bracket

Found:

(xs)

Why not:

xs

hlint is not only a tool for improving your code but also for teaching you how to better programusing
Haskell. Please note that hlint provides other suggestions for Conditionals.hs that I am ignoring that
mostly suggest that I replace our mapping operations with using the built-inmap function and use
functional composition. The sample code is specifically to show examples of pattern matching and
is not as concise as it could be.

Are you satisfied with the generality of the function bumpList? I hope that you are not! We should
write a function that will apply an arbitrary function to each element of a list. We will call this
function map’ to avoid confusing our map’ function with the built-in function map.

The following is a simple implementation of a map function (we will see Haskell’s standard map
functions in the next section):

Tutorial on Pure Haskell Programming 33

1 map' f [] = []

2 map' f (x:xs) = f x : map' f xs

In line 2 we do not need parenthesis around f x because function application has a higher precidence
than the operator : which adds an element to the beginning of a list.

Are you pleased with how concise this definition of a map function is? Is concise code like map’
readable to you? Speaking as someone who has written hundreds of thousands of lines of Java code
for customers, let me tell you that I love the conciseness and readability of Haskell! I appreciate
the Java ecosystem with many useful libraries and frameworks and augmented like fine languages
like Clojure and JRuby, but in my opinion using Haskell is a more enjoyable and generally more
productive language and programming environment.

Let’s experiment with our map’ function:

1 *Main> map' (* 7) [0..5]

2 [0,7,14,21,28,35]

3 *Main> map' (+ 1.1) [0..5]

4 [1.1,2.1,3.1,4.1,5.1,6.1]

5 *Main> map' (\x -> (x + 1) * 2) [0..5]

6 [2,4,6,8,10,12]

Lines 1 and 3 should be understandable to you: we are creating a partial function like (* 7) and
passing it to map’ to apply to the list [0..5].

The syntax for the function in line 5 is called an anonymous function. Lisp programers, like myself,
refer to this as a lambda expression. In any case, I often prefer using anonymous functions when a
function will not be used elsewhere. In line 5 the argement to the anonymous inline function is x
and the body of the function is (x + 1) * 2.

I do ask you to not get carried away with using too many anonymous inline functions because they
can make code a little less readable. When we put our code in modules, by default every symbol
(like function names) in the module is externally visible. However, if we explicitly export symbols
in a module do expression then only the explicitly exported symbols are visible by other code that
uses the module. Here is an example:

Tutorial on Pure Haskell Programming 34

module Test2 (doubler) where

map' f [] = []

map' f (x:xs) = (f x) : map' f xs

testFunc x = (x + 1) * 2

doubler xs = map' (* 2) xs

In this examplemap’ and testFunc are hidden: any other module that imports Test2 only has access
to doubler. It might help for you to think of the exported functions roughly as an interface for a
module.

Pattern Matching With Guards

Wewill cover two important concepts in this section: using guard pattern matching to make function
definitions shorter and easier to read and we will look at the Maybe type and how it is used. The
Maybe type is mostly used in non-pure Haskell code and we will use it heavily later. The Maybe
type is a Monad (covered in the next chapter). I introduce the Maybe type here since its use fits
naturally with guard patterns.

Guards are more flexible than the pattern matching seen in the last section. I use pattern matching
for simple cases of destructuring data and guards when I need the flexibility. Youmay want to revisit
the examples in the last section after experimenting with and understanding the examples seen here.

The examples for this section are in the file Guards.hs. As a first simple example we will implement
the Ruby language “spaceship operator”:

1 spaceship n

2 | n < 0 = -1

3 | n == 0 = 0

4 | otherwise = 1

Notice on line 1 that we do not use an = in the function definition when using guards. Each guard
starts with |, contains a condition, and a value on the right side of the = sign.

1 *Main> spaceship (-10)

2 -1

3 *Main> spaceship 0

4 0

5 *Main> spaceship 17

6 1

Remember that a literal negative number as seen in line 1 must be wrapped in parenthesis, otherwise
the Haskell compiler will interpret - as an operator.

Tutorial on Pure Haskell Programming 35

Case Expressions

Case do expressions match a value against a list of possible values. It is common to use the wildcard
matching value _ at the end of a case expression which can be of any type. Here is an example in
the file Cases.hs:

1 module Main where

2

3 numberOpinion n =

4 case n of

5 0 -> "Too low"

6 1 -> "just right"

7 _ -> "OK, that is a number"

8

9 main = do

10 print $ numberOpinion 0

11 print $ numberOpinion 1

12 print $ numberOpinion 2

If Then Else expressions

Haskell has if then else syntax built into the language - if is not defined as a function. Personally I
do not use if then else in Haskell very often. I mostly use simple pattern matching and guards. Here
are some short examples from the file IfThenElses.hs:

ageToString age =

if age < 21 then "minor" else "adult"

All if statements must have both a then expression and a else expression.

haskell_tutorial_cookbook_examples/Pure$ stack ghci

*Main> :l IfThenElses.hs

[1 of 1] Compiling Main (IfThenElses.hs, interpreted)

Ok, modules loaded: Main.

*Main> ageToString 15

"minor"

*Main> ageToString 37

"adult"

Tutorial on Pure Haskell Programming 36

Maps

Maps are simple to construct using a list of key-value tuples and are by default immutable. There is
an example using mutable maps in the next chapter.

We will look at the module Data.Map first in a GHCi repl, then later in a few full code examples.
There is something new in line 1 of the following listing: I am assigning a short aliasM to the module
Data.Map. In referencing a function like fromList (which converts a list of tuples to a map) in the
Data.Map module I can useM.fromList instead of Data.Map.fromList. This is a common practice
so when you read someone else’s Haskell code, one of the first things you should do when reading
a Haskell source file is to make note of the module name abbreviations at the top of the file.

1 haskell_tutorial_cookbook_examples/Pure$ stack ghci

2 *Main> import qualified Data.Map as M

3 *Main M> :t M.fromList

4 M.fromList :: Ord k => [(k, a)] -> M.Map k a

5 *Main M> let aTestMap = M.fromList [("height", 120), ("weight", 15)]

6 *Main M> :t aTestMap

7 aTestMap :: Num a => M.Map [Char] a

8 *Main M> :t lookup

9 lookup :: Eq a => a -> [(a, b)] -> Maybe b

10 *Main M> :t M.lookup

11 M.lookup :: Ord k => k -> M.Map k a -> Maybe a

12 *Main M> M.lookup "weight" aTestMap

13 Just 15

14 *Main M> M.lookup "address" aTestMap

15 Nothing

The keys in a map must all be the same type and the values are also constrained to be of the same
type. I almost always create maps using the helper function fromList in the module Data.Maps.
We will only be using this method of map creation in later examples in this book so I am skipping
coverage of other map building functions. I refer you to the Data.Map documentation¹³.

The following example shows one way to use the Just and Nothing return values:

¹³https://www.stackage.org/haddock/lts-6.17/containers-0.5.6.2/Data-Map.html

https://www.stackage.org/haddock/lts-6.17/containers-0.5.6.2/Data-Map.html
https://www.stackage.org/haddock/lts-6.17/containers-0.5.6.2/Data-Map.html

Tutorial on Pure Haskell Programming 37

1 module MapExamples where

2

3 import qualified Data.Map as M -- from library containers

4

5 aTestMap = M.fromList [("height", 120), ("weight", 15)]

6

7 getNumericValue key aMap =

8 case M.lookup key aMap of

9 Nothing -> -1

10 Just value -> value

11

12 main = do

13 print $ getNumericValue "height" aTestMap

14 print $ getNumericValue "age" aTestMap

The function getNumericValue shows one way to extract a value from an instance of typeMaybe.
The function lookup returns a Maybe value and in this example I use a case statement to test for
a Nothing value or extract a wrapped value in a Just instance. Using Maybe in Haskell is a better
alternative to checking for null values in C or Java.

The output from running the main function in moduleMapExamples is:

1 haskell_tutorial_cookbook_examples/Pure$ stack ghci

2 *Main> :l MapExamples.hs

3 [1 of 1] Compiling MapExamples (MapExamples.hs, interpreted)

4 Ok, modules loaded: MapExamples.

5 *MapExamples> main

6 120

7 -1

Sets

The documentation of Data.Set.Class can be found here¹⁴ and contains overloaded functions for
the types of sets defined here¹⁵.

For most of my work and for the examples later in this book, I create immutable sets from lists and
the only operation I perform is checking to see if a value is in the set. The following examples in
GHCI repl are what you need for the material in this book:

¹⁴https://www.stackage.org/haddock/lts-6.17/sets-0.0.5/Data-Set-Class.html
¹⁵https://www.stackage.org/package/sets

https://www.stackage.org/haddock/lts-6.17/sets-0.0.5/Data-Set-Class.html
https://www.stackage.org/package/sets
https://www.stackage.org/haddock/lts-6.17/sets-0.0.5/Data-Set-Class.html
https://www.stackage.org/package/sets

Tutorial on Pure Haskell Programming 38

1 *Main> import qualified Data.Set as S

2 *Main S> let testSet = S.fromList ["cat","dog","bird"]

3 *Main S> :t testSet

4 testSet :: S.Set [Char]

5 *Main S> S.member "bird" testSet

6 True

7 *Main S> S.member "snake" testSet

8 False

Sets and Maps are immutable so I find creating maps using a lists of key-value tuples and creating
sets using lists is fine. That said, coming from themutable Java, Ruby, Python, and Lisp programming
languages, it took me a while to get used to immutability in Haskell.

More on Functions

In this section we will review what you have learned so far about Haskell functions and then look
at a few more complex examples.

We have been defining and using simple functions and we have seen that operators behave like infix
functions. We can make operators act as prefix functions by wrapping them in parenthesis:

*Main> 10 + 1

11

*Main> (+) 10 1

11

and we can make functions act as infix operators:

*Main> div 100 9

11

*Main> 100 `div` 9

11

This back tick function to operator syntax works with functions we write also:

Tutorial on Pure Haskell Programming 39

*Main> let myAdd a b = a + b

*Main> :t myAdd

myAdd :: Num a => a -> a -> a

*Main> myAdd 1 2

3

*Main> 1 `myAdd` 2

3

Because we are working in a GHCi repl, in line 1 we use let to define the function myAdd. If you
defined this function in a file and then loaded it, you would not use a let.

In the map examples where we applied a function to a list of values, so far we have used functions
that map input values to the same return type, like this (using both partial function evaluation and
anonymous inline function):

Main> map (2) [5,6]

[10,12]

*Main> map (\x -> 2 * x) [5,6]

[10,12]

We can also map to different types; in this example we map from a list of Num values to a list
containing sub-lists of Num values:

1 *Main> let makeList n = [0..n]

2 *Main> makeList 3

3 [0,1,2,3]

4 *Main> map makeList [2,3,4]

5 [[0,1,2],[0,1,2,3],[0,1,2,3,4]]

As usual, I recommend that when you work in a GHCi repl you check the types of functions and
values you are working with:

1 *Main> :t makeList

2 makeList :: (Enum t, Num t) => t -> [t]

3 *Main> :t [1,2]

4 [1,2] :: Num t => [t]

5 *Main> :t [[0,1,2],[0,1,2,3],[0,1,2,3,4]]

6 [[0,1,2],[0,1,2,3],[0,1,2,3,4]] :: Num t => [[t]]

7 *Main>

In line 2 we see that for any type t the function signature is t -> [t] where the compiler determines
that t is constrained to be a Num or Enum by examining how the input variable is used as a range
parameter for constructing a list. Let’s make a new function that works on any type:

Tutorial on Pure Haskell Programming 40

1 *Main> let make3 x = [x,x,x]

2 *Main> :t make3

3 make3 :: t -> [t]

4 *Main> :t make3 "abc"

5 make3 "abc" :: [[Char]]

6 *Main> make3 "abc"

7 ["abc","abc","abc"]

8 *Main> make3 7.1

9 [7.1,7.1,7.1]

10 *Main> :t make3 7.1

11 make3 7.1 :: Fractional t => [t]

Notice in line 3 that the function make3 takes any type of input and returns a list of elements the
same type as the input. We used makes3 both with a string argument and a fractional (floating
point) number) argument.

Comments on Dealing With Immutable Data and How
to Structure Programs

If you program in other programming languages that use mutable data then expect some feelings of
disorientation initially when starting to use Haskell. It is common in other languages to maintain the
state of a computation in an object and to mutate the value(s) in that object. While I cover mutable
state in the next chapter the common pattern in Haskell is to create a data structure (we will use lists
in examples here) and pass it to functions that return a new modified copy of the data structure as
the returned value from the function. It is very common to keep passing the modified new copy of a
data structure through a series of function calls. This may seem cumbersome when you are starting
to use Haskell but quickly feels natural.

The following example shows a simple case where a list is constructed in the function main and
passed through two functions doubleOddElements and times10Elements:

1 module ChainedCalls where

2

3 doubleOddElements =

4 map (\x -> if x `mod` 2 == 0 then x else 2 * x)

5

6 times10Elements = map (* 10)

7

8 main = do

9 print $ doubleOddElements [0,1,2,3,4,5,6,7,8]

10 let aList = [0,1,2,3,4,5]

11 let newList = times10Elements $ doubleOddElements aList

Tutorial on Pure Haskell Programming 41

12 print newList

13 let newList2 = (times10Elements . doubleOddElements) aList

14 print newList2

Notice that the expressions being evaluated in lines 11 and 13 are the same. In line 11 we are
applying function doubleOddElements to the value of aList and passing this value to the outer
function times10Elements. In line 13 we are creating a new function from composing two existing
functions: times10Elements . doubleOddElements. The parenthesis in line 13 are required because
the . operator has lower precedence than the application of function doubleOddElements sowithout
the parenthesis line 13 would evaluate as times10Elements (doubleOddElements aList) which is
not what I intended and would throw an error.

The output is:

1 haskell_tutorial_cookbook_examples/Pure$ stack ghci

2 *Main> :l ChainedCalls.hs

3 [1 of 1] Compiling ChainedCalls (ChainedCalls.hs, interpreted)

4 Ok, modules loaded: ChainedCalls.

5 *ChainedCalls> main

6 [0,2,2,6,4,10,6,14,8]

7 [0,20,20,60,40,100]

8 [0,20,20,60,40,100]

Using immutable data takes some getting used to. I am going to digress for a minute to talk about
working with Haskell. The steps I take when writing new Haskell code are:

• Be sure I understand the problem
• How will data be represented - in Haskell I prefer using built-in types when possible
• Determine which Haskell standard functions, modules, and 3rd party modules might be useful
• Write and test the pure Haskell functions I think that I need for the application
• Write an impure main function that fetches required data, calls the pure functions (which are
no longer pure in the sense they are called from impure code), and saves the processed data.

I am showing you many tiny examples but please keep in mind the entire process of writing longer
programs.

Error Handling

We have seen examples of handling soft errors when no value can be calculated: use Maybe, Just,
and Nothing. In bug free pure Haskell code, runtime exceptions should be very rare and I usually
do not try to trap them.

Using Maybe, Just, and Nothing is much better than, for example, throwing an error using the
standard function error:

Tutorial on Pure Haskell Programming 42

*Main> error "test error 123"

*** Exception: test error 123

and then, in impure code catching the errors, here is the documentation¹⁶ for your reference.

In impure code that performs IO or accesses network resources that could possibly run out of
memory, etc., runtime errors can occur and you could use the same try catch coding style that you
have probably used in other programming languages. I admit this is my personal coding style but I
don’t like to catch runtime errors. I spent a long time writing Java applications and when possible I
preferred using uncaught exceptions and I usually do the same when writing impure Haskell code.

Because of Haskell’s type safety and excellent testing tools, it is possible to write nearly error free
Haskell code. Later when we perform network IO we will rely on library support to handle errors
and timeouts in a clean “Haskell like” way.

Testing Haskell Code

The example in this section is found in the directory haskell_tutorial_cookbook_examples/Testing-
Haskell.

If you use stack to create a new project then the framework for testing is generated for you:

$ stack new TestingHaskell

$ cd TestingHaskell

$ ls -R

LICENSE app test

Setup.hs src

TestingHaskell.cabal stack.yaml

TestingHaskell//app:

Main.hs

TestingHaskell//src:

Lib.hs

TestingHaskell//test:

Spec.hs

$ cat test/Spec.hs

main :: IO ()

main = putStrLn "Test suite not yet implemented"

$ stack setup

$ stack build

¹⁶https://wiki.haskell.org/Exception

https://wiki.haskell.org/Exception
https://wiki.haskell.org/Exception

Tutorial on Pure Haskell Programming 43

This stack generated project is more complex than the project I created manually in the directory
haskell_tutorial_cookbook_examples/Pure. The file Setup.hs is a placeholder and uses any module
named Main in the app directory. This module, defined in app/Main.hs, imports the module Lib
defined in src/Lib.hs.

The generated test does not do anything, but let’s run it anyway:

$ stack test

Registering TestingHaskell-0.1.0.0...

TestingHaskell-0.1.0.0: test (suite: TestingHaskell-test)

Progress: 1/2 Test suite not yet implemented

Completed 2 action(s).

In the generated project, I made a few changes:

• removed src/Lib.hs
• added src/MyColors.hs providing the type MyColors that we defined earlier
• modified app/Main.hs to use the MyColors type
• added tests to test/Spec.hs

Here is the contents of TestingHaskell/src/MyColors.hs:

module MyColors where

data MyColors = Orange | Red | Blue | Green | Silver

deriving (Show, Eq)

instance Ord MyColors where

compare c1 c2 = compare (show c1) (show c2)

And the new test/Spec.hs file:

Tutorial on Pure Haskell Programming 44

1 import Test.Hspec

2

3 import MyColors

4

5 main :: IO ()

6 main = hspec spec

7

8 spec :: Spec

9 spec = do

10 describe "head" $ do

11 it "test removing first list element" $ do

12 head [1,2,3,4] `shouldBe` 1

13 head ["the", "dog", "ran"] `shouldBe` "dog" -- should fail

14 describe "MyColors tests" $ do

15 it "test custom 'compare' function" $ do

16 MyColors.Green < MyColors.Red `shouldBe` True

17 Red > Silver `shouldBe` True -- should fail

Notice how two of the tests are meant to fail as an example. Let’s run the tests:

1 $ stack test

2 TestingHaskell-0.1.0.0: test (suite: TestingHaskell-test)

3

4 Progress: 1/2

5 head

6 test removing first list element FAILED [1]

7 MyColors tests

8 test custom 'compare' function FAILED [2]

9

10 Failures:

11

12 test/Spec.hs:13:

13 1) head test removing first list element

14 expected: "dog"

15 but got: "the"

16

17 test/Spec.hs:17:

18 2) MyColors tests test custom 'compare' function

19 expected: True

20 but got: False

21

22 Randomized with seed 1233887367

23

Tutorial on Pure Haskell Programming 45

24 Finished in 0.0139 seconds

25 2 examples, 2 failures

26

27 Completed 2 action(s).

28 Test suite failure for package TestingHaskell-0.1.0.0

29 TestingHaskell-test: exited with: ExitFailure 1

30 Logs printed to console

In line one with stack test we are asking stack to run app tests in the subdirectory test. All Haskell
source files in subdirectory test are assumed to be test files. In the listing for file test/Spec.hswe have
two tests that fail on purpose and you see the output for the failed tests at lines 12-15 and 17-20.

Because the Haskell compiler does such a good job at finding type errors I have fewer errors in my
Haskell code compared to languages like Ruby and Common Lisp. As a result I find myself writing
fewer tests for my Haskell code than I would write in other languages. Still, I recommend some tests
for each of your projects; decide for yourself how much relative effort you want to put into writing
tests.

Pure Haskell Wrap Up

I hope you are starting to get an appreciation for using composition of functions and higher order
functions to enable us to compose programs from smaller pieces that can be joined together.

This composition is made easier when using pure functions that always return the same value when
called with the same type of arguments.

Wewill continue to see examples of how lazy evaluation simplifies code becausewe can use infinitely
large lists with the assurance that values are not calculated until they are needed.

In addition to Haskell code generally having fewer errors (after it gets by the compiler!) other
advantages of functional programming includemore concise code that is easy to read and understand
once you get some experience with the language.

Tutorial on Impure Haskell
Programming
One of the great things about Haskell is that the language encourages us to think of our code in two
parts:

• Pure functional code (functions have no side effects) that is easy to write and test. Functional
code tends to be shorter and less likely to be imperative (i.e., more functional, using maps and
recursion, and less use of loops as in Java or C++).

• Impure code that deals with side effects like file and network IO, maintaining state in a typesafe
way, and isolate imperative code that has side effects.

In his excellent Functional Programming with Haskell class at eDX¹⁷ ErikMeijer described pure code
as being islands in the ocean and the ocean representing impure code. He says that it is a design
decision how much of your code is pure (islands) and how much is impure (the ocean). This model
of looking at Haskel programs works for me.

My use the word “impure” is common for refering to Haskell code with side effects. Haskell is a
purely functional language and side effects like I/O are best handled in a pure functional way using
by wrapping pure values inMondads.

In addition to showing you reusable examples of impure code that you will likely need in your own
programs, a major theme of this chapter is handling impure code in a convenient type safe fashion.
Any Monad, which wraps a single value, is used to safely manage state. I will introduce you to
usingMonad types as required for the examples in this chapter. This tutorial style introduction will
prepare you for understanding the sample applications later.

Hello IO () Monad

I showed you many examples of pure code in the last chapter but most examples in source files (as
opposed to those shown in a GHCi repl) had a bit of impure code in them: the main function like
the following that simply writes a string of characters to standard output:

main = do

print "hello world"

The type of function main is:

¹⁷http://edx.org

http://edx.org/
http://edx.org/

Tutorial on Impure Haskell Programming 47

*Main> :t main

main :: IO ()

The IO () monad is an IO value wrapped in a type safe way. Because Haskell is a lazy evaluation
language, the value is not evaluated until it is used. Every IO () action returns exactly one value.
Think of the word “mono” (or “one”) when you think of Monads because they always return one
value. Monads are also used to connnect together parts of a program.

What is it about the function main in the last example that makes its type an IO ()? Consider the
simple main function here:

module NoIO where

main = do

let i = 1 in

2 * i

and its type:

*Main> :l NoIO

[1 of 1] Compiling NoIO (NoIO.hs, interpreted)

Ok, modules loaded: NoIO.

*NoIO> main

2

*NoIO> :t main

main :: Integer

*NoIO>

OK, now you see that there is nothing special about a main function: it gets its type from the type
of value returned from the function. It is common to have the return type depend on the function
argument types. The first example returns a type IO () because it returns a print do expression:

*Main> :t print

print :: Show a => a -> IO ()

*Main> :t putStrLn

putStrLn :: String -> IO ()

The function print shows the enclosing quote characters when displaying a string while putStrLn
does not. In the first example, what happens when we stitch together several expressions that have
type IO ()? Consider:

Tutorial on Impure Haskell Programming 48

main = do

print 1

print "cat"

Function main is still of type IO (). You have seen do expressions frequently in examples and now
we will dig into what the do expression is and why we use it.

The do notation makes working with monads easier. There are alternatives to using do that we will
look at later.

One thing to note is that if you are doing bindings inside a do expression using a let with a in
expression, you need to wrap the bindings in a new (inner) do expression if there is more than one
line of code following the let statement. The way to avoid requiring a nested do expression is to not
use in in a let expression inside a do block of code. Yes, this sounds complicated but let’s clear up
any confusion by looking at the examples found in the file ImPure/DoLetExample.hs (you might also
want to look at the similar example file ImPure/DoLetExample2.hs that uses bind operators instead
of a do statement; we will look at bind operators in the next section):

module DoLetExample where

example1 = do -- good style

putStrLn "Enter an integer number:"

s <- getLine

let number = (read s :: Int) + 2

putStrLn $ "Number plus 2 = " ++ (show number)

example2 = do -- avoid using "in" inside a do statement

putStrLn "Enter an integer number:"

s <- getLine

let number = (read s :: Int) + 2 in

putStrLn $ "Number plus 2 = " ++ (show number)

example3 = do -- avoid using "in" inside a do statement

putStrLn "Enter an integer number:"

s <- getLine

let number = (read s :: Int) + 2 in

do -- this do is required since we have two dependent statements:

putStrLn "Result is:"

putStrLn $ "Number plus 2 = " ++ (show number)

main = do

example1

example2

example3

Tutorial on Impure Haskell Programming 49

You should use the pattern in function example1 and not the pattern in example2. The do expression
is syntactic sugar that allows programmers to string together a sequence of operations that can mix
pure and impure code.

To be clear, the left arrow <- is used when the expression on the right side is some type of IO () that
needs to be lifted before being used. A let do expression is used when the right side expression is a
pure value.

On lines 6 and 12 we are using function read to converting a string read out of IO String () to an
integer value. Remember that the value of s (from calling readLine) is an IO () so in the same way
you might read from a file, in this example we are reading a value from an IO () value.

A Note About >> and >>= Operators

So far in this book I have been using the syntactic sugar of the do expression to work with Monads
like IO () and I will usually use this syntactic sugar for the rest of this book.

Even though I find it easier to write and read code using do, many Haskell programmers prefer >>
and >>= so let’s go over these operators so you won’t be confused when reading Haskell code that
uses them. Also, when we use do expressions in code the compiler generates similar code using these
>> and >>= operators.

The Monad type class defines the operators >>= and return. We turn to the GHCi repl to experiment
with and learn about these operators:

1 *Main> :t (>>)

2 (>>) :: Monad m => m a -> m b -> m b

3 *Main> :t (>>=)

4 (>>=) :: Monad m => m a -> (a -> m b) -> m b

5 *Main> :t return

6 return :: Monad m => a -> m a

We start with the return function type return :: Monad m ⇒ a -> m a which tells us that for a
monad m the function return takes a value and wraps it in a monad. We will see examples of the
return function used to return a wrapped value from a function that returns IO () values. The bind
operator (>>) is used to evaluate two expressions in sequence. As an example, we can replace this
do expression:

main = do

example1

example2

example3

with the following:

Tutorial on Impure Haskell Programming 50

main = example1 >> example2 >> example3

The operator >>= is similar to >> except that it evaluates the left hand expression and pipes its value
into the right hand side expression. The left hand side expression is evaluated to some type of IO
() and the expression on the right hand side typically reads from the input IO (). An example will
make this simpler to understand:

1 module DoLetExample3 where

2

3 example3 = putStrLn "Enter an integer number:" >> getLine

4

5 example4 mv = do

6 let number = (read mv :: Int) + 2

7 putStrLn $ "Number plus 2 = " ++ (show number)

8

9 main = example3 >>= example4

Note that I could have used a do statement to define function example3 but used a bind operator
instead. Let’s run this example and look at the function types. Please don’t just quickly read through
the following listing; when you understand what is happening in this example then for the rest of
your life programming in Haskell things will be easier for you:

1 *DoLetExample3> main

2 Enter an integer number:

3 1

4 Number plus 2 = 3

5 *DoLetExample3> :t example3

6 example3 :: IO String

7 *DoLetExample3> :t example4

8 example4 :: String -> IO ()

9 *DoLetExample3> :t main

10 main :: IO ()

11 *DoLetExample3> let x = example3

12 *DoLetExample3> x

13 Enter an integer number:

14 4

15 "4"

16 *DoLetExample3> :t x

17 x :: IO String

18 *DoLetExample3> x >>= example4

19 Enter an integer number:

20 3

21 Number plus 2 = 5

Tutorial on Impure Haskell Programming 51

The interesting part starts at line 11whenwe define x to be the returned value from calling example3.
Remember that Haskell is a lazy language: evaluation is postponed until a value is actually used.

Working inside a GHCi repl is like working interactively inside a do expression. When we evaluate
x in line 12 then the code in function example3 is actually executed (notice this is where the user
prompt to enter a number occurs). In line 18 we are re-evaluationg the value in x and passing the
resulting IO String () value to the function example4.

Haskell is a “piecemeal” programming language as are the Lisp family of languages where a repl
is used to write little pieces code that are collected into programs. For simple code in Haskell (and
Lisp languages) I do sometimes directly enter code into a text editor but very ofter I start in a repl,
experiment, debug, refine, and then copy into an edited file.

Console IO Example with Stack Configuration

The directory CommandLineApps contains two simple applications that interact with STDIO, that
is to write to the console and read from the keyboard. The first example can be found in file
CommandLineApp/CommandLine1.hs:

1 module Main where

2

3 import System.IO

4 import Data.Char (toUpper)

5

6 main = do

7 putStrLn "Enter a line of text for test 1:"

8 s <- getLine

9 putStrLn $ "As upper case:\t" ++ (map toUpper s)

10 main

Lines 3 and 4 import the entire System.IO module (that is, import all exported symbols from
System.IO) and just the function toUpper frommoduleData.Char. System.IO is a standard Haskell
module and we do not have to do anything special to import it. The Data.Char is stored in the
package text. The package text is contained in the library package base which is specified in the
CommandLineApp.cabal configuration file that we will look at soon.

Use of the <- assignment in line 8 in the last Haskell listing is important to understand. It might
occur to you to leave out line 8 and just place the getLine function call directly in line 9, like this:

1 putStrLn $ "As upper case:\t" ++ (map toUpper getLine)

If you try this (please do!) you will see compilation errors like:

Tutorial on Impure Haskell Programming 52

1 Couldn't match expected type ‘[Char]’ with actual type ‘IO String’

2 In the second argument of ‘map’, namely ‘getLine’

3 In the second argument of ‘(++)’, namely ‘(map toUpper getLine)’

The type of getLine is an IO () that is a wrapped IO call. The value is not computed until it is used.
The <- assignment in line 8 evaluates the IO call and unwraps the result of the IO operation so that
it can be used.

I don’t spend much time covering stack project configuration files in this book but I do recommend
that as you work through examples to also look for a file in each example directory ending with the
file extension .cabal that specified which packages need to be loaded. For some examples it might
take a while to download and configure libraries the first time you run either stack build or stack
ghci in an example directory.

The Haskell stack project in the CommandLineApp directory has five target applications as we
can see in the CommandLineApp.cabal file. I am not going to go into much detail about the project
cabal and stack.yaml files generated by stack when you create a new project except for configuration
data that I had to add manually; in this case, I added two executable targets at the end of the cabal
file (note: the project in the github repository for this book has more executable targets, I just show
a few here):

1 executable CommandLine1

2 hs-source-dirs: .

3 main-is: CommandLine1.hs

4 default-language: Haskell2010

5 build-depends: base >= 4.7 && < 5

6

7 executable CommandLine2

8 hs-source-dirs: .

9 main-is: CommandLine2.hs

10 default-language: Haskell2010

11 build-depends: base >= 4.7 && < 5

12

13 executable ReadTextFile

14 hs-source-dirs: .

15 main-is: ReadTextFile.hs

16 default-language: Haskell2010

17 build-depends: base >= 4.7 && < 5

18

19 executable GameLoop1

20 hs-source-dirs: .

21 main-is: GameLoop1.hs

22 default-language: Haskell2010

23 build-depends: base >= 4.7 && < 5, time

Tutorial on Impure Haskell Programming 53

24

25 executable GameLoop2

26 hs-source-dirs: .

27 main-is: GameLoop2.hs

28 default-language: Haskell2010

29 build-depends: base >= 4.7 && < 5, random

The executable name determines the compiled and linked executable file name. For line 1, an
executable file “CommandLine1” (or “CommandLine1.exe”” on Windows) will be generated. The
parameter hs-source-dirs is a comma separated list of source file directories. In this simple example
all Haskell source files are in the project’s top level directory “../”. The build-depends is a comma
separated list of module libraries; here we only use the base built-in modules packaged with Haskell.

Let’s use a GHCi repl to poke at this code and understand it better. The project defined in
CommandLineApp/CommandLineApp.cabal contains many executable targets so when we enter
a GHCi repl, the available targets are shown and you can choose one; in this case I am selecting the
first target defined in the cabal file. In later GHCi repl listings, I will edit out this output for brevity:

1 $ stack ghci

2

3 * * * * * * * *

4 The main module to load is ambiguous. Candidates are:

5 1. Package `CommandLineApp' component exe:CommandLine1 with main-is file: /Users/mar\

6 kw/GITHUB/haskell_tutorial_cookbook_examples/CommandLineApp/CommandLine1.hs

7 2. Package `CommandLineApp' component exe:CommandLine2 with main-is file: /Users/mar\

8 kw/GITHUB/haskell_tutorial_cookbook_examples/CommandLineApp/CommandLine2.hs

9 3. Package `CommandLineApp' component exe:ReadTextFile with main-is file: /Users/mar\

10 kw/GITHUB/haskell_tutorial_cookbook_examples/CommandLineApp/ReadTextFile.hs

11 You can specify which one to pick by:

12 * Specifying targets to stack ghci e.g. stack ghci CommandLineApp:exe:CommandLine1

13 * Specifying what the main is e.g. stack ghci --main-is CommandLineApp:exe:CommandL\

14 ine1

15 * Choosing from the candidate above [1..3]

16 * * * * * * * *

17

18 Specify main module to use (press enter to load none): 1

19 Loading main module from cadidate 1, --main-is /Users/markw/GITHUB/haskell_tutorial_\

20 cookbook_examples/CommandLineApp/CommandLine1.hs

21

22 Configuring GHCi with the following packages: CommandLineApp

23 GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

24 Ok, modules loaded: none.

25 [1 of 1] Compiling Main (/Users/markw/GITHUB/haskell_tutorial_cookbook_\

Tutorial on Impure Haskell Programming 54

26 examples/CommandLineApp/CommandLine1.hs, interpreted)

27 Ok, modules loaded: Main.

28 *Main> :t main

29 main :: IO b

30 *Main> :info main

31 main :: IO b

32 -- Defined at /Users/markw/GITHUB/haskell_tutorial_cookbook_examples/CommandLineApp/\

33 CommandLine1.hs:6:1

34 *Main> :t getLine

35 getLine :: IO String

36 *Main> :t putStrLn

37 putStrLn :: String -> IO ()

38 *Main> main

39 Enter a line of text for test 1:

40 line 1

41 As upper case: LINE 1

42 Enter a line of text for test 1:

43 line 2

44 As upper case: LINE 2

45 Enter a line of text for test 1:

46 ^C Interrupted.

47 *Main>

In line 36 the function getLine is of type getLine :: IO String which means that calling getLine
returns a value that is a computation to get a line of text from stdio but the IO operation is not
performed until the value is used.

Please note that it is unusual to put five executable targets in a project’s cabal file. I am only doing so
here because I wanted to group five similar examples together in this subdirectory of the github repo
for this book¹⁸. This repo has 16 example subdirectories, and the number would be much greater if
I didn’t collect similar examples together.

Wewill use the example in fileCommandLine2.hs in the next section which is similar to this example
but also appends the user input to a text file.

File IO

We will now look at a short example of doing file IO. We will write Haskell simple string values
to a file. If you are using the more efficient Haskell Text values, the code is the same. Text values
are more efficient than simple string values when dealing with a lot of data and we will later use
a compiler setting to automatically convert between the underlying formats. The following listing
shows CommandLineApp/CommandLine2.hs:

¹⁸https://github.com/mark-watson/haskell_tutorial_cookbook_examples

https://github.com/mark-watson/haskell_tutorial_cookbook_examples
https://github.com/mark-watson/haskell_tutorial_cookbook_examples
https://github.com/mark-watson/haskell_tutorial_cookbook_examples

Tutorial on Impure Haskell Programming 55

1 module Main where

2

3 import System.IO

4 import Data.Char (toUpper)

5

6 main = do

7 putStrLn "Enter a line of text for test2:"

8 s <- getLine

9 putStrLn $ "As upper case:\t" ++ (map toUpper s)

10 appendFile "temp.txt" $ s ++ "\n"

11 main

Note the use of recursion in line 11 to make this program loop forever until you use a COntrol-c to
stop the program.

In line 10 we are using function appendFile to open a file, append a string to it, and then close the
file. appendFile is of type appendFile :: FilePath -> String -> IO (). It looks like we are passing a
simple string as a file name instead of type FilePath but if you look up the definition of FilePath
you will see that it is just an alias for string: type FilePath = String.

Running this example in a GHCi repl, with much of the initial printout from running stack ghci not
shown:

1 $ stack ghci

2 CommandLineApp-0.1.0.0: configure

3 Specify main module to use (press enter to load none): 2

4 Ok, modules loaded: Main.

5 *Main> main

6 Enter a line of text for test2:

7 line 1

8 As upper case: LINE 1

9 Enter a line of text for test2:

10 line 2

11 As upper case: LINE 2

12 Enter a line of text for test2:

13 ^C Interrupted.

14 *Main>

The file temp.txt was just created.

The next example used ReadTextFile.hs to read the file temp.txt and process the text by finding all
words in the file:

Tutorial on Impure Haskell Programming 56

1 module Main where

2

3 import System.IO

4 import Control.Monad

5

6 main = do

7 entireFileAsString <- readFile "temp.txt"

8 print entireFileAsString

9 let allWords = words entireFileAsString

10 print allWords

readFile is a high-level function because it manages for you reading a file and closing the file handle
it uses internally. The built in function words splits a string on spaces and returns a list of strings
[String] that are printed on line 7:

1 $ stack ghci

2 CommandLineApp-0.1.0.0: build

3 Specify main module to use (press enter to load none): 3

4 Ok, modules loaded: ReadTextFile.

5 *ReadTextFile> main

6 "line 1\nline 2\n"

7 ["line","1","line","2"]

8 *ReadTextFile>

9 *ReadTextFile> :t readFile

10 readFile :: FilePath -> IO String

11 *ReadTextFile> :type words

12 words :: String -> [String]

What if the function readFile encounters an error? That is the subject for the next section.

Error Handling in Impure Code

I know you have been patiently waiting to see how we handle errors in Haskell code. Your wait is
over! We will look at several common types of runtime errors and how to deal with them. In the last
section we used the function readFile to read the contents of a text file temp.txt. What if temp.txt
does not exist? Well, then we get an error like the following when running the example program in
ReadTextFile.hs:

*Main> main

*** Exception: temp.txt: openFile: does not exist (No such file or directory)

Tutorial on Impure Haskell Programming 57

Let’s modify this last example in a new file ReadTextFileErrorHandling.hs that catches a file not
found error. The following example is derived from the first example in Michael Snoyman’s article
Catching all exceptions¹⁹. This example does not work inside threads; if you need to catch errors
inside a thread then see the second example in Michael’s article.

1 module Main where

2

3 import System.IO

4 import Control.Exception

5

6 -- catchAny by Michael Snoyman:

7 catchAny :: IO a -> (SomeException -> IO a) -> IO a

8 catchAny = Control.Exception.catch

9

10 safeFileReader :: FilePath -> IO String

11 safeFileReader fPath = do

12 entireFileAsString <- catchAny (readFile "temp.txt") $ \error -> do

13 putStrLn $ "Error: " ++ show error

14 return ""

15 return entireFileAsString

16

17 main :: IO ()

18 main = do

19 fContents <- safeFileReader "temp.txt"

20 print fContents

21 print $ words fContents

I will run this twice: the first time without the file temp.txt present and a second time with temp.txt
in the current durectory:

*Main> :l ReadTextFileErrorHandling.hs

[1 of 1] Compiling Main (ReadTextFileErrorHandling.hs, interpreted)

Ok, modules loaded: Main.

*Main> main

Error: temp.txt: openFile: does not exist (No such file or directory)

""

[]

1

*Main> main

"line 1\nline 2\n"

["line","1","line","2"]

¹⁹https://www.schoolofhaskell.com/user/snoyberg/general-haskell/exceptions/catching-all-exceptions

https://www.schoolofhaskell.com/user/snoyberg/general-haskell/exceptions/catching-all-exceptions
https://www.schoolofhaskell.com/user/snoyberg/general-haskell/exceptions/catching-all-exceptions

Tutorial on Impure Haskell Programming 58

Until you need to handle runtime errors in amulti-threaded Haskell program, following this example
should be sufficient. In the next section we look at Network IO.

Network IO

We will experiment with three network IO examples in this book:

• A simple socket client/server example in this section.
• Reading web pages in the chapter “Web Scraping”
• Querying remote RDF endpoints in the chapter “Linked Data and the Semantic Web”

We start by using a high level library, network-simple for both the client and serve examples in
the next two sub-sections. The client and sever examples are in the directory haskell_tutorial_-
cookbook_examples/ClientServer in the files Client.hs and Server.hs.

Server Using network-simple Library

TheHaskellNetwork andNetwork.Simplemodules use strings represented asData.ByteString.Char8
data so as seen in line 1 I set the language type OverloadedStrings. The following example in file
ClientServer/Server.hs is derived from an example in the network-simple project:

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module Server where

4

5 import Control.Monad

6 import qualified Data.ByteString.Char8 as B

7 import qualified Network.Simple.TCP as T

8

9 reverseStringLoop sock = do

10 mbs <- T.recv sock 4096

11 case mbs of

12 Just bs -> T.send sock (B.reverse bs) >> reverseStringLoop sock

13 Nothing -> return ()

14

15 main :: IO ()

16 main = T.withSocketsDo $ do -- derived from library example

17 T.listen "*" "3000" $ \(lsock, laddr) -> do

18 putStrLn $ "Listening at " ++ show laddr

19 forever . T.acceptFork lsock $ \(sock, addr) -> do

20 putStrLn $ "Connection from " ++ show addr

21 reverseStringLoop sock

Tutorial on Impure Haskell Programming 59

The server accepts a string, reverses the string, and returns the reversed string to the client.

I am assuming that you have done some network programming and are familiar with sockets, etc.
The function reverseStringLoop defined in lines 9-13 accepts a socket as a parameter and returns
a value of typeMonadIO that wraps a byte-string value. In line 10 we use the T.recv function that
takes two arguments: a socket and the maximum number of bytes to received from the client. The
case expression reverses the received byte string, sends the reversed string back to the client, and
recursively calls itself waiting for new data from the client. If the client breaks the socket connection,
then the function retuns an emptyMonadIO().

The main function defined in lines 15-21 listens on port 3000 for new client socket connections. In
line 19, the function T.acceptFork accepts as an argument a socket value and a function to execute;
the complete type is:

1 *Main> :t T.acceptFork

2 T.acceptFork

3 :: transformers-0.4.2.0:Control.Monad.IO.Class.MonadIO m =>

4 T.Socket

5 -> ((T.Socket, T.SockAddr) -> IO ()) -> m GHC.Conc.Sync.ThreadId

Don’t let line 3 scare you; the GHCi repl is just showing you where this type of MonadIO is defined.
The return type refers to a thread ID that is passed to the function forever :: Monad m⇒m a -> m
b that is defined in the module Control.Monad and lets the thread run until it teminates.

The network-simple package is fairly high level and relatively simple to use. If you are interested
you can find many client/server examples on the web that use the lower-level network package.

We will develop a client application to talk with this server in the next section but if you want to
immediately try the server, start it and then run telnet in another terminal window:

Prelude> :l Server

[1 of 1] Compiling Server (Server.hs, interpreted)

Ok, modules loaded: Server.

*Main> main

Listening at 0.0.0.0:3000

And run telnet :

Tutorial on Impure Haskell Programming 60

$ telnet localhost 3000

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

12345

54321

The dog ran down the street

teerts eht nwod nar god ehT

In the next section we write a simple client to talk with this service example.

Client Using network-simple Library

I want to use automatic conversion between strings represented asData.ByteString.Char8 data and
regular [Char] strings so as seen in line 1 I set the language type OverloadedStrings in the example
in file Client.hs:

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module Client where

4

5 import Control.Monad

6 import qualified Network.Simple.TCP as T

7

8 main = do

9 T.connect "127.0.0.1" "3000" $ \(connectionSocket, remoteAddr) -> do

10 putStrLn $ "Connection established to " ++ show remoteAddr

11 T.send connectionSocket "test123"

12 response <- T.recv connectionSocket 100

13 case response of

14 Just s -> putStrLn $ "Response: " ++ show s

15 Nothing -> putStrLn "No response from server"

The function T.connect in line 9 accepts arguments for a host name, a port, and a function to call
with the connection socket to the server and the server’s address. The body of this inline function,
defined in in the middle on line 9 and continuing in lines 10-15, prints the server address, sends a
string “test123” to the server, and waits for a response back from the server (T.recv in line 12). The
server response is printed, or a warning that no response was received.

While the example in file Server.hs is running in another terminal, we can run the client interactively:

Tutorial on Impure Haskell Programming 61

Prelude> :l Client.hs

[1 of 1] Compiling Client (Client.hs, interpreted)

Ok, modules loaded: Client.

*Main main

Connection established to 127.0.0.1:3000

Response: "321tset"

A Haskell Game Loop that Maintains State
Functionally

The example in this section can be found in the file GameLoop2.hs in the directory haskell_tuto-
rial_cookbook_examples/CommandLineApp. This example uses the random package to generate
a seed random number for a simple number guessing game. An alternative implementation in
GameLoop1.hs, which I won’t discuss, uses the system time to generate a seed.

This is an important example because it demonstrates one way to maintain state in a functional
way. We have a read-only game state value that is passed to the function gameLoopwhich modifies
the read-only game state passed as an argument and returns a newly constructed game state as the
function’s returned value. This is a common pattern that we will see again later when we develop an
application to play a simplified version of the card game Blackjack in the chapter “Haskell Program
to Play the Blackjack Card Game.”

1 module GameLoop2 where

2

3 import System.Random

4

5 data GameState = GameState { numberToGuess::Integer, numTries::Integer}

6 deriving (Show)

7

8 gameLoop :: GameState -> IO GameState

9 gameLoop gs = do

10 print $ numberToGuess gs

11 putStrLn "Enter a number:"

12 s <- getLine

13 let num = read s :: Integer

14 if num == numberToGuess gs then

15 return gs

16 else gameLoop $ GameState (numberToGuess gs) ((numTries gs) + 1)

17

18 main = do

19 pTime <- randomRIO(1,4)

Tutorial on Impure Haskell Programming 62

20 let gameState = GameState pTime 1

21 print "Guess a number between 1 and 4"

22 gameLoop gameState

You notice in line 12 that since we are inside of a do expression we can lift (or unwrap) the IO String
() value returned from getLine to a string value that we can use directly. This is a pattern we will
use repeatedly. The value returned from getLine is not used until line 13 when we use function read
to extract the value from the IO String () value getLine returned.

In the if expression in lines 14-16 we check if the user has input the correct value and can then
simply return the input game state to the calling main function. If the user has not guessed the
correct number then in line 16 we create a new game state value and call the function gameLoop
recursively with the newly constructed game state.

The following listing shows a sample session playing the number guessing game.

Prelude> :l GameLoop2.hs

[1 of 1] Compiling GameLoop2 (GameLoop2.hs, interpreted)

Ok, modules loaded: GameLoop2.

*GameLoop2> main

"Guess a number between 1 and 4"

Enter a number:

1

Enter a number:

3

Enter a number:

4

GameState {numberToGuess = 4, numTries = 3}

*GameLoop2> main

"Guess a number between 1 and 4"

Enter a number:

1

Enter a number:

2

GameState {numberToGuess = 2, numTries = 2}

*GameLoop2>

We will use this pattern for maintaining state in a game in the later chapter “Haskell Program to
Play the Blackjack Card Game.”

Efficiency of Haskell Strings

Except for the Client/Server example, so far we have been mostly using simple String values where
String is a list of characters [Char]. For longer strings it is much more efficient to use the module

Tutorial on Impure Haskell Programming 63

Data.Text²⁰ that is defined in package text (so text needs to be added to the dependencies in your
cabal file).

ManyHaskell libraries use the simple String type but the use of Data.Text is also common, especially
in applications handling large amounts of string data. We have already seen examples of this in the
client/server example programs. Fortunately Haskell is a strongly typed language that supports a
language extension for automatically handling both simple strings and the more efficient text types.
This language extension, as we have seen in a previous example, is activated by adding the following
near the top of a Haskell source file:

{-# LANGUAGE OverloadedStrings #-}

As much as possible I am going to use simple strings in this book and when we need both simple
strings and byte strings I will then use OverloadedStrings for automatic conversion. This conversion
is performed by knowing the type signatures of data and functions in surrounding code. The compiler
figures out what type of string is expected and does the conversion for you.

A More Detailed Look at Monads

We have been casually using different types of IO () monads. In this section I will introduce you to
the State monad and then we will take a deeper look at IO (). While we will be just skimming the
surface of the topic of monads, my goal in this section is to teach you enough to work through the
remaining examples in this book.

Monads are types belonging to the Monad type class that specifies one operator and one function:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

The >>= operator takes two arguments: a monad wrapping a value (type a in the above listing) and
a function taking the same type a and returning a monad wrapping a new type b. The return value
of >>= is a new monad wrapping a value of type b.

The Monad type class function return takes any value and wraps it in a new monad. The naming
of return is confusing because it does not alter the flow of execution in a program like a return
statement in Java, rather, it wraps a value in a monad.

State Monad

The definition for the constructor of a State monad is:

²⁰https://www.stackage.org/nightly-2016-09-18/package/text-1.2.2.1

https://www.stackage.org/nightly-2016-09-18/package/text-1.2.2.1
https://www.stackage.org/nightly-2016-09-18/package/text-1.2.2.1

Tutorial on Impure Haskell Programming 64

newtype State s a = State { runState :: s -> (a, s) }

So far we have been using data to define new types and newtype is similar except newtype acts
during compile time and no type information is present at runtime. All monads contain a value and
for the State monad this value is a function. The >>= operator is called the bind operator.

The accessor function runState provides the means to access the value in the state. The following
example is in the file StateMonad/State1.hs. In this example, incrementState is a state monad that
increases its wrapped integer value by one when it is executed. Remember that the return function
is perhaps poorly named because it does not immediately “return” from a computation block as it
does in other languages; return simply wraps a value as a monad without redirecting the execution
flow.

In order to make the following example more clear, I implement the increment state function twice,
once using the do notation that you are already familiar with and once using the >>= bind operator:

1 module Main where

2

3 import Control.Monad.State

4

5 incrementState :: State Int Int

6 incrementState = do

7 n <- get

8 put (n + 1)

9 return n

10

11 -- same state monad without using a 'do' expression:

12 incrementState2 :: State Int Int

13 incrementState2 = get >>= \a ->

14 put (a + 1) >>= \b ->

15 return a

16

17 bumpVals (a,b) = (a+1, b+2)

18

19 main = do

20 print $ runState incrementState 1 -- (1,2) == (return value, final state)

21 print $ runState incrementState2 1 -- (1,2) == (return value, final state)

22 print $ runState (mapState bumpVals incrementState) 1 -- (2,4)

23 print $ evalState incrementState 1 -- 1 == return value

24 print $ execState incrementState 1 -- 2 == final state

Here we have used two very different looking, yet equivalent, styles for accessing and modifying
state monad values. In lines 6-9 we are using the do notation. The function get in line 7 returns one
value: the value wrapped in a state monad. Function put in line 8 replaces the wrapped value in the

Tutorial on Impure Haskell Programming 65

state monad, in this example by incrementing its numeric value. Finally return wraps the value in
a monad.

I am using the runState function defined in lines 20-24 that returns a tuple: the first tuple value is
the result of the computation performed by the function passed to runState (incrementState and
incrementState2 in these examples) and the second tuple value is the final wrapped state.

In lines 12-15 I reimplemented increment state using the bind function (>>=). We have seen before
that >>= passes the value on its left side to the computation on its right side, that is function calls in
lines 13-15:

\a -> put (a + 1)

\b -> return a

It is a matter of personal taste whether to code using bind or do. I almost always use the do notation
in my own code but I wanted to cover bind both in case you prefer that notation and so you can
also read and understand Haskell code using bind. We continue looking at alternatives to the do
notation in the next section.

Using Applicative Operators <$> and <*>: Finding
Common Words in Files

My goal in this book is to show you a minimal subset of Haskell that is relatively easy to understand
and use for coding. However, a big part of using a language is reading other people’s code so I do
need to introduce a few more constructs that are widely used: applicative operators.

Before we begin I need to introduce you to a new term: Functor which is a typeclass that defines
only one method fmap. fmap is used to map a function over an IO action and has the type signature:

fmap :: Functor f => (a -> b) -> f a -> f b

fmap can be used to apply a pure function like (a -> b) to an IO a and return a new IO b without
unwrapping the original IO (). The following short example (in file ImPure/FmapExample.hs) will
let you play with this idea:

Tutorial on Impure Haskell Programming 66

1 module FmapExample where

2

3 fileToWords fileName = do

4 fileText <- readFile fileName

5 return $ words fileText

6

7 main = do

8 words1 <- fileToWords "text1.txt"

9 print $ reverse words1

10 words2 <- fmap reverse $ fileToWords "text1.txt"

11 print words2

In lines 8-9 I am unwrapping the result of the IO [String] returned by the function fileToWords
and then applying the pure function words to the unwrapped value. Wouldn’t it be nice to operate
on the words in the file without unwrapping the [String] value? You can do this using fmap as seen
in lines 10-11. Please take a moment to understand what line 10 is doing. Here is line 10:

words2 <- fmap reverse $ fileToWords "text1.txt"

First we read the words in a file into an IO [String] monad:

fileToWords "text1.txt"

Then we apply the pure function reverse to the values inside the IO [String]monad, creating a new
copy:

fmap reverse $ fileToWords "text1.txt"

Note that from the type of the fmap function, the input monad and output monad can wrap different
types. For example, if we applied the function head to an IO [String] we would get an outut of IO
[Char].

Finally we unwrap the [String] value inside the monad and set words2 to this unwrapped value:

words2 <- fmap reverse $ fileToWords "text1.txt"

In summary, the Functor typeclass defines one method fmap that is useful for operating on data
wrapped inside a monad.

Wewill now implement a small application that finds commonwords in two text files, implementing
the primary function three times, using:

• The do notation.
• The >>= bind operator.
• The Applicative operators <$> and <*>

Let’s look at the types for these operators:

Tutorial on Impure Haskell Programming 67

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

We will use both <$> and <*> in the function commonWords3 in this example and I will explain
how these operators work after the following program listing.

This practical example will give you a chance to experiment more with Haskell (you do have a GHCi
repl open now, right?). The source file for this example is in the file ImPure/CommonWords.hs:

1 module CommonWords where

2

3 import Data.Set (fromList, toList, intersection)

4 import Data.Char (toLower)

5

6 fileToWords fileName = do

7 fileText <- readFile fileName

8 return $ (fromList . words) (map toLower fileText)

9

10 commonWords file1 file2 = do

11 words1 <- fileToWords file1

12 words2 <- fileToWords file2

13 return $ toList $ intersection words1 words2

14

15 commonWords2 file1 file2 =

16 fileToWords file1 >>= \f1 ->

17 fileToWords file2 >>= \f2 ->

18 return $ toList $ intersection f1 f2

19

20 commonWords3 file1 file2 =

21 (\f1 f2 -> toList $ intersection f1 f2)

22 <$> fileToWords file1

23 <*> fileToWords file2

24

25 main = do

26 cw <- commonWords "text1.txt" "text2.txt"

27 print cw

28 cw2 <- commonWords "text1.txt" "text2.txt"

29 print cw2

30 cw3 <- commonWords "text1.txt" "text2.txt"

31 print cw3

The function fileToWords defined in lines 6-8 simply reads a file, as in the last example, maps
contents of the file to lower case, uses words to convert a String to a [String] list of individual

Tutorial on Impure Haskell Programming 68

words, and uses the function Data.Set.fromList to create a set from a list of words that in general
will have duplicates.We are retuning an IO (Data.Set.Base.Set String) value so we can later perform
a set intersection operation. In other applications you might want to apply Data.Set.toList before
returning the value from fileToWords so the return type of the function would be IO [String].

The last listing defines three similar functions commonWords, commonWords2, and common-
Words3.

commonWords defined in lines 10-13 should hopefully look routine and familiar to you now. We
set the local variables with the unwrapped (i.e., extracted from a monad) contents of the unique
words in two files, and then return monad wrapping the intersection of the words in both files.

The function commonWords2 is really the same as commonWords except that it uses the bind >>=
operator instead of the do notation.

The interesting function in this example is commonWords3 in lines 20-23 which uses the applicative
operators <$> and <*>. Notice the pure function defined inline in line 21: it takes two arguments of
type set and returns the set intersection of the arguments. The operator <$> takes a function on
the left side and a monad on the right side which contains the wrapped value to be passed as the
argument f1. <*> supplies the value for the inline function arguments f2. To rephrase how lines 21-23
work: we are calling fileToWords twice, both times getting a monad. These two wrapped monad
values are passed as arguments to the inline function in line 21 and the result of evaluating this
inline function is returned as the value of the function commonWords3.

I hope that this example has at least provided you with “reading knowledge” of the Applicative
operators <$> and <*> and has also given you one more example of replacing the do notation with
the use of the bind >>= operator.

List Comprehensions Using the do Notation

We saw examples of list comprehensions in the last chapter on pure Haskell programming. We can
use return to get lists values that are instances of type Monad:

*Prelude> :t (return [])

(return []) :: Monad m => m [t]

*Prelude> :t (return [1,2,3])

(return [1,2,3]) :: (Monad m, Num t) => m [t]

*Prelude> :t (return ["the","tree"])

(return ["the","tree"]) :: Monad m => m [[Char]]

We can get list comprehension behavior from the do notation (here I am using the GHCi repl :{ and
:} commands to enter multiple line examples):

Tutorial on Impure Haskell Programming 69

1 *Main> :{

2 *Main| do num <- [1..3]

3 *Main| animal <- ["parrot", "ant", "dolphin"]

4 *Main| return (num, animal)

5 *Main| :}

6 [(1,"parrot"),(1,"ant"),(1,"dolphin"),

7 (2,"parrot"),(2,"ant"),(2,"dolphin"),

8 (3,"parrot"),(3,"ant"),(3,"dolphin")]

I won’t use this notation further but you now will recognize this pattern if you read it in other
people’s code.

Dealing With Time

In the example in this section we will see how to time a block of code (using two different methods)
and how to set a timeout for code that runs in an IO ().

The first way we time a block of code uses getPOSIXTime and can be used to time pure or impure
code. The second method using timeIt takes an IO () as an argument; in the following example I
wrapped pure code in a print function call which returns an IO () as its value. The last example in
the file TimerTest.hs shows how to run impure code wrapped in a timeout.

1 module Main where

2

3 import Data.Time.Clock.POSIX -- for getPOSIXTime

4 import System.TimeIt -- for timeIt

5 import System.Timeout -- for timeout

6

7 anyCalculationWillDo n = -- a function that can take a while to run

8 take n $ sieve [2..]

9 where

10 sieve (x:xs) =

11 x:sieve [y | y <- xs, rem y x > 0]

12

13 main = do

14 startingTime <- getPOSIXTime

15 print startingTime

16 print $ last $ take 20000001 [0..]

17 endingTime <- getPOSIXTime

18 print endingTime

19 print (endingTime - startingTime)

20 timeIt $ print $ last $ anyCalculationWillDo 2000

Tutorial on Impure Haskell Programming 70

21

22 let somePrimes = anyCalculationWillDo 3333 in

23 timeIt $ print $ last somePrimes

24

25 -- 100000 microseconds timeout tests:

26 timeout 100000 $ print "simple print **do** expression did not timeout"

27 timeout 100000 $ print $ last $ anyCalculationWillDo 4

28 timeout 100000 $ print $ last $ anyCalculationWillDo 40

29 timeout 100000 $ print $ last $ anyCalculationWillDo 400

30 timeout 100000 $ print $ last $ anyCalculationWillDo 4000

31 timeout 100000 $ print $ last $ anyCalculationWillDo 40000

32 print $ anyCalculationWillDo 5

I wanted a function that takes a while to run so for anyCalculationWillDo (lines 7 to 11) I
implemented an inefficient prime number generator.

When running this example on my laptop, the last two timeout calls (lines 26 and 31) are terminated
for taking more than 100000 microseconds to execute.

The last line 32 of code prints out the first 5 prime numbers greater than 1 so you can see the results
of calling the time wasting test function anyCalculationWillDo.

1 $ stack build --exec TimerTest

2 1473610528.2177s

3 20000000

4 1473610530.218574s

5 2.000874s

6 17389

7 CPU time: 0.14s

8 30911

9 CPU time: 0.25s

10 "simple print **do** expression did not timeout"

11 7

12 173

13 2741

14 [2,3,5,7,11]

The timeout function is useful for setting a maximum time that you are willing to wait for a
calculation to complete. I mostly use timeout for timing out operations fetching data from the web.

Using Debug.Trace

Inside an IO you can use print statements to understand what is going on in your code when
debugging. You can not use print statements inside pure code but the Haskell base library contains

Tutorial on Impure Haskell Programming 71

the trace functions that internally perform impure writes to stdout. You do not want to use these
debug tools in production code.

As an example, I have rewritten the example from the last section to use Debug.Trace.trace and
Debug.Trace.traceShow:

1 module Main where

2

3 import Debug.Trace (trace, traceShow) -- for debugging only!

4

5 anyCalculationWillDo n =

6 trace

7 ("+++ anyCalculationWillDo: " ++ show n) $

8 anyCalculationWillDo' n

9

10 anyCalculationWillDo' n =

11 take n $ trace (" -- sieve n:" ++ (show n)) $ sieve [2..]

12 where

13 sieve (x:xs) =

14 traceShow (" -- inside sieve recursion") $

15 x:sieve [y | y <- xs, rem y x > 0]

16

17 main = do

18 print $ anyCalculationWillDo 5

In line 3 we import the trace and showTrace functions:

*Main> :info trace

trace :: String -> a -> a -- Defined in ‘Debug.Trace’

*Main> :info traceShow

traceShow :: Show a => a -> b -> b -- Defined in ‘Debug.Trace’

trace takes two arguments: the first is a string that that is written to stdout and the second is a
function call to be evaluated. traceShow is like *trace except that the first argument is cnverted to
a tstring. The output from running this example is:

Tutorial on Impure Haskell Programming 72

+++ anyCalculationWillDo: 5

-- sieve n:5

" -- inside sieve recursion"

" -- inside sieve recursion"

" -- inside sieve recursion"

" -- inside sieve recursion"

" -- inside sieve recursion"

[2,3,5,7,11]

I don’t usually like using the trace functions because debugging with them involves slightly
rewriting my code. My preference is to get low level code written interactively in the GHCI repl
so it does not need to be debugged. I very frequently use print statement inside IOs since adding
them requires no significant modification of my code.

Wrap Up

I tried to give you a general fast-start in this chapter for using monads and in general writing impure
Haskell code. This chapter should be sufficient for you to be able to understand and experiment with
the examples in the rest of this book.

This is the end of the first section. We will now look at a variety of application examples using the
Haskell language.

While I expect you to have worked through the previous chapters in order, for the rest of the book
you can skip around and read the material in any order that you wish.

Section 2 - Cookbook
Now that you have worked through the pure and impure Haskell coding tutorials in the first two
chapters we will look at a “cookbook” of techniques and sample applications to solve some common
programming tasks as well as implement a program to play the card game Blackjack.

I expect you, dear reader, to have studied and absorbed the tutorial material on pure and impure
Haskell programming in the first two chapters. If you are new to Haskell, or don’t have much
experience yet, carefully working through these tutorial chapters is a requirement for understanding
the material in the rest of this book.

This section contains the following “recipe” applications:

• Textprocessing CSV Files
• Textprocessing JSON Files
• Using sqlite and Postgres databases
• REST Server Providing JSON Data
• REST Client
• Accessing and Using Linked Data
• Querying Semantic Web RDF Data Sources
• Annotating English text with Wikipedia/DBPedia URIs for entities in the original text. Entities
can be people, places, organizations, etc.

• Play the Blackjack card game
• Machine Learning
• Probabilistic Graph Models

Text Processing
Inmywork in data science andmachine learning, processing text is a core activity. I am a practitioner,
not a research scientist, and in a practical sense, I spend a fair amount of time collecting data (e.g.,
web scraping and using semantic web/linked data sources), cleaning it, and converting it to different
formats.

We will cover three useful techniques: parsing and using CSV (comma separated values) spreadsheet
files, parsing and using JSON data, and cleaning up natural language text that contains noise
characters.

CSV Spreadsheet Files

The comma separated values (CSV) format is a plain text format that all spreadsheet applications
support. The following example illustrates two techniques that we haven’t covered yet:

• Extracting values from the Either type.
• Using destructuring to concisely extract parts of a list.

The Either type Either a b contains either a Left a or a Right b value and is usually used to return
an error in Left or a value in Right. We will using the Data.Either.Unwrap module to unwrap the
Right part of a call to the Text.CSV.parseCSVFromFile function that reads a CSV file and returns
a Left error or the data in the spreadsheet in a list as the Right value.

The destructuring trick in line 15 in the following listing lets us separate the head and rest of a list
in one operation; for example:

*TestCSV> let z = [1,2,3,4,5]

*TestCSV> z

[1,2,3,4,5]

*TestCSV> let x:xs = z

*TestCSV> x

1

*TestCSV> xs

[2,3,4,5]

Here is how to read a CSV file:

Text Processing 75

1 module TestCSV where

2

3 import Text.CSV (parseCSVFromFile, CSV)

4 import Data.Either.Unwrap (fromRight)

5

6 readCsvFile :: FilePath -> CSV

7 readCsvFile fname = do

8 c <- parseCSVFromFile fname

9 return $ fromRight c

10

11 main = do

12 c <- readCsvFile "test.csv"

13 print c -- includes header and data rows

14 print $ map head c -- print header

15 let header:rows = c -- destructure

16 print header

17 print rows

Function readCsvFile reads from a file and returns a CSV. What is a CSV type? You could search
the web for documentation, but dear reader, if you have worked this far learning Haskell, by now
you know to rely on the GHCi repl:

*TestCSV> :i CSV

type CSV = [Text.CSV.Record] -- Defined in ‘Text.CSV’

*TestCSV> :i Text.CSV.Record

type Text.CSV.Record = [Text.CSV.Field] -- Defined in ‘Text.CSV’

*TestCSV> :i Text.CSV.Field

type Text.CSV.Field = String -- Defined in ‘Text.CSV’

So, a CSV is a list of records (rows in the spreadsheet file), each record is a list of fields (i.e., a string
value).

The output when reading the CVS file test.csv is:

Text Processing 76

Prelude> :l TestCSV

[1 of 1] Compiling TestCSV (TestCSV.hs, interpreted)

Ok, modules loaded: TestCSV.

*TestCSV> main

[["name"," email"," age"],["John Smith"," jsmith@acmetools.com"," 41"],["June Jones"\

," jj@acmetools.com"," 38"]]

["name","John Smith","June Jones"]

["name"," email"," age"]

[["John Smith"," jsmith@acmetools.com"," 41"],["June Jones"," jj@acmetools.com"," 38\

"]]

JSON Data

JSON is the native data format for the Javascript language and JSON has become a popular
serialization format for exchanging data between programs on a network. In this section I will
demonstrate serializing a Haskell type to a string with JSON encoding and then perform the opposite
operation of deserializing a string containing JSON encoded data back to an object.

The first example uses the module Text.JSON.Generic (from the json library) and the second
example uses module Data.Aeson (from the aeson library).

In the first example, we set the language type to includeDeriveDataTypeable so a new type definition
can simply derive Typeable which allows the compiler to generate appropriate encodeJSON and
decodeJSON functions for the type Person we define in the example:

1 {-# LANGUAGE DeriveDataTypeable #-}

2

3 module TestTextJSON where

4

5 import Text.JSON.Generic

6

7 data Person = Person {name::String, email::String}

8 deriving (Show, Data, Typeable)

9

10 main = do

11 let a = encodeJSON $ Person "Sam" "sam@a.com"

12 print a

13 let d = (decodeJSON a :: Person)

14 print d

15 print $ name d

16 print $ email d

Text Processing 77

Notice that in line 14 that I specified the expected type in the decodeJSON call. This is not strictly
required, the Haskell GHC compiler knows what to do in this case. I specified the type for code
readability. The Haskell compiler wrote the name and email functions for me and I use these
functions in lines 16 and 17 to extract these fields. Here is the output from running this example:

1 Prelude> :l TestTextJSON.hs

2 [1 of 1] Compiling TestTextJSON (TestTextJSON.hs, interpreted)

3 Ok, modules loaded: TestTextJSON.

4 *TestTextJSON> main

5 "{\"name\":\"Sam\",\"email\":\"sam@a.com\"}"

6 Person {name = "Sam", email = "sam@a.com"}

7 "Sam"

8 "sam@a.com"

The next example uses the Aeson library and is similar to this example.

Using Aeson, we set a language type DeriveGeneric and in this case have the Person class derive
Generic. The School of Haskell has an excellent Aeson tutorial²¹ that shows a trick I use in this
example: letting the compiler generate required functions for types FromJSON and ToJSON as seen
in lines 12-13.

1 {-# LANGUAGE DeriveGeneric #-}

2

3 module TestJSON where

4

5 import Data.Aeson

6 import GHC.Generics

7 import Data.Maybe

8

9 data Person = Person {name::String, email::String } deriving (Show, Generic)

10

11 -- nice trick from School Of Haskell tutorial on Aeson:

12 instance FromJSON Person -- DeriveGeneric language setting allows

13 instance ToJSON Person -- automatic generation of instance of

14 -- types deriving Generic.

15

16 main = do

17 let a = encode $ Person "Sam" "sam@a.com"

18 print a

19 let (Just d) = (decode a :: Maybe Person)

20 print d

21 print $ name d

22 print $ email d

²¹https://www.schoolofhaskell.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/json

https://www.schoolofhaskell.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/json
https://www.schoolofhaskell.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/json

Text Processing 78

I use a short cut in line 19, assuming that the Maybe object returned from decode (which the
compiler wrote automatically for the type FromJSON) contains a Just value instead of an empty
Nothing value. So in line 19 I directly unwrap the Just value.

Here is the output from running this example:

1 Prelude> :l TestAESON.hs

2 [1 of 1] Compiling TestJSON (TestAESON.hs, interpreted)

3 Ok, modules loaded: TestJSON.

4 *TestJSON> main

5 "{\"email\":\"sam@a.com\",\"name\":\"Sam\"}"

6 Person {name = "Sam", email = "sam@a.com"}

7 "Sam"

8 "sam@a.com"

Line 5 shows the result of printing the JSON encoded string value created by the call to encode in
line 17 of the last code example. Line 6 shows the decoded value of type Person, and lines 7 and 8
show the inner wrapped values in the Person data.

Cleaning Natural Language Text

I spend a lot of time working with text data because I have worked on NLP (natural language
processing) projects for over 25 years. We will jump into some interesting NLP applications in the
next chapter. I will finish this chapter with strategies for cleaning up text which is often a precursor
to performing NLP.

You might be asking why we would need to clean up text. Here are a few common use cases:

• Text fetched from the web frequently contains garbage characters.
• Some types of punctuation need to be removed.
• Stop words (e.g., the, a, but, etc.) need to be removed.
• Special unicode characters are not desired.
• Sometimes we want white space around punctuation to make tokenizing text easier.

Notice the module statement on line 1 of the following listing: I am exporting functions cleanText
and removeStopWords so theywill be visible and available for use by any othermodules that import
this module. In line 6 we import intercalatewhich constructs a string from a space character and an
[String] (i.e., a list of strings); here is an example where instead of adding a space character between
the strings joined together, I add “*” characters:

Text Processing 79

CleanText> intercalate "" ["the", "black", "cat"]

"the*black*cat"

The function cleanText removes garbage characters andmakes sure that any punctuation characters
are surrounded by white space (this makes it easier, for example, to determine sentence boundaries).
Function removeStopWords removes common words like “a”, “the”, etc. from text.

1 module CleanText (cleanText, removeStopWords) where

2

3 import Data.List.Split (splitOn)

4 import Data.List (intercalate)

5 import Data.Char as C

6 import Data.List.Utils (replace)

7

8 noiseCharacters = ['[', ']', '{', '}', '\n', '\t', '&', '^',

9 '@', '%', '$', '#', ',']

10

11 substituteNoiseCharacters :: [Char] -> [Char]

12 substituteNoiseCharacters =

13 map (\x -> if elem x noiseCharacters then ' ' else x)

14

15 cleanText s =

16 intercalate

17 " " $

18 filter

19 (\x -> length x > 0) $

20 splitOn " " $ substituteNoiseCharacters $

21 (replace "." " . "

22 (replace "," " , "

23 (replace ";" " ; " s)))

24

25 stopWords = ["a", "the", "that", "of", "an"]

26

27 toLower' :: [Char] -> [Char]

28 toLower' s = map (\x -> if isLower x then x else (C.toLower x)) s

29

30 removeStopWords :: String -> [Char]

31 removeStopWords s =

32 intercalate

33 " " $

34 filter

35 (\x -> notElem (toLower' x) stopWords) $

36 words s

Text Processing 80

37

38 main = do

39 let ct = cleanText "The[]@] cat, and all dog, escaped&^. They were caught."

40 print ct

41 let nn = removeStopWords ct

42 print nn

This example should be extended with additional noise characters and stop words, depending on
your application.

Here is the output from this example:

1 *TestCleanText> :l CleanText.hs

2 [1 of 1] Compiling TestCleanText (CleanText.hs, interpreted)

3 Ok, modules loaded: TestCleanText.

4 *TestCleanText> main

5 "The cat and all dog escaped . They were caught ."

6 "cat dog escaped . They were caught ."

We will continue working with text in the next chapter.

Natural Language Processing Tools
The tools developed in this chapter are modules you can reuse in your programs. We will develop
a command line program that reads a line of text from STDIN and writes sematic information as
output to STDOUT. I have used this in a Ruby program by piping input text data to a forked process
and reading the output which is a semantic representation of the input text.

We will be using this example as an external dependency to a later example in the chapter
Knowledge Graph Creator.

A few of the data files I provide in this example are fairly large. As an example the file PeopleDb-
Pedia.hs which builds a map from people’s names to the Wikipedia/DBPedia URI for information
about them, is 2.5 megabytes in size. The first time you run stack build in the project directory it
will take a while, so you might want to start building the project in the directory NlpTool and let it
run while you read this chapter.

Here are three examples using the NlpTool command line application developed in this chapter:

Enter text (all on one line)

Canada and England signed a trade deal.

category: economics

summary: Canada and England signed a trade deal.

countries: [["Canada","<http://dbpedia.org/resource/Canada>"],

["England","<http://dbpedia.org/resource/England>"]]

Enter text (all on one line)

President George W Bush asked Congress for permission to invade Iraq.

category: news_war

summary: President George W Bush asked Congress for permission to invade Iraq.

people: [["George W Bush","<http://dbpedia.org/resource/George_W._Bush>"]]

countries: [["Iraq",""]]

Enter text (all on one line)

The British government is facing criticism from business groups over statements sugg\

esting the U.K. is heading for a hard divorce from the European Union â€” and pressu\

re from lawmakers who want Parliament to have a vote on the proposed exit terms. The\

government's repeated emphasis on controlling immigration sent out "signs that the \

door is being closed, to an extent, on the open economy, that has helped fuel invest\

ment," the head of employers' group the Confederation of British Industry, Carolyn F\

airbairn, said in comments published Monday. Prime Minister Theresa May said last we\

ek that Britain would seek to retain a close relationship with the 28-nation bloc, w\

ith continued free trade in goods and services. But she said the U.K. wouldn't cede \

control over immigration, a conflict with the EU's principle of free movement among \

Natural Language Processing Tools 82

member states.

category: economics

summary: Prime Minister Theresa May said last week that Britain would seek to retain\

a close relationship with the 28-nation bloc, with continued free trade in goods an\

d services.

credit: news text from abcnews.com

Resolve Entities in Text to DBPedia URIs

The code for this application is in the directory NlpTool.

The software and data in this chapter can be used under the terms of either the GPL version 3 license
or the Apache 2 license.

There are several automatically generated Haskell formatted data files that I created using Ruby
scripts operating the Wikipedia data. For the purposes of this book I include these data-specific files
for your use and enjoyment but we won’t spend much time discussing them. These files are:

• BroadcastNetworkNamesDbPedia.hs
• CityNamesDbpedia.hs
• CompanyNamesDbpedia.hs
• CountryNamesDbpedia.hs
• PeopleDbPedia.hs
• PoliticalPartyNamesDbPedia.hs
• TradeUnionNamesDbPedia.hs
• UniversityNamesDbPedia.hs

As an example, let’s look at a small sample of data in PeopleDbPedia.hs:

1 module PeopleDbPedia (peopleMap) where

2

3 import qualified Data.Map as M

4

5 peopleMap = M.fromList [

6 ("Aaron Sorkin", "<http://dbpedia.org/resource/Aaron_Sorkin>"),

7 ("Bill Clinton", "<http://dbpedia.org/resource/Bill_Clinton>"),

8 ("George W Bush", "<http://dbpedia.org/resource/George_W_Bush>"),

There are 35,146 names in the file PeopleDbPedia.hs. I have built for eight different types of entity
names: Haskell maps that take entity names (String) and maps the entity names into relevant

Natural Language Processing Tools 83

DBPedia URIs. Simple in principle, but a lot of work preparing the data. As I mentioned, we will use
these data-specific files to resolve entity references in text.

The next listing shows the file Entities.hs. In lines 5-7 I import the entitymapping files I just described.
In this example and later code I make heavy use of the Data.Map and Data.Set modules in the
collections library (see the NlpTools.cabal file).

The operator isSubsetOf defined in line 39 tests to see if a value is contained in a collection. The
built-in function all applies a function or operator to all elements in a collection and returns a true
value if the function or operator returns true applied to each element in the collection.

The local utility function namesHelper defined in lines 41-53 is simpler than it looks. The function
filter in line 42 applies the inline function in lines 43-45 (this function returns true forMaybe values
that contain data) to a second list defined in lines 48-55. This second list is calculated by mapping
an inline function over the input argument ngrams. The inline function looks up an ngram in a
DBPedia map (passed as the second function argument) and returns the lookup value if it is not
empty and if it is empty looks up the same ngram in a word map (last argument to this function).

The utility function namesHelper is then used to define functions to recognize company names,
country names, people names, city names, broadcast network names, political party names, trade
union names, and university names:

1 -- Copyright 2014 by Mark Watson. All rights reserved. The software and data in this\

2 project can be used under the terms of either the GPL version 3 license or the Apac\

3 he 2 license.

4

5 module Entities (companyNames, peopleNames,

6 countryNames, cityNames, broadcastNetworkNames,

7 politicalPartyNames, tradeUnionNames, universityNames) where

8

9 import qualified Data.Map as M

10 import qualified Data.Set as S

11 import Data.Char (toLower)

12 import Data.List (sort, intersect, intersperse)

13 import Data.Set (empty)

14 import Data.Maybe (isJust)

15

16 import Utils (splitWords, bigram, bigram_s, splitWordsKeepCase,

17 trigram, trigram_s, removeDuplicates)

18

19 import FirstNames (firstNames)

20 import LastNames (lastNames)

21 import NamePrefixes (namePrefixes)

22

23 import PeopleDbPedia (peopleMap)

Natural Language Processing Tools 84

24

25 import CountryNamesDbpedia (countryMap)

26 import CountryNames (countryNamesOneWord, countryNamesTwoWords, countryNamesThreeWor\

27 ds)

28

29 import CompanyNamesDbpedia (companyMap)

30 import CompanyNames (companyNamesOneWord, companyNamesTwoWords, companyNamesThreeWor\

31 ds)

32 import CityNamesDbpedia (cityMap)

33

34 import BroadcastNetworkNamesDbPedia (broadcastNetworkMap)

35 import PoliticalPartyNamesDbPedia (politicalPartyMap)

36 import TradeUnionNamesDbPedia (tradeUnionMap)

37 import UniversityNamesDbPedia (universityMap)

38

39 xs `isSubsetOf` ys = all (`elem` ys) xs

40

41 namesHelper ngrams dbPediaMap wordMap =

42 filter

43 (\x -> case x of

44 (_, Just x) -> True

45 _ -> False) $

46 map (\ngram -> (ngram,

47 let v = M.lookup ngram dbPediaMap in

48 if isJust v

49 then return (ngram, v)

50 else if S.member ngram wordMap

51 then Just (ngram, Just "")

52 else Nothing))

53 ngrams

54

55 helperNames1W = namesHelper

56

57 helperNames2W wrds = namesHelper (bigram_s wrds)

58

59 helperNames3W wrds = namesHelper (trigram_s wrds)

60

61 companyNames wrds =

62 let cns = removeDuplicates $ sort $

63 helperNames1W wrds companyMap companyNamesOneWord ++

64 helperNames2W wrds companyMap companyNamesTwoWords ++

65 helperNames3W wrds companyMap companyNamesThreeWords in

66 map (\(s, Just (a,Just b)) -> (a,b)) cns

Natural Language Processing Tools 85

67

68 countryNames wrds =

69 let cns = removeDuplicates $ sort $

70 helperNames1W wrds countryMap countryNamesOneWord ++

71 helperNames2W wrds countryMap countryNamesTwoWords ++

72 helperNames3W wrds countryMap countryNamesThreeWords in

73 map (\(s, Just (a,Just b)) -> (a,b)) cns

74

75 peopleNames wrds =

76 let cns = removeDuplicates $ sort $

77 helperNames1W wrds peopleMap Data.Set.empty ++

78 helperNames2W wrds peopleMap Data.Set.empty ++

79 helperNames3W wrds peopleMap Data.Set.empty in

80 map (\(s, Just (a,Just b)) -> (a,b)) cns

81

82 cityNames wrds =

83 let cns = removeDuplicates $ sort $

84 helperNames1W wrds cityMap Data.Set.empty ++

85 helperNames2W wrds cityMap Data.Set.empty ++

86 helperNames3W wrds cityMap Data.Set.empty in

87 map (\(s, Just (a,Just b)) -> (a,b)) cns

88

89 broadcastNetworkNames wrds =

90 let cns = removeDuplicates $ sort $

91 helperNames1W wrds broadcastNetworkMap Data.Set.empty ++

92 helperNames2W wrds broadcastNetworkMap Data.Set.empty ++

93 helperNames3W wrds broadcastNetworkMap Data.Set.empty in

94 map (\(s, Just (a,Just b)) -> (a,b)) cns

95

96 politicalPartyNames wrds =

97 let cns = removeDuplicates $ sort $

98 helperNames1W wrds politicalPartyMap Data.Set.empty ++

99 helperNames2W wrds politicalPartyMap Data.Set.empty ++

100 helperNames3W wrds politicalPartyMap Data.Set.empty in

101 map (\(s, Just (a,Just b)) -> (a,b)) cns

102

103 tradeUnionNames wrds =

104 let cns = removeDuplicates $ sort $

105 helperNames1W wrds tradeUnionMap Data.Set.empty ++

106 helperNames2W wrds tradeUnionMap Data.Set.empty ++

107 helperNames3W wrds tradeUnionMap Data.Set.empty in

108 map (\(s, Just (a,Just b)) -> (a,b)) cns

109

Natural Language Processing Tools 86

110 universityNames wrds =

111 let cns = removeDuplicates $ sort $

112 helperNames1W wrds universityMap Data.Set.empty ++

113 helperNames2W wrds universityMap Data.Set.empty ++

114 helperNames3W wrds universityMap Data.Set.empty in

115 map (\(s, Just (a,Just b)) -> (a,b)) cns

116

117

118 main = do

119 let s = "As read in the San Francisco Chronicle, the company is owned by John Sm\

120 ith, Bill Clinton, Betty Sanders, and Dr. Ben Jones. Ben Jones and Mr. John Smith ar\

121 e childhood friends who grew up in Brazil, Canada, Buenos Aires, and the British Vir\

122 gin Islands. Apple Computer relased a new version of OS X yesterday. Brazil Brazil B\

123 razil. John Smith bought stock in ConocoPhillips, Heinz, Hasbro, and General Motors,\

124 Fox Sports Radio. I listen to B J Cole. Awami National Party is a political party. \

125 ALAEA is a trade union. She went to Brandeis University."

126 --print $ humanNames s

127 print $ peopleNames $ splitWordsKeepCase s

128 print $ countryNames $ splitWordsKeepCase s

129 print $ companyNames $ splitWordsKeepCase s

130 print $ cityNames $ splitWordsKeepCase s

131 print $ broadcastNetworkNames $ splitWordsKeepCase s

132 print $ politicalPartyNames $ splitWordsKeepCase s

133 print $ tradeUnionNames $ splitWordsKeepCase s

134 print $ universityNames $ splitWordsKeepCase s

The following output is generated by running the test main function defined at the bottom of the
file app/NlpTool.hs:

1 $ stack build --fast --exec NlpTool-exe

2 Building all executables for `NlpTool' once. After a successful build of all of them\

3 , only specified executables will be rebuilt.

4 NlpTool> build (lib + exe)

5 Preprocessing library for NlpTool-0.1.0.0..

6 Building library for NlpTool-0.1.0.0..

7 Preprocessing executable 'NlpTool-exe' for NlpTool-0.1.0.0..

8 Building executable 'NlpTool-exe' for NlpTool-0.1.0.0..

9 [1 of 2] Compiling Main

10 [2 of 2] Compiling Paths_NlpTool

11 Linking .stack-work/dist/x86_64-osx/Cabal-2.4.0.1/build/NlpTool-exe/NlpTool-exe ...

12 NlpTool> copy/register

13 Installing library in /Users/markw/GITHUB/haskell_tutorial_cookbook_examples_private\

14 _new_edition/NlpTool/.stack-work/install/x86_64-osx/7a2928fbf8188dcb20f165f77b37045a\

Natural Language Processing Tools 87

15 5c413cc7f63913951296700a6b7e292d/8.6.5/lib/x86_64-osx-ghc-8.6.5/NlpTool-0.1.0.0-DXKb\

16 ucyA0S0AKOAcZGDl2H

17 Installing executable NlpTool-exe in /Users/markw/GITHUB/haskell_tutorial_cookbook_e\

18 xamples_private_new_edition/NlpTool/.stack-work/install/x86_64-osx/7a2928fbf8188dcb2\

19 0f165f77b37045a5c413cc7f63913951296700a6b7e292d/8.6.5/bin

20 Registering library for NlpTool-0.1.0.0..

21 Enter text (all on one line)

22 As read in the San Francisco Chronicle, the company is owned by John Smith, Bill Cli\

23 nton, Betty Sanders, and Dr. Ben Jones. Ben Jones and Mr. John Smith are childhood f\

24 riends who grew up in Brazil, Canada, Buenos Aires, and the British Virgin Islands. \

25 Apple Computer relased a new version of OS X yesterday. Brazil Brazil Brazil. John S\

26 mith bought stock in ConocoPhillips, Heinz, Hasbro, and General Motors, Fox Sports R\

27 adio. I listen to B J Cole. Awami National Party is a political party. ALAEA is a tr\

28 ade union. She went to Brandeis University.

29 category: news_politics

30 summary: ALAEA is a trade union. Apple Computer relased a new version of OS X yester\

31 day.

32 people: [["B J Cole","<http://dbpedia.org/resource/B._J._Cole>"]]

33 companies: [["Apple","<http://dbpedia.org/resource/Apple>"],["ConocoPhillips","<http\

34 ://dbpedia.org/resource/ConocoPhillips>"],["Hasbro","<http://dbpedia.org/resource/Ha\

35 sbro>"],["Heinz","<http://dbpedia.org/resource/Heinz>"],["San Francisco Chronicle","\

36 <http://dbpedia.org/resource/San_Francisco_Chronicle>"]]

37 countries: [["Brazil","<http://dbpedia.org/resource/Brazil>"],["Canada","<http://dbp\

38 edia.org/resource/Canada>"]]

39 Enter text (all on one line)

Note that entities that are not recognized as Wikipedia objects don’t get recognized.

Bag of Words Classification Model

The file Categorize.hs contains a simple bag of words classification model. To prepare the classi-
fication models, I collected a large set of labelled text. Labels were “chemistry”, “computers”, etc.
I ranked words based on how often they appeared in training texts for a classification category,
normalized by how often they appeared in all training texts. This example uses two auto-generated
and data-specific Haskell files, one for single words and the other for two adjacent word pairs:

• Category1Gram.hs
• Category2Gram.hs

In NLP work, single words are sometimes called 1grams and two word adjacent pairs are referred
to as 2grams. Here is a small amount of data from Category1Gram.hs:

Natural Language Processing Tools 88

1 module Category1Gram (**onegrams**) where

2

3 import qualified Data.Map as M

4

5 chemistry = M.fromList [("chemical", 1.15), ("atoms", 6.95),

6 ("reaction", 6.7), ("energy", 6.05),

7 ...]

8 computers = M.fromList [("software", 4.6), ("network", 4.65),

9 ("linux", 3.6), ("device", 3.55), ("computers", 3.05),

10 ("storage", 2.7), ("disk", 2.3),

11 ...]

12 etc.

Here is a small amount of data from Category2Gram.hs:

1 module Category2Gram (**twograms**) where

2

3 import qualified Data.Map as M

4

5 chemistry = M.fromList [("chemical reaction", 1.55),

6 ("atoms molecules", 0.6),

7 ("periodic table", 0.5),

8 ("chemical reactions", 0.5),

9 ("carbon atom", 0.5),

10 ...]

11 computers = M.fromList [("computer system", 0.9),

12 ("operating system", 0.75),

13 ("random memory", 0.65),

14 ("computer science", 0.65),

15 ("computer program", 0.6),

16 ...]

17 etc.

It is very common to use term frequencies for single words for classification models. One problem
with using single words is that the evidence that any word gives for a classification is independent of
the surrounding words in text being evaluated. By also using word pairs (twoword combinations are
often called 2grams or two-grams) we pick up patterns like “not good” giving evidence for negative
sentiment even with the word “good” in text being evaluated. For my own work, I have a huge
corpus of 1gram, 2gram, 3gram, and 4gram data sets. For the purposes of the following example
program, I am only using 1gram and 2gram data.

The following listing shows the file Categorize.hs. Before looking at the entire example, let’s focus
in on some of the functions I have defined for using the word frequency data to categorized text.

Natural Language Processing Tools 89

*Categorize> :t stemWordsInString

stemWordsInString :: String -> [Char]

*Categorize> stemWordsInString "Banking industry is sometimes known for fraud."

"bank industri is sometim known for fraud"

stemScoredWordList is used to create a 1gram to word relevance score for each category. The keys
are word stems.

*Categorize> stemScoredWordList onegrams

[("chemistri",fromList [("acid",1.15),("acids",0.8),("alcohol",0.95),("atom",4.45)

Notice that “chemistri” is the stemmed version of “chemistry”, “bank” for “banks”, etc. stem2 is a
2gram frequency score by category mapping where the keys are word stems:

*Categorize> stem2

[("chemistry",fromList [("atom molecul",0.6),("carbon atom",0.5),("carbon carbon",0.\

5),

stem1 is like stem2, but for stemmed 1grams, not 2grams:

*Categorize> stem1

[("chemistry",fromList [("acid",0.8),("chang",1.05),("charg",0.95),("chemic",1.15),(\

"chemistri",1.45),

score is called with a list or words and a word value mapping. Here is an example:

*Categorize> :t score

score

:: (Enum t, Fractional a, Num t, Ord a, Ord k) =>

[k] -> [(t1, M.Map k a)] -> [(t, a)]

*Categorize> score ["atom", "molecule"] onegrams

[(0,8.2),(25,2.4)]

This output is more than a little opaque. The pair (0, 8.2) means that the input words [“atom”,
“molecule”] have a score of 8.2 for category indexed at 0 and the pair (25,2.4) means that the input
words have a score of 2.4 for the category at index 25. The category at index 0 is chemistry and the
category at index 25 is physics as we can see by using the higher level function bestCategories1
that caluculates categories for a word sequence using 1gram word data:

Natural Language Processing Tools 90

*Categorize> :t bestCategories1

bestCategories1 :: [[Char]] -> [([Char], Double)]

*Categorize> bestCategories1 ["atom", "molecule"]

[("chemistry",8.2),("physics",2.4)]

The top level function bestCategories uses 1gram data. Here is an example for using it:

*Categorize> splitWords "The chemist made a periodic table and explained a chemical \

reaction"

["the","chemist","made","a","periodic","table","and","explained","a","chemical","rea\

ction"]

*Categorize> bestCategories1 $ splitWords "The chemist made a periodic table and exp\

lained a chemical reaction"

[("chemistry",11.25),("health_nutrition",1.2)]

Notice that these words were also classified as category “health_nutrition” but with a low score of
1.2. The score for “chemistry” is almost an order of magnitude larger. bestCategories sorts return
values in “best first” order.

splitWords is used to split a string into word tokens before calling bestCategories.

Here is the entire example in file Categorize.hs:

1 module Categorize (bestCategories, splitWords, bigram) where

2

3 import qualified Data.Map as M

4 import Data.List (sortBy)

5

6 import Category1Gram (onegrams)

7 import Category2Gram (twograms)

8

9 import Sentence (segment)

10

11 import Stemmer (stem)

12

13 import Utils (splitWords, bigram, bigram_s)

14

15 catnames1 = map fst onegrams

16 catnames2 = map fst twograms

17

18 stemWordsInString s = init $ concatMap ((++ " ") . stem) (splitWords s)

19

20 stemScoredWordList = map (\(str,score) -> (stemWordsInString str, score))

21

Natural Language Processing Tools 91

22 stem2 = map (\(category, swl) ->

23 (category, M.fromList (stemScoredWordList (M.toList swl))))

24 twograms

25

26 stem1 = map (\(category, swl) ->

27 (category, M.fromList (stemScoredWordList (M.toList swl))))

28 onegrams

29

30 scoreCat wrds amap =

31 sum $ map (\x -> M.findWithDefault 0.0 x amap) wrds

32

33 score wrds amap =

34 filter (\(a, b) -> b > 0.9) $ zip [0..] $ map (\(s, m) -> scoreCat wrds m) amap

35

36 cmpScore (a1, b1) (a2, b2) = compare b2 b1

37

38 bestCategoriesHelper wrds ngramMap categoryNames=

39 let tg = bigram_s wrds in

40 map (first (categoryNames !!)) $ sortBy cmpScore $ score wrds ngramMap

41

42 bestCategories1 wrds =

43 take 3 $ bestCategoriesHelper wrds onegrams catnames1

44

45 bestCategories2 wrds =

46 take 3 $ bestCategoriesHelper (bigram_s wrds) twograms catnames2

47

48 bestCategories1stem wrds =

49 take 3 $ bestCategoriesHelper wrds stem1 catnames1

50

51 bestCategories2stem wrds =

52 take 3 $ bestCategoriesHelper (bigram_s wrds) stem2 catnames2

53

54 bestCategories :: [String] -> [(String, Double)]

55 bestCategories wrds =

56 let sum1 = M.unionWith (+) (M.fromList $ bestCategories1 wrds) (M.fromList $ best\

57 Categories2 wrds)

58 sum2 = M.unionWith (+) (M.fromList $ bestCategories1stem wrds) (M.fromList $ \

59 bestCategories2stem wrds)

60 in sortBy cmpScore $ M.toList $ M.unionWith (+) sum1 sum2

61

62 main = do

63 let s = "The sport of hocky is about 100 years old by ahdi dates. American Footb\

64 all is a newer sport. Programming is fun. Congress passed a new budget that might he\

Natural Language Processing Tools 92

65 lp the economy. The frontier initially was a value path. The ai research of john mcc\

66 arthy."

67 print $ bestCategories1 (splitWords s)

68 print $ bestCategories1stem (splitWords s)

69 print $ score (splitWords s) onegrams

70 print $ score (bigram_s (splitWords s)) twograms

71 print $ bestCategories2 (splitWords s)

72 print $ bestCategories2stem (splitWords s)

73 print $ bestCategories (splitWords s)

Here is the output:

1 $ stack ghci

2 :l Categorize.hs

3 *Categorize> main

4 [("computers_ai",17.900000000000002),("sports",9.75),("computers_ai_search",6.2)]

5 [("computers_ai",18.700000000000003),("computers_ai_search",8.1),("computers_ai_lear\

6 ning",5.7)]

7 [(2,17.900000000000002),(3,1.75),(4,5.05),(6,6.2),(9,1.1),(10,1.2),(21,2.7),(26,1.1)\

8 ,(28,1.6),(32,9.75)]

9 [(2,2.55),(6,1.0),(32,2.2)]

10 [("computers_ai",2.55),("sports",2.2),("computers_ai_search",1.0)]

11 [("computers_ai",1.6)]

12 [("computers_ai",40.75000000000001),("computers_ai_search",15.3),("sports",11.95),("\

13 computers_ai_learning",5.7)]

Given that the variable s contains some test text, line 4 of this output was generated by evaluating
bestCategories1 (splitWords s), lines 5-6 by evaluating bestCategories1stem (splitWords s), lines
7-8 from score (splitWords s) onegrams, line 9 from core (bigram_s (splitWords s)) twograms,
line 10 from bestCategories2 (splitWords s), line 11 from bestCategories2stem (splitWords s),
and lines 12-13 from bestCategories (splitWords s).

I called all of the utility fucntions in function main to demonstrate what they do but in practice I
just call function bestCategories in my applications.

Text Summarization

This application uses both the Categorize.hs code and the 1gram data from the last section. The
algorithm I devised for this example is based on a simple idea: we categorize text and keep track of
which words provide the strongest evidence for the highest ranked categories. We then return a few
sentences from the original text that contain the largest numbers of these important words.

Natural Language Processing Tools 93

module Summarize (summarize, summarizeS) where

import qualified Data.Map as M

import Data.List.Utils (replace)

import Data.Maybe (fromMaybe)

import Categorize (bestCategories)

import Sentence (segment)

import Utils (splitWords, bigram_s, cleanText)

import Category1Gram (onegrams)

import Category2Gram (twograms)

scoreSentenceHelper words scoreMap = -- just use 1grams for now

sum $ map (\word -> M.findWithDefault 0.0 word scoreMap) words

safeLookup key alist =

fromMaybe 0 $ lookup key alist

scoreSentenceByBestCategories words catDataMaps bestCategories =

map (\(category, aMap) ->

(category, safeLookup category bestCategories *

scoreSentenceHelper words aMap)) catDataMaps

scoreForSentence words catDataMaps bestCategories =

sum $ map snd $ scoreSentenceByBestCategories words catDataMaps bestCategories

summarize s =

let words = splitWords $ cleanText s

bestCats = bestCategories words

sentences = segment s

result1grams = map (\sentence ->

(sentence,

scoreForSentence (splitWords sentence)

onegrams bestCats))

sentences

result2grams = map (\sentence ->

(sentence,

scoreForSentence (bigram_s (splitWords sentence))

twograms bestCats))

sentences

mergedResults = M.toList $ M.unionWith (+)

(M.fromList result1grams) (M.fromList result1grams)

Natural Language Processing Tools 94

c400 = filter (\(sentence, score) -> score > 400) mergedResults

c300 = filter (\(sentence, score) -> score > 300) mergedResults

c200 = filter (\(sentence, score) -> score > 200) mergedResults

c100 = filter (\(sentence, score) -> score > 100) mergedResults

c000 = mergedResults in

if not (null c400) then c400 else if not (null c300) then c300 else if not (null c\

200) then c200 else if not (null c100) then c100 else c000

summarizeS s =

let a = replace "\"" "'" $ concatMap (\x -> fst x ++ " ") $ summarize s in

if not (null a) then a else safeFirst $ segment s where

safeFirst x

| length x > 1 = head x ++ x !! 1

| not (null x) = head x

| otherwise = ""

main = do

let s = "Plunging European stocks, wobbly bonds and grave concerns about the healt\

h of Portuguese lender Banco Espirito Santo SA made last week feel like a rerun of t\

he euro crisis, but most investors say it was no more than a blip for a resurgent re\

gion. Banco Espirito Santo has been in investorsâ€™ sights since December, when The \

Wall Street Journal first reported on accounting irregularities at the complex firm.\

Nerves frayed on Thursday when Banco Espirito Santo's parent company said it wouldn\

't be able to meet some short-term debt obligations."

print $ summarize s

print $ summarizeS s

Lazy evaluation allows us in function summarize to define summaries of various numbers of
sentences, but not all of these possible summaries are calculated.

$ stack ghci

*Main ... > :l Summarize.hs

*Summarize> main

[("Nerves frayed on Thursday when Banco Espirito Santo's parent company said it woul\

dn't be able to meet some short-term debt obligations.",193.54500000000002)]

"Nerves frayed on Thursday when Banco Espirito Santo's parent company said it wouldn\

't be able to meet some short-term debt obligations. "

Part of Speech Tagging

We close out this chapter with the Haskell version of my part of speech (POS) tagger that I originally
wrote in Common Lisp, then converted to Ruby and Java. The file LexiconData.hs is similar to the

Natural Language Processing Tools 95

lexical data files seen earlier: I am defining a map where keys a words and map values are POS
tokens like NNP (proper noun), RB (adverb), etc. The file README.md contains a complete list of
POS tag definitions.

The example code and data for this section is in the directory FastTag.

This listing shows a tiny representative part of the POS definitions in LexiconData.hs:

lexicon = M.fromList [("AARP", "NNP"), ("Clinic", "NNP"), ("Closed", "VBN"),

("Robert", "NNP"), ("West-German", "JJ"),

("afterwards", "RB"), ("arises", "VBZ"),

("attacked", "VBN"), ...]

Before looking at the code example listing, let’s see how the functions defined in fasttag.hs work in
a GHCi repl:

*Main LexiconData> bigram ["the", "dog", "ran",

"around", "the", "tree"]

[["the","dog"],["dog","ran"],["ran","around"],

["around","the"],["the","tree"]]

*Main LexiconData> tagHelper "car"

["car","NN"]

*Main LexiconData> tagHelper "run"

["run","VB"]

*Main LexiconData> substitute ["the", "dog", "ran", "around",

"the", "tree"]

[[["the","DT"],["dog","NN"]],[["dog","NN"],["ran","VBD"]],

[["ran","VBD"],["around","IN"]],[["around","IN"],["the","DT"]],

[["the","DT"],["tree","NN"]]]

*Main LexiconData> fixTags $ substitute ["the", "dog", "ran",

"around", "the", "tree"]

["NN","VBD","IN","DT","NN"]

Function bigram takes a list or words and returns a list of word pairs. We need the word pairs
because parts of the tagging algorithm needs to see awordwith its preceedingword. In an imperative
language, I would loop over the words and for a word at index i I would have the word at index i -
1. In a functional language, we avoid using loops and in this case create a list of adjacent word pairs
to avoid having to use an explicit loop. I like this style of functional programming but if you come
from years of using imperative language like Java and C++ it takes some getting used to.

tagHelper converts a word into a list of the word and its likely tag. substitute applies tagHelper to
a list of words, getting the most probable tag for each word. The function fixTags will occasionally
override the default word tags based on a few rules that are derived from Eric Brill’s paper A Simple
Rule-Based Part of Speech Tagger²².

²²http://aclweb.org/anthology/A92-1021

http://aclweb.org/anthology/A92-1021
http://aclweb.org/anthology/A92-1021
http://aclweb.org/anthology/A92-1021

Natural Language Processing Tools 96

Here is the entire example:

1 module Main where

2

3 import qualified Data.Map as M

4 import Data.Strings (strEndsWith, strStartsWith)

5 import Data.List (isInfixOf)

6

7 import LexiconData (lexicon)

8

9 bigram :: [a] -> [[a]]

10 bigram [] = []

11 bigram [_] = []

12 bigram xs = take 2 xs : bigram (tail xs)

13

14 containsString word substring = isInfixOf substring word

15

16 fixTags twogramList =

17 map

18 -- in the following inner function, [last,current] might be bound,

19 -- for example, to [["dog","NN"],["ran","VBD"]]

20 (\[last, current] ->

21 -- rule 1: DT, {VBD | VBP} --> DT, NN

22 if last !! 1 == "DT" && (current !! 1 == "VBD" ||

23 current !! 1 == "VB" ||

24 current !! 1 == "VBP")

25 then "NN"

26 else

27 -- rule 2: convert a noun to a number (CD) if "." appears in the word

28 if (current !! 1) !! 0 == 'N' && containsString (current !! 0) "."

29 then "CD"

30 else

31 -- rule 3: convert a noun to a past participle if

32 -- words.get(i) ends with "ed"

33 if (current !! 1) !! 0 == 'N' && strEndsWith (current !! 0) "ed"

34 then "VBN"

35 else

36 -- rule 4: convert any type to adverb if it ends in "ly"

37 if strEndsWith (current !! 0) "ly"

38 then "RB"

39 else

40 -- rule 5: convert a common noun (NN or NNS) to an

41 -- adjective if it ends with "al"

Natural Language Processing Tools 97

42 if strStartsWith (current !! 1) "NN" &&

43 strEndsWith (current !! 1) "al"

44 then "JJ"

45 else

46 -- rule 6: convert a noun to a verb if the preceeding

47 -- word is "would"

48 if strStartsWith (current !! 1) "NN" &&

49 (last !! 0) == "would" -- should be case insensitive

50 then "VB"

51 else

52 -- rule 7: if a word has been categorized as a

53 -- common noun and it ends with "s",

54 -- then set its type to plural common noun (NNS)

55 if strStartsWith (current !! 1) "NN" &&

56 strEndsWith (current !! 0) "s"

57 then "NNS"

58 else

59 -- rule 8: convert a common noun to a present

60 -- participle verb (i.e., a gerand)

61 if strStartsWith (current !! 1) "NN" &&

62 strEndsWith (current !! 0) "ing"

63 then "VBG"

64 else (current !! 1))

65 twogramList

66

67 substitute tks = bigram $ map tagHelper tks

68

69 tagHelper token =

70 let tags = M.findWithDefault [] token lexicon in

71 if tags == [] then [token, "NN"] else [token, tags]

72

73 tag tokens = fixTags $ substitute ([""] ++ tokens)

74

75

76 main = do

77 let tokens = ["the", "dog", "ran", "around", "the", "tree", "while",

78 "the", "cat", "snaked", "around", "the", "trunk",

79 "while", "banking", "to", "the", "left"]

80 print $ tag tokens

81 print $ zip tokens $ tag tokens

Natural Language Processing Tools 98

*Main LexiconData> main

["DT","NN","VBD","IN","DT","NN","IN","DT","NN","VBD","IN","DT",

"NN","IN","VBG","TO","DT","VBN"]

[("the","DT"),("dog","NN"),("ran","VBD"),("around","IN"),

("the","DT"),("tree","NN"),("while","IN"),("the","DT"),

("cat","NN"),("snaked","VBD"),("around","IN"),("the","DT"),

("trunk","NN"),("while","IN"),("banking","VBG"),("to","TO"),

("the","DT"),("left","VBN")]

The README.md file contains definitions of the POS definitions. Here are the ones used in this
example:

DT Determiner the,some

NN noun dog,cat,road

VBD verb, past tense ate,ran

IN Preposition of,in,by

Natural Language Processing Wrap Up

NLP is a large topic. I have attempted to show you just the few tricks that I use often and are simple
to implement. I hope that you reuse the code in this chapter in your own projects when you need to
detect entities, classify text, summarize text, and assign part of speech tags to words in text.

Linked Data and the Semantic Web
I am going to show you how to query semantic web data sources on the web and provide examples
for how you might use this data in applications. I have written two previous books on the semantic
web, one covering Common Lisp and the other covering JVM languages Java, Scala, Clojure, and
Ruby. You can get free PDF versions on the book page of www.markwatson.com²³. If you enjoy the
light introduction in this chapter then please do download a free copy of my semantic web book for
more material on RDF, RDFS, and SPARQL.

I like to think of the semantic web and linked data resources as:

• A source of structured data on the web. These resources are called SPARQL endpoints.
• Data is represented by data triples: subject, predicate, and object. The subject of one triple can
be the object of another triple. Predicates are relationships; a few examples: “owns”, “is part
of”, “author of”, etc.

• Data that is accessed via the SPARQL query language.
• A source of data that may or may not be available. SPARQL endpoints are typically available
for free use and they are sometimes unavailable. Although not covered here, I sometimes work
around this problem by adding a caching layer to SPARQL queries (access key being a SPARQL
query string, the value being the query results). This caching speeds up development and
running unit tests, and sometimes saves a customer demo when a required SPARQL endpoint
goes offline at an inconvenient time.

DBPedia is the semantic web version of Wikipedia²⁴. The many millions of data triples that make
up DBPedia are mostly derived from the structured “info boxes” on Wikipedia pages.

As you are learning SPARQL use the DBPedia SPARQL endpoint²⁵ to practice. As a practitioner who
uses linked data, for any new project I start by identifying SPARQL endpoints for possibly useful
data. I then interactively experiment with SPARQL queries to extract the data I need. Only when
I am satisfied with the choice of SPARQL endpoints and SPARQL queries do I write any code to
automatically fetch linked data for my application.

Pro tip: I mentioned SPARQL query caching. I sometimes cache query results in a local database,
saving the returned RDF data indexed by the SPARQL query. You can also store the cache timestamp
and refresh the cache every fewweeks as needed. In addition tomaking development and unit testing
faster, your applications will be more resilient.

In the last chapter “Natural Language Processing Tools” we resolved entities in natural language text
to DBPedia (semantic web SPAQL endpoint for Wikipedia) URIs. Here we will use some of these
URIs to demonstrate fetching real world knowledge that you might want to use in applications.

²³http://www.markwatson.com/books/
²⁴http://wiki.dbpedia.org/
²⁵http://dbpedia.org/sparql

http://www.markwatson.com/books/
http://wiki.dbpedia.org/
http://dbpedia.org/sparql
http://www.markwatson.com/books/
http://wiki.dbpedia.org/
http://dbpedia.org/sparql

Linked Data and the Semantic Web 100

The SPARQL Query Language

Example RDF N3 triples (subject, predicate, object) might look like:

<http://www.markwatson.com>

<http://dbpedia.org/ontology/owner>

"Mark Watson" .

Element of triples can be URIs or string constants. Triples are often written all on one line; I split it
to three lines to fit the page width. Here the subject is the URI for my web site, the predicate is a
URI defining an ownership relationship, and the object is a string literal.

If youwant to see details for any property or other URI you see, then “follow your nose” and open the
URI in a web browser. For example remove the brackets from the owner property URI http://dbpedia.
org/ontology/owner²⁶ and open it in a web browser. For working with RDF data programatically, it
is convenient using full URI. For humans reading RDF, the N3 notation is better because it supports
defining URI standard prefixes for use as abbreviations; for example:

prefix ontology: <http://dbpedia.org/ontology/>

<http://www.markwatson.com>

ontology:owner

"Mark Watson" .

If you wanted to find all things that I own (assuming this data was in a public RDF repository, which
it isn’t) then we might think to match the pattern:

prefix ontology: <http://dbpedia.org/ontology/>

?subject ontology:owner "Mark Watson"

And return all URIs matching the variable ?subject as the query result. This is the basic idea of
making SPARQL queries.

The following SPARQL query will be implemented later in Haskell using the HSparql library:

²⁶http://dbpedia.org/ontology/owner

http://dbpedia.org/ontology/owner
http://dbpedia.org/ontology/owner
http://dbpedia.org/ontology/owner

Linked Data and the Semantic Web 101

1 prefix resource: <http://dbpedia.org/resource/>

2 prefix dbpprop: <http://dbpedia.org/property/>

3 prefix foaf: <http://xmlns.com/foaf/0.1/>

4

5 SELECT *

6 WHERE {

7 ?s dbpprop:genre resource:Web_browser .

8 ?s foaf:name ?name .

9 } LIMIT 5

In this last SPARQL query example, the triple patterns we are trying to match are inside aWHERE
clause. Notice that in the two triple patterns, the subject field of each is the variable ?s. The first
patternmatches all DBPedia triples with a predicate http://dbpedia.org/property/genre and an object
equal to http://dbpedia.org/resource/Web_browser. We then find all triples with the same subject
but with a predicate equal to http://xmlns.com/foaf/0.1/name.

Each result from this query will contain two values for variables ?s and ?name: a DBPedia URI for
some thing and the name for that thing. Later we will run this query using Haskell code and you
can see what the output might look like.

Sometimes when I am using a specific SPARQL query in an application, I don’t bother defining
prefixes and just use URIs in the query. As an example, suppose I want to return the Wikipedia (or
DBPedia) abstract for IBM. I might use a query such as:

1 select * where {

2 <http://dbpedia.org/resource/IBM>

3 <http://dbpedia.org/ontology/abstract>

4 ?o .

5 FILTER langMatches(lang(?o), "EN")

6 } LIMIT 100

If you try this query using the web interface for DBPedia SPARQL queries²⁷ you get just one result
because of the FILTER option that only returns English language results. You could also use FR for
French results, GE for German results, etc.

A Haskell HTTP Based SPARQL Client

One approach to query the DBPedia SPARQL endpoint is to build a HTTP GET request, send it to
the SPARQL endpoint server, and parse the returned XML response. We will start with this simple
approach. You will recognize the SPARQL query from the last section:

²⁷http://dbpedia.org/sparql/

http://dbpedia.org/property/genre
http://dbpedia.org/resource/Web_browser
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/sparql/
http://dbpedia.org/sparql/

Linked Data and the Semantic Web 102

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module HttpSparqlClient where

4

5 import Network.HTTP.Conduit (simpleHttp)

6 import Network.HTTP.Base (urlEncode)

7 import Text.XML.HXT.Core

8 import Text.HandsomeSoup

9 import qualified Data.ByteString.Lazy.Char8 as B

10

11 buildQuery :: String -> [Char]

12 buildQuery sparqlString =

13 "http://dbpedia.org/sparql/?query=" ++ urlEncode sparqlString

14

15 main :: IO ()

16 main = do

17 let query = buildQuery "select * where {<http://dbpedia.org/resource/IBM> <http://\

18 dbpedia.org/ontology/abstract> ?o . FILTER langMatches(lang(?o), \"EN\")} LIMIT 100"

19 res <- simpleHttp query

20 let doc = readString [] (B.unpack res)

21 putStrLn "\nAbstracts:\n"

22 abstracts <- runX $ doc >>> css "binding" >>>

23 (getAttrValue "name" &&& (deep getText))

24 print abstracts

The function buildQuery defined in lined 11-13 takes any SPARQL query, URL encodes it so it can
be passed as part of a URI, and builds a query string for the DBPedia SPARQL endpoint. The returned
data is in XML format. In lines 23-24 I am using theXHT parsing library to extract the names (values
bound to the variable ?o in the query in line 17). I cover the use of HXT and the HandsomeSoup
parsing libraries in the next chapter.

In the main function, we use the utility function simpleHttp in line 20 to fetch the results as a
ByteString and in line 21 we unback this to a regular Haskell String.

1 Prelude> :l HttpSparqlClient.hs

2 [1 of 1] Compiling HttpSparqlClient (HttpSparqlClient.hs, interpreted)

3 Ok, modules loaded: HttpSparqlClient.

4 *HttpSparqlClient> main

5

6 Abstracts:

7

8 [("o","International Business Machines Corporation (commonly referred to as IBM) is \

9 an American multinational technology and consulting corporation, with corporate head\

Linked Data and the Semantic Web 103

10 quarters in Armonk, New York.

11 ...)]

Querying Remote SPARQL Endpoints

Wewill write some code in this section to make the example query to get the names of web browsers
from DBPedia. In the last section we made a SPARQL query using fairly low level Haskell libraries.
We will be using the high level library HSparql to build SPARQL queries and call the DBPedia
SPARQL endpoint.

The example in this section can be found in SparqlClient/TestSparqlClient.hs. In the main function
notice how I have commented out printouts of the raw query results. Because Haskell is type safe,
extracting the values wrapped in query results requires knowing RDF element return types. I will
explain this matching after the program listing:

1 -- simple experiments with the excellent HSparql library

2

3 module Main where

4

5 import Database.HSparql.Connection (BindingValue(Bound))

6

7 import Data.RDF hiding (triple)

8 import Database.HSparql.QueryGenerator

9 import Database.HSparql.Connection (selectQuery)

10

11 webBrowserSelect :: Query SelectQuery

12 webBrowserSelect = do

13 resource <- prefix "dbprop" (iriRef "http://dbpedia.org/resource/")

14 dbpprop <- prefix "dbpedia" (iriRef "http://dbpedia.org/property/")

15 foaf <- prefix "foaf" (iriRef "http://xmlns.com/foaf/0.1/")

16 x <- var

17 name <- var

18 triple x (dbpprop .:. "genre") (resource .:. "Web_browser")

19 triple x (foaf .:. "name") name

20

21 return SelectQuery { queryVars = [name] }

22

23 companyAbstractSelect :: Query SelectQuery

24 companyAbstractSelect = do

25 resource <- prefix "dbprop" (iriRef "http://dbpedia.org/resource/")

26 ontology <- prefix "ontology" (iriRef "http://dbpedia.org/ontology/")

27 o <- var

Linked Data and the Semantic Web 104

28 triple (resource .:. "Edinburgh_University_Press") (ontology .:. "abstract") o

29 return SelectQuery { queryVars = [o] }

30

31 companyTypeSelect :: Query SelectQuery

32 companyTypeSelect = do

33 resource <- prefix "dbprop" (iriRef "http://dbpedia.org/resource/")

34 ontology <- prefix "ontology" (iriRef "http://dbpedia.org/ontology/")

35 o <- var

36 triple (resource .:. "Edinburgh_University_Press") (ontology .:. "type") o

37 return SelectQuery { queryVars = [o] }

38

39 main :: IO ()

40 main = do

41 sq1 <- selectQuery "http://dbpedia.org/sparql" companyAbstractSelect

42 --putStrLn "\nRaw results of company abstract SPARQL query:\n"

43 --print sq1

44 putStrLn "\nWeb browser names extracted from the company abstract query results:\n"

45 case sq1 of

46 Just a -> print $ map (\[Bound (LNode (PlainLL s _))] -> s) a

47 Nothing -> putStrLn "nothing"

48 sq2 <- selectQuery "http://dbpedia.org/sparql" companyTypeSelect

49 --putStrLn "\nRaw results of company type SPARQL query:\n"

50 --print sq2

51 putStrLn "\nWeb browser names extracted from the company type query results:\n"

52 case sq2 of

53 Just a -> print $ map (\[Bound (UNode s)] -> s) a

54 Nothing -> putStrLn "nothing"

55 sq3 <- selectQuery "http://dbpedia.org/sparql" webBrowserSelect

56 --putStrLn "\nRaw results of SPARQL query:\n"

57 --print sq3

58 putStrLn "\nWeb browser names extracted from the query results:\n"

59 case sq3 of

60 Just a -> print $ map (\[Bound (LNode (PlainLL s _))] -> s) a

61 Nothing -> putStrLn "nothing"

Notes on matching result types of query results:

You will notice how I have commented out print statements in the last example. When trying new
queries you need to print out the results in order to know how to extract the wrapped query results.
Let’s look at a few examples:

If we print the value for sq1:

Linked Data and the Semantic Web 105

Raw results of company abstract SPARQL query:

Just [[Bound (LNode (PlainLL "Edinburgh University Press ...

we see that inside a Just we have a list of lists. Each inner list is a Bound wrapping types defined
in HSparql. We would unwrap sq1 using:

1 case sq1 of

2 Just a -> print $ map (\[Bound (LNode (PlainLL s _))] -> s) a

3 Nothing -> putStrLn "nothing"

In a similar way I printed out the values of sq2 and sq3 to see the form os case statement I would
need to unwrap them.

The output from this example with three queries to the DBPedia SPARQL endpoint is:

1 Web browser names extracted from the company abstract query results in sq1:

2

3 ["Edinburgh University Press \195\168 una casa editrice scientifica di libri accadem\

4 ici e riviste, con sede a Edimburgo, in Scozia.","Edinburgh University Press \195\16\

5 9 uma editora universit\195\161ria com base em Edinburgh, Esc\195\179cia.","Edinburg\

6 h University Press is a scholarly publisher of academic books and journals, based in\

7 Edinburgh, Scotland."]

8

9 The type of company is extracted from the company type query results in sq2:

10

11 ["http://dbpedia.org/resource/Publishing"]

12

13 Web browser names extracted from the query results in sq3:

14

15 ["Grail","ViolaWWW","Kirix Strata","SharkWire Online","MacWeb","Camino","eww","TenFo\

16 urFox","WiseStamp","X-Smiles","Netscape Navigator 2","SimpleTest","AWeb","IBrowse","\

17 iCab","ANT Fresco","Netscape Navigator 9.0","HtmlUnit","ZAC Browser","ELinks","ANT G\

18 alio","Nintendo DSi Browser","Nintendo DS Browser","Netscape Navigator","NetPositive\

19 ","OmniWeb","Abaco","Flock","Steel","Kazehakase","GNU IceCat","FreeWRL","UltraBrowse\

20 r","AMosaic","NetCaptor","NetSurf","Netscape Browser","SlipKnot","ColorZilla","Inter\

21 net Channel","Obigo Browser","Swiftfox","BumperCar","Swiftweasel","Swiftdove","IEs4L\

22 inux","MacWWW","IBM Lotus Symphony","SlimBrowser","cURL","FoxyTunes","Iceweasel","Me\

23 nuBox","Timberwolf web browser","Classilla","Rockmelt","Galeon","Links","Netscape Na\

24 vigator","NCSA Mosaic","MidasWWW","w3m","PointerWare","Pogo Browser","Oregano","Avan\

25 t Browser","Wget","NeoPlanet","Voyager","Amaya","Midori","Sleipnir","Tor","AOL Explo\

26 rer"]

Linked Data and the Semantic Web 106

Linked Data and Semantic Web Wrap Up

If you enjoyed the material on linked data and DBPedia then please do get a free copy of one of my
semantic web books on my website book page²⁸ as well as other SPARQL and linked data tutorials
on the web.

Structured and sematically labelled data, when it is available, is much easier to process and use
effectively than raw text and HTML collected from web sites.

²⁸http://www.markwatson.com/books/

http://www.markwatson.com/books/
http://www.markwatson.com/books/

Web Scraping
In my past work I usually used the Ruby scripting language for web scraping but as I use the Haskell
language more often for projects both large and small I am now using Haskell for web scraping, data
collection, and data cleaning tasks. If you worked through the tutorial chapter on impure Haskell
programming then you already know most of what you need to understand this chapter. Here we
will walk through a few short examples for common web scraping tasks.

Before we start a tutorial about web scraping I want to point out that much of the information on the
web is copyright and the first thing that you should do is to read the terms of service for web sites to
insure that your use of web scraped data conforms with the wishes of the persons or organizations
who own the content and pay to run scraped web sites.

Aswe saw in the last chapter on linked data there is a huge amount of structured data available on the
web via web services, semantic web/linked data markup, and APIs. That said, you will frequently
find text (usually HTML) that is useful on web sites. However, this text is often at least partially
unstructured and in a messy and frequently changing format because web pages are meant for
human consumption and making them easy to parse and use by software agents is not a priority of
web site owners.

Note: It takes a while to fetch all of the libraries in the directoryWebScraping so please do a stack
build now to get these examples ready to experiment with while you read this chapter.

Using the Wreq Library

The Wreq library²⁹ is an easy way to fetch data from the web. The example in this section fetches
DBPedia (i.e., the semantic web version of Wikipedia) data in JSON and RDF N3 formats, and also
fetches the index page from my web site. I will introduce you to the Lens library for extracting data
from data structures, and we will also use Lens in a later chapter when writing a program to play
Backjack.

We will be using function get in the Network.Wreq module that has a type signature:

get

:: String -> IO (Response Data.ByteString.Lazy.Internal.ByteString)

We will be using the OverloadedStrings language extension to facilitate using both [Char] strings
and ByteString data types. Note: In the GHCi repl you can use :set -XOverloadedStrings.

We use function get to return JSON data; here is a bit of the JSON data returned from calling get
using the URI for my web site:

²⁹http://www.serpentine.com/wreq/tutorial.html

http://www.serpentine.com/wreq/tutorial.html
http://www.serpentine.com/wreq/tutorial.html

Web Scraping 108

Response {responseStatus = Status {statusCode = 200, statusMessage = "OK"},

responseVersion = HTTP/1.1,

responseHeaders =

[("Date","Sat, 15 Oct 2016 16:00:59 GMT"),

("Content-Type","text/html"),

("Transfer-Encoding","chunked"),

("Connection","keep-alive")],

responseBody = "<!DOCTYPE html>\r\n<html>\r\n<head><title>Mark Watson: con\

sultant specializing in artificial intelligence, natural language processing, and ma\

chine\r\n learning</title>\r\n <meta name=\"viewport\" content=\"width=device-\

width, initial-scale=1.0\">\r\n <meta name=\"msvalidate.01\" content=\"D980F894E9\

4AA6335FB595676DFDD5E6\"/>\r\n <link href=\"/css/bootstrap.min.css\" rel=\"styles\

heet\" type=\"text/css\">\r\n <link href=\"/css/bootstrap-theme.min.css\" rel=\"s\

tylesheet\" type=\"text/css\">\r\n <link href=\"/css/mark.css\" rel=\"stylesheet\\

" type=\"text/css\">\r\n <link rel=\"manifest\" href=\"/manifest.json\">\r\n <\

style type=\"text/css\">

body {\r\n padding-top: 60px;\r\n }</style>\r\n\r\n <link rel\

=\"canonical\" href=https://www.markwatson.com/ />\r\n</head>\r\n<body href=\"http:\

//blog.markwatson.com\">Blog\r\n

<li class=\"\">My Books

As an example, the Lens expression for extracting the response status code is (r is the IO Response
data returned from calling get):

(r ^. responseStatus . statusCode)

responseStatus digs into the top level response structure and statusCode digs further in to fetch
the code 200. To get the actual contents of the web page we can use the responseBody function:

(r ^. responseBody)

Here is the code for the entire example:

Web Scraping 109

1 {-# LANGUAGE OverloadedStrings #-}

2

3 -- reference: http://www.serpentine.com/wreq/tutorial.html

4

5 module HttpClientExample where

6

7 import Network.Wreq

8 import Control.Lens -- for ^. ^?

9 import Data.Maybe (fromJust)

10

11 fetchURI uri = do

12 putStrLn $ "\n\n*** Fetching " ++ uri

13 r <- get uri

14 putStrLn $ "status code: " ++ (show (r ^. responseStatus . statusCode))

15 putStrLn $ "content type: " ++ (show (r ^? responseHeader "Content-Type"))

16 putStrLn $ "respose body: " ++ show (fromJust (r ^? responseBody))

17

18 main :: IO ()

19 main = do

20 -- JSON from DBPedia

21 fetchURI "http://dbpedia.org/data/Sedona_Arizona.json"

22 -- N3 RDF from DBPedia

23 fetchURI "http://dbpedia.org/data/Sedona_Arizona.n3"

24 -- my web site

25 fetchURI "http://markwatson.com"

This example produces a lot of printout, so I a just showing a small bit here (the text from the body
is not shown):

1 *Main> :l HttpClientExample

2 [1 of 1] Compiling HttpClientExample (HttpClientExample.hs, interpreted)

3 Ok, modules loaded: HttpClientExample.

4 *HttpClientExample> main

5

6 *** Fetching http://dbpedia.org/data/Sedona_Arizona.json

7 status code: 200

8 content type: Just "application/json"

9 respose body: "{\n \"http://en.wikipedia.org/wiki/Sedona_Arizona\" : { \"http://xml\

10 ns.com/foaf/0.1/primaryTopic\" : [{ \"type\" : \"uri\", \"value\" : \"http://dbpedi\

11 a.org/resource/Sedona_Arizona\" }] } ,\n \"http://dbpedia.org/resource/Sedona_Ariz\

12 ona\" : { \"http://www.w3.org/2002/07/owl#sameAs\" : [{ \"type\" : \"uri\", \"value\

13 \" : \"http://dbpedia.org/resource/Sedona_Arizona\" }] ,\n \"http://www.w3.org/2\

14 000/01/rdf-schema#label\" : [{ \"type\" : \"literal\", \"value\" : \"Sedona Arizona\

Web Scraping 110

15 \" , \"lang\" : \"en\" }] ,\n \"http://xmlns.com/foaf/0.1/isPrimaryTopicOf\" : [\

16 { \"type\" : \"uri\", \"value\" : \"http://en.wikipedia.org/wiki/Sedona_Arizona\" }\

17] ,\n \"http://www.w3.org/ns/prov#wasDerivedFrom\" : [{ \"type\" : \"uri\", \"v\

18 alue\" : \"http://en.wikipedia.org/wiki/Sedona_Arizona?oldid=345939723\" }] ,\n \

19 \"http://dbpedia.org/ontology/wikiPageID\" : [{ \"type\" : \"literal\", \"value\" :\

20 11034313 , \"datatype\" : \"http://www.w3.org/2001/XMLSchema#integer\" }] ,\n \\

21 "http://dbpedia.org/ontology/wikiPageRevisionID\" : [{ \"type\" : \"literal\", \"va\

22 lue\" : 345939723 , \"datatype\" : \"http://www.w3.org/2001/XMLSchema#integer\" }] \

23 ,\n \"http://dbpedia.org/ontology/wikiPageRedirects\" : [{ \"type\" : \"uri\", \\

24 "value\" : \"http://dbpedia.org/resource/Sedona,_Arizona\" }] }\n}\n"

25

26 *** Fetching http://dbpedia.org/data/Sedona_Arizona.n3

27 status code: 200

28 content type: Just "text/n3; charset=UTF-8"

29 respose body: "@prefix foaf:\t<http://xmlns.com/foaf/0.1/> .\n@prefix wikipedia-en:\\

30 t<http://en.wikipedia.org/wiki/> .\n@prefix dbr:\t<http://dbpedia.org/resource/> .\n\

31 wikipedia-en:Sedona_Arizona\tfoaf:primaryTopic\tdbr:Sedona_Arizona .\n@prefix owl:\t\

32 <http://www.w3.org/2002/07/owl#> .\ndbr:Sedona_Arizona\towl:sameAs\tdbr:Sedona_Arizo\

33 na .\n@prefix rdfs:\t<http://www.w3.org/2000/01/rdf-schema#> .\ndbr:Sedona_Arizona\t\

34 rdfs:label\t\"Sedona Arizona\"@en ;\n\tfoaf:isPrimaryTopicOf\twikipedia-en:Sedona_Ar\

35 izona .\n@prefix prov:\t<http://www.w3.org/ns/prov#> .\ndbr:Sedona_Arizona\tprov:was\

36 DerivedFrom\t<http://en.wikipedia.org/wiki/Sedona_Arizona?oldid=345939723> .\n@prefi\

37 x dbo:\t<http://dbpedia.org/ontology/> .\ndbr:Sedona_Arizona\tdbo:wikiPageID\t110343\

38 13 ;\n\tdbo:wikiPageRevisionID\t345939723 ;\n\tdbo:wikiPageRedirects\t<http://dbpedi\

39 a.org/resource/Sedona,_Arizona> ."

40

41 *** Fetching http://markwatson.com

42 status code: 200

43 content type: Just "text/html"

44 respose body: "<!DOCTYPE html>\r\n<html>\r\n<head><title>Mark Watson: consultant spe\

45 cializing in ...

You might want to experiment in the GHCi repl with the get function and Lens. If so, this will get
you started:

Web Scraping 111

*Main> :set -XOverloadedStrings

*Main> r <- get "http://dbpedia.org/data/Sedona_Arizona.json"

*Main> :t r

r :: Response ByteString

*Main> (r ^. responseStatus . statusCode)

200

*Main> (r ^? responseHeader "Content-Type")

Just "application/json"

*Main> fromJust (r ^? responseHeader "Content-Type")

"application/json"

*Main> (fromJust (r ^? responseBody))

"{\n \"http://en.wikipedia.org/wiki/Sedona_Arizona\" : { ... not shown ... \"

In the following section we will use the HandsomeSoup library for parsing HTML.

Using the HandsomeSoup Library for Parsing HTML

Wewill now use the Handsome Soup³⁰ library to parse HTML. Handsome Soup allows us to use CSS
style selectors to extract specific elements from the HTML from a web page. The HXT lower level
library provides modeling HTML (and XML) as a tree structure and an Arrow³¹ style interface for
traversing the tree structures and extract data. Arrows are a generalization of monads to manage
calculations given a context. I will touch upon just enoughmaterial on Arrows for you to understand
the examples in this chapter. Handsome Soup also provides a high level utility function fromUrl to
fetch web pages; the type of fromUrl is:

fromUrl

:: String -> IOSArrow b (Data.Tree.NTree.TypeDefs.NTree XNode)

Wewill not work directly with the tree structure of the returned data, we will simply use the accessor
functions to extract the data we need. Before looking at the example code listing, let’s look at this
extraction process (doc is the tree structured data returned from calling fromUrl):

links <- runX $ doc >>> css "a" ! "href"

The runX function runs arrow computations for us. doc is a tree data structure, css allows us to
pattern match on specific HTML elements.

Here we are using CSS style selection for all “a” anchor HTML elements and digging into the element
to return the element attribute “href” value for each “a” anchor element. In a similar way, we can
select all “img” image elements and dig down into the matched elements to fetch the “src” attributes:

³⁰https://github.com/egonSchiele/HandsomeSoup
³¹https://wiki.haskell.org/Arrow

https://github.com/egonSchiele/HandsomeSoup
https://wiki.haskell.org/Arrow
https://github.com/egonSchiele/HandsomeSoup
https://wiki.haskell.org/Arrow

Web Scraping 112

imageSrc <- runX $ doc >>> css "img" ! "src"

We can get the full body text:

allBodyText <- runX $ doc >>> css "body" //> getText

The operator //> applied to the function getText will get all text in all nested elements inside the
body element. If we had used the operator /> then we would only have fetched the text at the top
level of the body element.

Here is the full example source listing:

1 {-# LANGUAGE OverloadedStrings #-}

2

3 -- references: https://github.com/egonSchiele/HandsomeSoup

4 -- http://adit.io/posts/2012-04-14-working_with_HTML_in_haskell.html

5

6 module Main where

7

8 import Text.XML.HXT.Core

9 import Text.HandsomeSoup

10

11

12 main :: IO ()

13 main = do

14 let doc = fromUrl "http://markwatson.com/"

15 putStrLn "\n\n ** LINKS:\n"

16 links <- runX $ doc >>> css "a" ! "href"

17 mapM_ putStrLn links

18 h2 <- runX $ doc >>> css "h2" ! "href"

19 putStrLn "\n\n ** ALL H2 ELEMENTS::\n"

20 mapM_ putStrLn h2

21 imageSrc <- runX $ doc >>> css "img" ! "src"

22 putStrLn "\n\n ** ALL IMG ELEMENTS:\n"

23 mapM_ putStrLn imageSrc

24 allBodyText <- runX $ doc >>> css "body" //> getText

25 putStrLn "\n\n ** TEXT FROM BODY ELEMENT:\n"

26 mapM_ putStrLn allBodyText

27 pText <- runX $ doc >>> css "p" //> getText -- //> gets all contained text

28 -- /> gets only directly

29 -- contained text

30 putStrLn "\n\n ** ALL P ELEMENTS:\n"

31 mapM_ putStrLn pText

This example prints out several hundred lines; here is the first bit of output:

Web Scraping 113

*Main> :l HandsomeSoupTest.hs

[1 of 1] Compiling HandsomeSoupTest (HandsomeSoupTest.hs, interpreted)

Ok, modules loaded: HandsomeSoupTest.

*HandsomeSoupTest> main

** LINKS:

/

/consulting/

http://blog.markwatson.com

/books/

/opensource/

/fun/

https://github.com/mark-watson

https://plus.google.com/117612439870300277560

https://twitter.com/mark_l_watson

https://www.wikidata.org/wiki/Q18670263

http://markwatson.com/index.rdf

http://markwatson.com/index.ttl

** ALL IMG ELEMENTS:

/pictures/Markws.jpg

** TEXT FROM BODY ELEMENT:

...

I find HandsomeSoup to be very convenient for picking apart HTML data fetched from web pages.
Writing a good spider for any given web site is a process of understanding how the HTML for the
web site is structured and what information you need to collect. I strongly suggest that you work
with the web page to be spider open in a web browser with “show source code” in another browser
tab. Then open an interactive GHCi repl and experiment using the HandsomeSoup APIs to get the
data you need.

Web Scraping Wrap Up

There are many Haskell library options for web scraping and cleaning data. In this chapter I showed
you just what I use in my projects.

The material in this chapter and the chapters on text processing and linked data should be sufficient
to get you started using online data sources in your applications.

Using Relational Databases
We will see how to use popular libraries for accessing the sqlite and Postgres (sometimes also called
PostgeSQL) databases in this chapter. I assume that you are already familiar with SQL.

Database Access for Sqlite

We will use the sqlite-simple³² library in this section to access Sqlite databases and use the similar
library postgresql-simple³³ in the next section for use with Postgres.

There are other good libraries for database connectivity like Persistent³⁴ but I like sqlite-simple and
it has a gentle learning curve so that is what we will use here. You will learn the basics of database
connectivity in this and the next section. Setting up and using sqlite is easy because the sqlite-
simple library includes the compiled code for sqlite so configuration requires only the file path to
the database file.

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module Main where

4

5 import Database.SQLite.Simple

6

7 {-

8 Create sqlite database:

9 sqlite3 test.db "create table test (id integer primary key, str text);"

10

11 This example is derived from the example at github.com/nurpax/sqlite-simple

12 -}

13

14 main :: IO ()

15 main = do

16 conn <- open "test.db"

17 -- start by getting table names in database:

18 do

19 r <- query_ conn

20 "SELECT name FROM sqlite_master WHERE type='table'" :: IO [Only String]

³²https://hackage.haskell.org/package/sqlite-simple
³³https://hackage.haskell.org/package/postgresql-simple
³⁴https://www.stackage.org/package/persistent

https://hackage.haskell.org/package/sqlite-simple
https://hackage.haskell.org/package/postgresql-simple
https://www.stackage.org/package/persistent
https://hackage.haskell.org/package/sqlite-simple
https://hackage.haskell.org/package/postgresql-simple
https://www.stackage.org/package/persistent

Using Relational Databases 115

21 print "Table names in database test.db:"

22 mapM_ (print . fromOnly) r

23

24 -- get the metadata for table test in test.db:

25 do

26 r <- query_ conn

27 "SELECT sql FROM sqlite_master WHERE type='table' and name='test'" ::

28 IO [Only String]

29 print "SQL to create table 'test' in database test.db:"

30 mapM_ (print . fromOnly) r

31

32 -- add a row to table 'test' and then print out the rows in table 'test':

33 do

34 execute conn "INSERT INTO test (str) VALUES (?)"

35 (Only ("test string 2" :: String))

36 r2 <- query_ conn "SELECT * from test" :: IO [(Int, String)]

37 print "number of rows in table 'test':"

38 print (length r2)

39 print "rows in table 'test':"

40 mapM_ print r2

41

42 close conn

The typeOnly used in line 20 acts as a container for a single value and is defined in the simple-sqlite
library. It can also be used to pass values for queries like:

r <- query_ conn "SELECT name FROM customers where id = ?" (Only 4::Int)

To run this example start by creating a sqlite database that is stored in the file test.db:

sqlite3 test.db "create table test (id integer primary key, str text);"

Then build and run the example:

stack build --exec TestSqLite1

Database Access for Postgres

Setting up and using a database in the last section was easy because the sqlite-simple library includes
the compiled code for sqlite so configuration only requires the file path the the database file. The

Using Relational Databases 116

Haskel examples for Postgres will be similar to those for Sqlite. There is some complication in setting
up Postgres if you do not already have it installed and configured.

In any case, you will need to have Postgres installed and set up with a user account for yourself.
When I am installing and configuring Postgres on my Linux laptop, I create a database rolemarkw.
You will certainly create a different role/account name so subsitute your role name for markw in
the following code examples.

If you are using Ubuntu you can install Postgres and create a role using:

sudo apt-get update

sudo apt-get install postgresql postgresql-contrib postgresql-server-dev-9.5

sudo -u postgres createuser --interactive

Enter name of role to add: markw

Shall the new role be a superuser? (y/n) y

We will need to install postgresql-server-dev-9.5 in order to use the Haskell Postgres bindings. Note
that your version of Ubuntu Linux may have a different version of the server dev package which
you can find using:

aptitude search postgresql-dev

If you are using Mac OS X you can then install Postgres as an application which is convenient for
development. A role is automatically created with the same name as your OS X “short name.” You
can use the “Open psql” button on the interface to open a command line shell that functions like the
psql command on Ubuntu (or other Linux distributions).

We will need to install postgresql-server-dev-9.5 in order to use the Haskell Postgres bindings. Note
that your version of Ubuntu Linux may have a different version of the server dev package which
you can find using:

aptitude search postgresql-dev

You will then want to create a database named haskell and set the password for role/accountmarkw
to test1 for running the example in this section:

Using Relational Databases 117

createdb haskell

sudo -u postgres psql

postgres=# alter user markw encrypted password 'test1';

postgres=# \q

psql -U markw haskell

psql (9.5.4)

Type "help" for help.

haskell=# create table customers (id int, name text, email text);

CREATE TABLE

haskell=# insert into customers values (1, 'Acme Cement', 'info@acmecement.com');

INSERT 0 1

haskell=# \q

If you are not familiar with using Postgres then take a minute to experiment with using the psql
command line utility to connect to the database you just created and peform practice queries:

markw=# \c haskell

You are now connected to database "haskell" as user "markw".

haskell=# \d

List of relations

Schema | Name | Type | Owner

--------+-----------+-------+-------

public | customers | table | markw

public | links | table | markw

public | products | table | markw

(3 rows)

haskell=# select * from customers;

id | name | email

----+-----------------+---------------------

1 | Acme Cement | info@acmecement.com

2 | Biff Home Sales | info@biff.com

3 | My Pens | info@mypens.com

(3 rows)

haskell=# select * from products;

id | name | cost

----+---------------+------

1 | Cement bag | 2.5

2 | Cheap Pen | 1.5

3 | Expensive Pen | 14.5

Using Relational Databases 118

(3 rows)

haskell=# select * from links;

id | customer_id | productid

----+-------------+-----------

1 | 1 | 1

2 | 3 | 2

3 | 3 | 3

(3 rows)

haskell=#

You can change default database settings using ConnectInfo:

ConnectInfo

connectHost :: String

connectPort :: Word16

connectUser :: String

connectPassword :: String

connectDatabase :: String

In the following example on lines 9-10 I use defaultConnectInfo that lets me override just some
settings, leaving the rest set at default values. The code to access a database using simple-postgresql
is similar to that in the last section, with a few API changes.

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module Main where

4

5 import Database.PostgreSQL.Simple

6

7 main :: IO ()

8 main = do

9 conn <- connect defaultConnectInfo { connectDatabase = "haskell",

10 connectUser = "markw" }

11 -- start by getting table names in database:

12 do

13 r <- query_ conn "SELECT name FROM customers" :: IO [(Only String)]

14 print "names and emails in table 'customers' in database haskell:"

15 mapM_ (print . fromOnly) r

16

17 -- add a row to table 'test' and then print out the rows in table 'test':

Using Relational Databases 119

18 do

19 let rows :: [(Int, String, String)]

20 rows = [(4, "Mary Smith", "marys@acme.com")]

21 executeMany conn

22 "INSERT INTO customers (id, name, email) VALUES (?,?,?)" rows

23 r2 <- query_ conn "SELECT * from customers" :: IO [(Int, String, String)]

24 print "number of rows in table 'customers':"

25 print (length r2)

26 print "rows in table 'customers':"

27 mapM_ print r2

28

29 close conn

The type Only used in line 20 acts as a container for a single value and is defined in the simple-
postgresql library. It can also be used to pass values for queries like:

r <- query_ conn "SELECT name FROM customers where id = ?" (Only 4::Int)

The monad mapping function mapM_ using in line 22 is like mapM but is used when we do not
need the resulting collection from executing the map operation. mapM_ is used for side effects, in
this case extracting the value for a collection of Only values and printing them. I removed some
output from building the example in the following listing:

$ Database-postgres git:(master) > stack build --exec TestPostgres1

TestDatabase-0.1.0.0: build

Preprocessing executable 'TestPostgres1' for TestDatabase-0.1.0.0...

[1 of 1] Compiling Main (TestPostgres1.hs,

"names and emails in table 'customers' in database haskell:"

"Acme Cement"

"Biff Home Sales"

"My Pens"

"number of rows in table 'customers':"

4

"rows in table 'customers':"

(1,"Acme Cement","info@acmecement.com")

(2,"Biff Home Sales","info@biff.com")

(3,"My Pens","info@mypens.com")

(4,"Mary Smith","marys@acme.com")

Postgres is my default database and I use it unless there is a compelling reason not to. While work
for specific customers has mandated using alternative data stores (e.g., BigTable while working at
Google and MongoDB at Compass Labs), Postgres supports relational tables, free text search, and
structured data like JSON.

Haskell Program to Play the Blackjack
Card Game
For much of my work using Haskell I deal mostly with pure code with smaller bits of impure code
for network and file IO, etc. Realizing that my use case for using Haskell (mostly pure code) may
not be typical, I wanted the last example “cookbook recipe” in this book to be an example dealing
with changing state, a program to play the Blackjack card game.

The game state is maintained in the typeTable that holds information on a randomized deck of cards,
the number of players in addition to the game user and the card dealer, the cards in the current hand,
and the number of betting chips that all players own. Table data is immutable so all of the major
game playing functions take a table and any other required inputs, and generate a new table as the
function result.

This example starts by asking how many players, besides the card dealer and the game user, should
play a simulated Blackjack game. The game user controls when they want another card while the
dealer and any other simulated players play automatically (they always hit when their card score is
less than 17).

I define the types for playing cards and an entire card deck in the file Card.hs:

1 module Card (Card, Rank, Suit, orderedCardDeck, cardValue) where

2

3 import Data.Maybe (fromMaybe)

4 import Data.List (elemIndex)

5 import Data.Map (fromList, lookup, keys)

6

7 data Card = Card { rank :: Rank

8 , suit :: Suit }

9 deriving (Eq, Show)

10

11 data Suit = Hearts | Diamonds | Clubs | Spades

12 deriving (Eq, Show, Enum, Ord)

13

14 data Rank = Two | Three | Four

15 | Five | Six | Seven | Eight

16 | Nine | Ten | Jack | Queen | King | Ace

17 deriving (Eq, Show, Enum, Ord)

18

19 rankMap = fromList [(Two,2), (Three,3), (Four,4), (Five,5),

Haskell Program to Play the Blackjack Card Game 121

20 (Six,6), (Seven,7), (Eight,8), (Nine,9),

21 (Ten,10), (Jack,10), (Queen,10),

22 (King,10), (Ace,11)]

23

24 orderedCardDeck :: [Card]

25 orderedCardDeck = [Card rank suit | rank <- keys rankMap,

26 suit <- [Hearts .. Clubs]]

27

28 cardValue :: Card -> Int

29 cardValue aCard =

30 case (Data.Map.lookup (rank aCard) rankMap) of

31 Just n -> n

32 Nothing -> 0 -- should never happen

As usual, the best way to understand this code is to go to the GHCi repl:

1 *Main Card RandomizedList Table> :l Card

2 [1 of 1] Compiling Card (Card.hs, interpreted)

3 Ok, modules loaded: Card.

4 *Card> :t orderedCardDeck

5 orderedCardDeck :: [Card]

6 *Card> orderedCardDeck

7 [Card {rank = Two, suit = Hearts},Card {rank = Two, suit = Diamonds},Card {rank = Tw\

8 o, suit = Clubs},Card {rank = Three, suit = Hearts},Card {rank = Three,

9 ...

10 *Card> head orderedCardDeck

11 Card {rank = Two, suit = Hearts}

12 *Card> cardValue $ head orderedCardDeck

13 2

So, we have a sorted deck of cards and a utility function for returning the numerical value of a card
(we always count ace cards as 11 points, deviating from standard Blackjack rules).

The next thing we need to get is randomly shuffled lists. The Haskell Wiki³⁵ has a good writeup on
randomizing list elements and we are borrowing their function randomizedList (you can see the
source code in the file RandomizedList.hs). Here is a sample use:

³⁵https://wiki.haskell.org/Random_shuffle

https://wiki.haskell.org/Random_shuffle
https://wiki.haskell.org/Random_shuffle

Haskell Program to Play the Blackjack Card Game 122

1 *Card> :l RandomizedList.hs

2 [1 of 1] Compiling RandomizedList (RandomizedList.hs, interpreted)

3 Ok, modules loaded: RandomizedList.

4 *RandomizedList> import Card

5 *RandomizedList Card> randomizedList orderedCardDeck

6 [Card {rank = Queen, suit = Hearts},Card {rank = Six, suit = Diamonds},Card {rank = \

7 Five, suit = Clubs},Card {rank = Five, suit = Diamonds},Card {rank = Seven, suit = C\

8 lubs},Card {rank = Three, suit = Hearts},Card {rank = Four, suit = Diamonds},Card {r\

9 ank = Ace, suit = Hearts},

10 ...

Much of the complexity in this example is implemented in Table.hs which defines the type Table
and several functions to deal and score hands of dealt cards:

• createNewTable :: Players -> Table. Players is the integer number of other players at the table.
• setPlayerBet :: Int -> Table -> Table. Given a new value to bet and a table, generate a new
modified table.

• showTable :: Table -> [Char]. Given a table, generate a string describing the table (in a format
useful for development)

• initialDeal :: [Card] -> Table -> Int -> Table. Given a randomized deck of cards, a table, and the
number of other players, generate a new table.

• changeChipStack :: Int -> Int -> Table -> Table. Given a player index (index order: user, dealer,
and other players), a new number of betting chips for the player, and a table, then generate a
new modified table.

• setCardDeck :: [Card] -> Table -> Table. Given a randomized card deck and a table, generate a
new table containing the new randomized card list; all other table data is unchanged.

• dealCards :: Table -> [Int] -> Table. Given a table and a list of player indices for players wanting
another card, generate a new modified table.

• resetTable :: [Card] -> Table -> Int -> Table. Given a new randomized card deck, a table, and a
new number of other players, generate a new table.

• scoreHands :: Table -> Table. Given a table, score all dealt hands and generate a new table with
these scores. There is no table type score data, rather, we “score” by changing the number of
chips all of the players (inclding the dealer) has.

• dealCardToUser :: Table -> Int -> Table. For the game user, always deal a card. For the dealer
and other players, deal another card if their hand score is less than 17.

• handOver :: Table -> Bool. Determine if the current hand is over.
• setPlayerPasses :: Table -> Table. Call this function when the payer passes. Other players and
dealer are then played out automatically.

The implementation in the file Table.hs is fairly simple, with the exception of the use of Haskell
lenses to access nested data in the table type. I will discuss the use of lenses after the program listing,
but: as you are reading the code look out for variables starting with the underscore character _ that
alerts the Lens system that it should create data accessors for these variables:

Haskell Program to Play the Blackjack Card Game 123

1 {-# LANGUAGE TemplateHaskell #-} -- for makeLens

2

3 module Table (Table (..), createNewTable, setPlayerBet, showTable, initialDeal,

4 changeChipStack, setCardDeck, dealCards, resetTable, scoreHands,

5 dealCardToUser, handOver, setPlayerPasses) where

6 -- note: export dealCardToUser only required for ghci development

7

8 import Control.Lens

9

10 import Card

11 import Data.Bool

12 import Data.Maybe (fromMaybe)

13

14 data Table = Table { _numPlayers :: Int

15 , _chipStacks :: [Int] -- number of chips,

16 -- indexed by player index

17 , _dealtCards :: [[Card]] -- dealt cards for user,

18 -- dealer, and other players

19 , _currentPlayerBet :: Int

20 , _userPasses :: Bool

21 , _cardDeck :: [Card]

22 }

23 deriving (Show)

24

25 type Players = Int

26

27 createNewTable :: Players -> Table

28 createNewTable n =

29 Table n

30 [500 | _ <- [1 .. n]] -- give each player (incuding dealer) 10 chips

31 [[] | _ <- [0..n]] -- dealt cards for user and other players

32 -- (we don't track dealer's chips)

33 20 -- currentPlayerBet number of betting chips

34 False

35 [] -- placeholder for random shuffled card deck

36

37 resetTable :: [Card] -> Table -> Int -> Table

38 resetTable cardDeck aTable numberOfPlayers =

39 Table numberOfPlayers

40 (_chipStacks aTable) -- using Lens accessor

41 [[] | _ <- [0..numberOfPlayers]]

42 (_currentPlayerBet aTable) -- using Lens accessor

43 False

Haskell Program to Play the Blackjack Card Game 124

44 cardDeck

45

46 -- Use lens extensions for type Table:

47

48 makeLenses ''Table

49

50 showDealtCards :: [[Card]] -> String

51 showDealtCards dc =

52 (show [map cardValue hand | hand <- dc])

53

54 setCardDeck :: [Card] -> Table -> Table

55 setCardDeck newDeck =

56 over cardDeck (_ -> newDeck) -- change value to new card deck

57

58 dealCards :: Table -> [Int] -> Table

59 dealCards aTable playerIndices =

60 last $ scanl dealCardToUser aTable playerIndices

61

62 initialDeal cardDeck aTable numberOfPlayers =

63 dealCards

64 (dealCards (resetTable cardDeck aTable numberOfPlayers)

65 [0 .. numberOfPlayers])

66 [0 .. numberOfPlayers]

67

68 showTable :: Table -> [Char]

69 showTable aTable =

70 "\nCurrent table data:\n" ++

71 " Chipstacks: " ++

72 "\n Player: " ++ (show (head (_chipStacks aTable))) ++

73 "\n Other players: " ++ (show (tail (_chipStacks aTable))) ++

74 "\n User cards: " ++ (show (head (_dealtCards aTable))) ++

75 "\n Dealer cards: " ++ (show ((_dealtCards aTable) !! 1)) ++

76 "\n Other player's cards: " ++ (show (tail (tail(_dealtCards aTable)))) ++

77 -- "\n Dealt cards: " ++ (show (_dealtCards aTable)) ++

78 "\n Dealt card values: " ++ (showDealtCards (_dealtCards aTable)) ++

79 "\n Current player bet: " ++

80 (show (_currentPlayerBet aTable)) ++

81 "\n Player pass: " ++

82 (show (_userPasses aTable)) ++ "\n"

83

84 clipScore aTable playerIndex =

85 let s = score aTable playerIndex in

86 if s < 22 then s else 0

Haskell Program to Play the Blackjack Card Game 125

87

88 scoreHands aTable =

89 let chipStacks2 = _chipStacks aTable

90 playerScore = clipScore aTable 0

91 dealerScore = clipScore aTable 1

92 otherScores = map (clipScore aTable) [2..]

93 newPlayerChipStack = if playerScore > dealerScore then

94 (head chipStacks2) + (_currentPlayerBet aTable)

95 else

96 if playerScore < dealerScore then

97 (head chipStacks2) - (_currentPlayerBet aTable)

98 else (head chipStacks2)

99 newOtherChipsStacks =

100 map (\(x,y) -> if x > dealerScore then

101 y + 20

102 else

103 if x < dealerScore then

104 y - 20

105 else y)

106 (zip otherScores (tail chipStacks2))

107 newChipStacks = newPlayerChipStack:newOtherChipsStacks

108 in

109 over chipStacks (_ -> newChipStacks) aTable

110

111 setPlayerBet :: Int -> Table -> Table

112 setPlayerBet newBet =

113 over currentPlayerBet (_ -> newBet)

114

115 setPlayerPasses :: Table -> Table

116 setPlayerPasses aTable =

117 let numPlayers = _numPlayers aTable

118 playerIndices = [1..numPlayers]

119 t1 = over userPasses (_ -> True) aTable

120 t2 = dealCards t1 playerIndices

121 t3 = dealCards t2 playerIndices

122 t4 = dealCards t3 playerIndices

123 in

124 t4

125

126

127 changeChipStack :: Int -> Int -> Table -> Table

128 changeChipStack playerIndex newValue =

129 over chipStacks (\a -> a & element playerIndex .~ newValue)

Haskell Program to Play the Blackjack Card Game 126

130

131 scoreOLD aTable playerIndex =

132 let scores = map cardValue ((_dealtCards aTable) !! playerIndex)

133 totalScore = sum scores in

134 if totalScore < 22 then totalScore else 0

135

136 score aTable playerIndex =

137 let scores = map cardValue ((_dealtCards aTable) !! playerIndex)

138 totalScore = sum scores in

139 totalScore

140

141 dealCardToUser' :: Table -> Int -> Table

142 dealCardToUser' aTable playerIndex =

143 let nextCard = head $ _cardDeck aTable

144 playerCards = nextCard : ((_dealtCards aTable) !! playerIndex)

145 newTable = over cardDeck (\cd -> tail cd) aTable in

146 over dealtCards (\a -> a & element playerIndex .~ playerCards) newTable

147

148 dealCardToUser :: Table -> Int -> Table

149 dealCardToUser aTable playerIndex

150 | playerIndex == 0 = dealCardToUser' aTable playerIndex -- user

151 | otherwise = if (score aTable playerIndex) < 17 then

152 dealCardToUser' aTable playerIndex

153 else aTable

154

155 handOver :: Table -> Bool

156 handOver aTable =

157 _userPasses aTable

In line 48 we use the functionmakeLenses to generate access functions for the type Table. We will
look in some detail at lines 54-56 where we use the lense over function to modify a nested value in
a table, returning a new table:

1 setCardDeck :: [Card] -> Table -> Table

2 setCardDeck newDeck =

3 over cardDeck (_ -> newDeck)

The expression in line 3 evaluates to a partial function that takes another argument, a table, and
returns a new table with the card deck modified. Function over expects a function as its second
argument. In this example, the inline function ignores the argument it is called with, which would
be the old card deck value, and returns the new card deck value which is placed in the table value.

Using lenses can greatly simplify the code to manipulate complex types.

Haskell Program to Play the Blackjack Card Game 127

Another place where I am using lenses is in the definition of function scoreHands (lines 88-109). On
line 109 we are using the over function to replace the old player betting chip counts with the new
value we have just calculated:

over chipStacks (_ -> newChipStacks) aTable

Similarly, we use over in line 113 to change the current player bet. In function handOver on line
157, notice how I am using the generated function _userPasses to extract the value of the user passes
boolean flag from a table.

The function main, defined in the file Main.hs, uses the code we have just seen to represent a table
and modify a table, is fairly simple. A main game loop repetitively accepts game user imput, and
calls the appropriate functions to modify the current table, producing a new table. Remember that
the table data is immutable: we always generate a new table from the old table when we need to
modify it.

1 module Main where

2

3 import Card -- pure code

4 import Table -- pure code

5 import RandomizedList -- impure code

6

7 printTable :: Table -> IO ()

8 printTable aTable =

9 putStrLn $ showTable aTable

10

11 randomDeck =

12 randomizedList orderedCardDeck

13

14 gameLoop :: Table -> Int -> IO b

15 gameLoop aTable numberOfPlayers = do

16 printTable aTable

17 cardDeck <- randomDeck

18 if (handOver aTable) then

19 do

20 putStrLn "\nHand over. State of table at the end of the game:\n"

21 printTable aTable

22 putStrLn "\nNewly dealt hand:\n"

23 gameLoop (initialDeal cardDeck (scoreHands aTable)

24 numberOfPlayers)

25 numberOfPlayers

26 else

27 do

Haskell Program to Play the Blackjack Card Game 128

28 putStrLn "Enter command:"

29 putStrLn " h)it or set bet to 10, 20, 30; any other key to stay:"

30 command <- getLine

31 if elem command ["10", "20", "30"] then

32 gameLoop (setPlayerBet (read command) aTable) numberOfPlayers

33 else

34 if command == "h" then

35 gameLoop (dealCards aTable [0 .. numberOfPlayers]) numberOfPlayers

36 else

37 gameLoop (setPlayerPasses (dealCards aTable [1 .. numberOfPlayers]))

38 numberOfPlayers

39 -- player stays (no new cards)

40

41 main :: IO b

42 main = do

43 putStrLn "Start a game of Blackjack. Besides yourself, how many other"

44 putStrLn "players do you want at the table?"

45 s <- getLine

46 let num = (read s :: Int) + 1

47 cardDeck <- randomDeck

48 let aTable = initialDeal cardDeck (createNewTable num) num

49 gameLoop aTable num

I encourage you to try playing the game yourself, but if you don’t here is a sample game:

1 *Main Card RandomizedList Table> main

2 Start a game of Blackjack. Besides yourself, how many other

3 players do you want at the table?

4 1

5

6 Current table data:

7 Chipstacks:

8 Player: 500

9 Other players: [500]

10 User cards: [Card {rank = Three, suit = Clubs},Card {rank = Two, suit = Hearts}]

11 Dealer cards: [Card {rank = Queen, suit = Diamonds},Card {rank = Seven, suit = Clu\

12 bs}]

13 Other player's cards: [[Card {rank = King, suit = Hearts},Card {rank = Six, suit =\

14 Diamonds}]]

15 Dealt card values: [[3,2],[10,7],[10,6]]

16 Current player bet: 20

17 Player pass: False

18

Haskell Program to Play the Blackjack Card Game 129

19 Enter command: h)it or set bet to 10, 20, 30; any other key to stay:

20 h

21

22 Current table data:

23 Chipstacks:

24 Player: 500

25 Other players: [500]

26 User cards: [Card {rank = Six, suit = Hearts},Card {rank = Three, suit = Clubs},Ca\

27 rd {rank = Two, suit = Hearts}]

28 Dealer cards: [Card {rank = Queen, suit = Diamonds},Card {rank = Seven, suit = Clu\

29 bs}]

30 Other player's cards: [[Card {rank = Eight, suit = Hearts},Card {rank = King, suit\

31 = Hearts},Card {rank = Six, suit = Diamonds}]]

32 Dealt card values: [[6,3,2],[10,7],[8,10,6]]

33 Current player bet: 20

34 Player pass: False

35

36 Enter command: h)it or set bet to 10, 20, 30; any other key to stay:

37 h

38

39 Current table data:

40 Chipstacks:

41 Player: 500

42 Other players: [500]

43 User cards: [Card {rank = King, suit = Clubs},Card {rank = Six, suit = Hearts},Car\

44 d {rank = Three, suit = Clubs},Card {rank = Two, suit = Hearts}]

45 Dealer cards: [Card {rank = Queen, suit = Diamonds},Card {rank = Seven, suit = Clu\

46 bs}]

47 Other player's cards: [[Card {rank = Eight, suit = Hearts},Card {rank = King, suit\

48 = Hearts},Card {rank = Six, suit = Diamonds}]]

49 Dealt card values: [[10,6,3,2],[10,7],[8,10,6]]

50 Current player bet: 20

51 Player pass: False

52

53 Enter command: h)it or set bet to 10, 20, 30; any other key to stay:

54

55 Current table data:

56 Chipstacks:

57 Player: 500

58 Other players: [500]

59 User cards: [Card {rank = King, suit = Clubs},Card {rank = Six, suit = Hearts},Car\

60 d {rank = Three, suit = Clubs},Card {rank = Two, suit = Hearts}]

61 Dealer cards: [Card {rank = Queen, suit = Diamonds},Card {rank = Seven, suit = Clu\

Haskell Program to Play the Blackjack Card Game 130

62 bs}]

63 Other player's cards: [[Card {rank = Eight, suit = Hearts},Card {rank = King, suit\

64 = Hearts},Card {rank = Six, suit = Diamonds}]]

65 Dealt card values: [[10,6,3,2],[10,7],[8,10,6]]

66 Current player bet: 20

67 Player pass: True

68

69 Hand over. State of table at the end of the game:

70

71 Current table data:

72 Chipstacks:

73 Player: 520

74 Other players: [520]

75 User cards: [Card {rank = King, suit = Clubs},Card {rank = Six, suit = Hearts},Car\

76 d {rank = Three, suit = Clubs},Card {rank = Two, suit = Hearts}]

77 Dealer cards: [Card {rank = Queen, suit = Diamonds},Card {rank = Seven, suit = Clu\

78 bs}]

79 Other player's cards: [[Card {rank = Eight, suit = Hearts},Card {rank = King, suit\

80 = Hearts},Card {rank = Six, suit = Diamonds}]]

81 Dealt card values: [[10,6,3,2],[10,7],[8,10,6]]

82 Current player bet: 20

83 Player pass: True

Here the game user has four cards with values of [10,6,3,2] for a winning score of 21. The dealer has
[10,7] for a score of 17 and the other player has [8,10,6], a value greater than 21 so the player went
“bust.”

I hope that you enjoyed this last example that demonstrates a reasonable approach for managing
state when using immutable data.

Section 3 - Larger Projects
This section is new for the second edition of this book. So far we have covered the basics of Haskell
programming and seen many examples. In this section we look at a few new projects that I derived
from my own work and these new examples will hopefully further encourage you to think of novel
uses for Haskell in your own work.

The project knowledge_graph_creator helps to automate the process of creating Knowledge
Graphs from raw text input and generates data for both the Neo4J open source graph database
as well as RDF data for use in semantic web and linked data applications. I have also implemented
this same application in Common Lisp that is also a new example in the latest edition of my book
Loving Common Lisp, Or The Savvy Programmer’s Secret Weapon³⁶ (released September 2019).

The next two chapters in this section are similar in that they both use examples of using Python for
Natural Language Processing (NLP) tasks, wrapping the Python code as a REST service, and then
writing Haskell clients for these services.

The project HybridHaskellPythonNlp uses web services written in Python for natural language
processing. The Python web services use the SpaCy library.

The projectHybridHaskellPythonCorefAnaphoraResolution uses web services written in Python
to allow Haskell applications to use deep learning models created with TensorFlow and Keras.

In these last two examples I use REST APIs to access code written in Python. A good alternative that
I don’t cover in this book is using the servant library³⁷ for generating distributed applications.

³⁶https://leanpub.com/lovinglisp
³⁷https://www.servant.dev/

https://leanpub.com/lovinglisp
https://www.servant.dev/
https://leanpub.com/lovinglisp
https://www.servant.dev/

Knowledge Graph Creator
The large project described here processes raw text inputs and generates data for knowledge graphs
in formats for both the Neo4J graph database and in RDF format for semantic web and linked data
applications.

This application works by identifying entities in text. Example entity types are people, companies,
country names, city names, broadcast network names, political party names, and university names.
We saw earlier code for detecting entities in the chapter on natural language processing (NLP) and
we will reuse this code. We will discuss later three strategies for reusing code from different projects.

The following figure shows part of a Neo4J Knowledge Graph created with the example code. This
graph has shortened labels in displayed nodes but Neo4J offers a web browser-based console that lets
you interactively explore Knowledge Graphs. We don’t cover setting up Neo4J here so please use the
Neo4J documentation³⁸. As an introduction to RDF data, the semantic web, and linked data you can
get free copies of my two books Practical Semantic Web and Linked Data Applications, Common
Lisp Edition³⁹ and Practical Semantic Web and Linked Data Applications, Java, Scala, Clojure, and
JRuby Edition⁴⁰.

Part of a Knowledge Graph shown in Neo4J web application console

There are two versions of this project that deal with generating duplicate data in two ways:

• As either Neo4J Cypher data or RDF triples data are created, store generated data in a SQLite
embedded database. Check this database before writing new output data.

• Ignore the problem of generating duplicate data and filter out duplicates in the outer processing
pipeline that uses the Knowledge Graph Creator as one processing step.

³⁸https://neo4j.com/docs/operations-manual/current/introduction/
³⁹http://markwatson.com/opencontentdata/book_lisp.pdf
⁴⁰http://markwatson.com/opencontentdata/book_java.pdf

https://neo4j.com/docs/operations-manual/current/introduction/
http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_java.pdf
http://markwatson.com/opencontentdata/book_java.pdf
https://neo4j.com/docs/operations-manual/current/introduction/
http://markwatson.com/opencontentdata/book_lisp.pdf
http://markwatson.com/opencontentdata/book_java.pdf

Knowledge Graph Creator 133

For my own work I choose the second method since filtering duplicates is as easy as a few Makefile
targets (the following listing is in the file Makefile in the directory haskell_tutorial_cookbook_-
examples/knowledge_graph_creator_pure):

all: gendata rdf cypher

gendata:

stack build --fast --exec Dev-exe

rdf:

echo "Removing duplicate RDF statements"

awk '!visited[$$0]++' out.n3 > output.n3

rm -f out.n3

cypher:

echo "Removing duplicate Cypher statements"

awk '!visited[$$0]++' out.cypher > output.cypher

rm -f out.cypher

The Haskell KGCreator application we develop here writes output files out.n3 (N3 is a RDF data
format) and out.cypher (Cypher is the import output format and query language for the Neo4J open
source and commercial graph database). The awk commands remove duplicate lines and write de-
duplicated data to output.n3 and output.cypher.

We will use this second approach but the next section provides sufficient information and a link to
alternative code in case you are interested in using SQLite to prevent duplicate data generation.

Notes for Using SQLite to Avoid Duplicates (Optional Material)

We saw two methods of avoiding duplicates in generated data in the last section. If you want to
use the first method for avoiding generating duplicate data, I leave it as an exercise but here are
some notes to get you started: you can then modify the example code by using the utility function
Blackboard.h in the directory knowledge_graph_creator_pure/src/fileutils and implement the
logic seen below for checking new generated data to see if it is in the SQLite database. This first
method as it also is a good example for wrapping the embedded SQLite library in an IO Monad and
is left as an exercise, otherwise skip this section.

Before you write either an RDF statement or a Neo4J Cypher data import statement, check to see if
the statement has already been written using something like:

Knowledge Graph Creator 134

check <- blackboard_check_key new_data_uri

if check

....

and after writing a RDF statement or a Neo4J Cypher data import statement, write it to the
temportary SQLite database using something like:

blackboard_write newStatementString

For the rest of the chapter we will use the approach of not keeping track of generated data in SQLite
and instead remove duplicates during postprocessing using the standard awk command line utility.

This section is optional. In the rest of this chapter we use the example code in knowledge_graph_-
creator_pure.

Code Layout For the KGCreator Project and strategies
for sharing Haskell code between projects

We will reuse the code for finding entities that we studied in an earlier chapter. There are several
ways to reuse code from multiple local Haskell projects:

• In a project’s cabal file, use relative paths to the source code for other projects. This is
my preferred way to work but has the drawback that the stack command sdist to make a
distribution tarball will not work with relative paths. If this is a problem for you then create
relative symbolic file links to the source directories in other projects.

• In your project’s stack.yaml file, add the other project’s name and path as a extra-deps.
• In library projects, define a packages definition and install the library globally on your system.

I almost always use the first method on my projects with dependencies on other local projects I work
on and this is also the approach we use here. The relevant lines in the file KGCreator.cabal are:

1 library

2 exposed-modules:

3 CorefWebClient

4 NlpWebClient

5 ClassificationWebClient

6 DirUtils

7 FileUtils

8 BlackBoard

9 GenTriples

10 GenNeo4jCypher

Knowledge Graph Creator 135

11 Apis

12 Categorize

13 NlpUtils

14 Summarize

15 Entities

16 other-modules:

17 Paths_KGCreator

18 BroadcastNetworkNamesDbPedia

19 Category1Gram

20 Category2Gram

21 CityNamesDbpedia

22 CompanyNamesDbpedia

23 CountryNamesDbpedia

24 PeopleDbPedia

25 PoliticalPartyNamesDbPedia

26 Sentence

27 Stemmer

28 TradeUnionNamesDbPedia

29 UniversityNamesDbPedia

30

31 hs-source-dirs:

32 src

33 src/webclients

34 src/fileutils

35 src/sw

36 src/toplevel

37 ../NlpTool/src/nlp

38 ../NlpTool/src/nlp/data

This is a standard looking cabal file except for lines 37 and 38 where the source paths reference
the example code for the NlpTool application developed in a previous chapter. The exposed module
BlackBoard (line 8) is not used but I leave it in the cabal file in case you want to experiment with
recording generated data in SQLite to avoid data duplication. You are likely to also want to use
BlackBoard if you modify this example to continuously process incoming data in a production
system. This is left as an exercise.

Before going into too much detail on the implementation let’s look at the layout of the project code:

Knowledge Graph Creator 136

1 src/fileutils:

2 BlackBoard.hs DirUtils.hs FileUtils.hs

3

4 ../NlpTool/src/nlp:

5 Categorize.hs Entities.hs NlpUtils.hs Sentence.hs Stemmer.hs Summarize.hs data

6

7 ../NlpTool/src/nlp/data:

8 BroadcastNetworkNamesDbPedia.hs CompanyNamesDbpedia.hs TradeUnionNamesDbPedia.hs

9 Category1Gram.hs CountryNamesDbpedia.hs UniversityNamesDbPedia.hs

10 Category2Gram.hs PeopleDbPedia.hs

11 CityNamesDbpedia.hs PoliticalPartyNamesDbPedia.hs

12

13 src/sw:

14 GenNeo4jCypher.hs GenTriples.hs

15

16 src/toplevel:

17 Apis.hs

As mentioned before, we are using the Haskell source fies in a relative path ../NlpTool/src/… and
the local src directory. We discuss this code in the next few sections.

The Main Event: Detecting Entities in Text

A primary task in KGCreator is to identify entities (people, places, etc.) in text and then we will
create RDF and Neo4J Cypher data statements using these entities, knowledge of the origin of text
data and general relationships between entities.

We will use the top level code that we developed earlier that is located in the directory ../NlpTool/s-
rc/nlp (please see the chapter Natural Language Processing Tools for more detail):

• Categorize.hs - categorizes text into categories like news, religion, business, politics, science,
etc.

• Entities.hs - identifies entities like people, companies, places, new broadcast networks, labor
unions, etc. in text

• Summarize.hs - creates an extractive summary of text

The KGCreator Haskell application looks in a specified directory for text files to process. For each
file with a .txt extension there should be a matching file with the extension .meta that contains a
single line: the URI of the web location where the corresponding text was found. The reason we need
this is that we want to create graph knowledge data from information found in text sources and the
original location of the data is important to preserve. In other words, we want to know where the
data elements in our knowledge graph came from.

Knowledge Graph Creator 137

We have not looked at an example of using command line arguments yet so let’s go into some detail
on how we do this. Previously when we have defined an output target executable in our .cabal file,
in this case KGCreator-exe, we could use stack to build the executable and run it with:

stack build --fast --exec KGCreator-exe"

Now, we have an executable that requires two arguments: a source input directory and the file
root for generated RDF and Cypher output files. We can pass command line arguments using this
notation:

stack build --fast --exec "KGCreator-exe test_data outtest"

The two command line arguments are:

• test_data which is the file path of a local directory containing the input files
• outtest which is the root file name for generated Neo4J Cypher and RDF output files

If you are using KGCreator in production, then you will want to copy the compiled and linked
executable file KGCreator-exe to somewhere on your PATH like /usr/local/bin.

The following listing shows the file app/Main.hs, the main program for this example that handles
command line arguments and calls two top level functions in src/toplevel/Apis.hs:

1 module Main where

2

3 import System.Environment (getArgs)

4 import Apis (processFilesToRdf, processFilesToNeo4j)

5

6 main :: IO ()

7 main = do

8 args <- getArgs

9 case args of

10 [] -> error "must supply an input directory containing text and meta files"

11 [_] -> error "in addition to an input directory, also specify a root file name f\

12 or the generated RDF and Cypher files"

13 [inputDir, outputFileRoot] -> do

14 processFilesToRdf inputDir $ outputFileRoot ++ ".n3"

15 processFilesToNeo4j inputDir $ outputFileRoot ++ ".cypher"

16 _ -> error "too many arguments"

Here we use getArgs in line8 to fetch a list of command line arguments and verify that at
least two arguments have been provided. Then we call the functions processFilesToRdf and
processFilesToNeo4j and the functions they call in the next three sections.

Knowledge Graph Creator 138

Utility Code for Generating RDF

The code for generating RDF and for generating Neo4J Cypher data is similar. We start with the code
to generate RDF triples. Before we look at the code, let’s start with a few lines of generated RDF:

<http://dbpedia.org/resource/The_Wall_Street_Journal>

<http://knowledgebooks.com/schema/aboutCompanyName>

"Wall Street Journal" .

<https://newsshop.com/june/z902.html>

<http://knowledgebooks.com/schema/containsCountryDbPediaLink>

<http://dbpedia.org/resource/Canada> .

The next listing shows the file src/sw/GenTriples.hs that finds entities like broadcast network
names, city names, company names, people’s names, political party names, and university names in
text and generates RDF triple data. If you need to add more entity types for your own applications,
then use the following steps:

• Look at the format of entity data for the NlpTool example and add names for the new entity
type you are adding.

• Add a utility function to find instances of the new entity type to NlpTools. For example, if
you are adding a new entity type “park names”, then copy the code for companyNames to
parkNames, modify as necessary, and export parkNames.

• In the following code, add new code for the new entity helper function after lines 10, 97, 151,
and 261. Use the code for companyNames as an example.

The map *category_to_uri_map** created in lines 36 to 84 maps a topic name to a linked Data URI
that describes the topic. For example, we would not refer to an information source as being about
the topic “economics”, but would instead refer to a linked data URI like http://knowledgebooks.
com/schema/topic/economics. The utility function uri_from_categor takes a text description of a
topic like “economy” and converts it to an appropriate URI using the map *category_to_uri_map**.

The utility function textToTriple takes a file path to a text input file and a path to meta file path,
calculates the text string representing the generated triples for the input text file, and returns the
result wrapped in an IO monad.

http://knowledgebooks.com/schema/topic/economics
http://knowledgebooks.com/schema/topic/economics

Knowledge Graph Creator 139

1 module GenTriples

2 (textToTriples

3 , category_to_uri_map

4) where

5

6 import Categorize (bestCategories)

7 import Entities

8 (broadcastNetworkNames

9 , cityNames

10 , companyNames

11 , countryNames

12 , peopleNames

13 , politicalPartyNames

14 , tradeUnionNames

15 , universityNames

16)

17 import FileUtils

18 (MyMeta

19 , filePathToString

20 , filePathToWordTokens

21 , readMetaFile

22 , uri

23)

24 import Summarize (summarize, summarizeS)

25

26 import qualified Data.Map as M

27 import Data.Maybe (fromMaybe)

28

29 generate_triple :: [Char] -> [Char] -> [Char] -> [Char]

30 generate_triple s p o = s ++ " " ++ p ++ " " ++ o ++ " .\n"

31

32 make_literal :: [Char] -> [Char]

33 make_literal s = "\"" ++ s ++ "\""

34

35 category_to_uri_map :: M.Map [Char] [Char]

36 category_to_uri_map =

37 M.fromList

38 [("news_weather", "<http://knowledgebooks.com/schema/topic/weather>")

39 , ("news_war", "<http://knowledgebooks.com/schema/topic/war>")

40 , ("economics", "<http://knowledgebooks.com/schema/topic/economics>")

41 , ("news_economy", "<http://knowledgebooks.com/schema/topic/economics>")

42 , ("news_politics", "<http://knowledgebooks.com/schema/topic/politics>")

43 , ("religion", "<http://knowledgebooks.com/schema/topic/religion>")

Knowledge Graph Creator 140

44 , ("religion_buddhism"

45 , "<http://knowledgebooks.com/schema/topic/religion/buddhism>")

46 , ("religion_islam"

47 , "<http://knowledgebooks.com/schema/topic/religion/islam>")

48 , ("religion_christianity"

49 , "<http://knowledgebooks.com/schema/topic/religion/christianity>")

50 , ("religion_hinduism"

51 , "<http://knowledgebooks.com/schema/topic/religion/hinduism>")

52 , ("religion_judaism"

53 , "<http://knowledgebooks.com/schema/topic/religion/judaism>")

54 , ("chemistry", "<http://knowledgebooks.com/schema/topic/chemistry>")

55 , ("computers", "<http://knowledgebooks.com/schema/topic/computers>")

56 , ("computers_ai", "<http://knowledgebooks.com/schema/topic/computers/ai>")

57 , ("computers_ai_datamining"

58 , "<http://knowledgebooks.com/schema/topic/computers/ai/datamining>")

59 , ("computers_ai_learning"

60 , "<http://knowledgebooks.com/schema/topic/computers/ai/learning>")

61 , ("computers_ai_nlp"

62 , "<http://knowledgebooks.com/schema/topic/computers/ai/nlp>")

63 , ("computers_ai_search"

64 , "<http://knowledgebooks.com/schema/topic/computers/ai/search>")

65 , ("computers_ai_textmining"

66 , "<http://knowledgebooks.com/schema/topic/computers/ai/textmining>")

67 , ("computers/programming"

68 , "<http://knowledgebooks.com/schema/topic/computers/programming>")

69 , ("computers_microsoft"

70 , "<http://knowledgebooks.com/schema/topic/computers/microsoft>")

71 , ("computers/programming/ruby"

72 , "<http://knowledgebooks.com/schema/topic/computers/programming/ruby>")

73 , ("computers/programming/lisp"

74 , "<http://knowledgebooks.com/schema/topic/computers/programming/lisp>")

75 , ("health", "<http://knowledgebooks.com/schema/topic/health>")

76 , ("health_exercise"

77 , "<http://knowledgebooks.com/schema/topic/health/exercise>")

78 , ("health_nutrition"

79 , "<http://knowledgebooks.com/schema/topic/health/nutrition>")

80 , ("mathematics", "<http://knowledgebooks.com/schema/topic/mathematics>")

81 , ("news_music", "<http://knowledgebooks.com/schema/topic/music>")

82 , ("news_physics", "<http://knowledgebooks.com/schema/topic/physics>")

83 , ("news_sports", "<http://knowledgebooks.com/schema/topic/sports>")

84]

85

86 uri_from_category :: [Char] -> [Char]

Knowledge Graph Creator 141

87 uri_from_category key =

88 fromMaybe ("\"" ++ key ++ "\"") $ M.lookup key category_to_uri_map

89

90 textToTriples :: FilePath -> [Char] -> IO [Char]

91 textToTriples file_path meta_file_path = do

92 word_tokens <- filePathToWordTokens file_path

93 contents <- filePathToString file_path

94 putStrLn $ "** contents:\n" ++ contents ++ "\n"

95 meta_data <- readMetaFile meta_file_path

96 let people = peopleNames word_tokens

97 let companies = companyNames word_tokens

98 let countries = countryNames word_tokens

99 let cities = cityNames word_tokens

100 let broadcast_networks = broadcastNetworkNames word_tokens

101 let political_parties = politicalPartyNames word_tokens

102 let trade_unions = tradeUnionNames word_tokens

103 let universities = universityNames word_tokens

104 let a_summary = summarizeS contents

105 let the_categories = bestCategories word_tokens

106 let filtered_categories =

107 map (uri_from_category . fst) $

108 filter (\(name, value) -> value > 0.3) the_categories

109 putStrLn "\nfiltered_categories:"

110 print filtered_categories

111 --putStrLn "a_summary:"

112 --print a_summary

113 --print $ summarize contents

114

115 let summary_triples =

116 generate_triple

117 (uri meta_data)

118 "<http://knowledgebooks.com/schema/summaryOf>" $

119 "\"" ++ a_summary ++ "\""

120 let category_triples =

121 concat

122 [generate_triple

123 (uri meta_data)

124 "<http://knowledgebooks.com/schema/news/category/>"

125 cat

126 | cat <- filtered_categories

127]

128 let people_triples1 =

129 concat

Knowledge Graph Creator 142

130 [generate_triple

131 (uri meta_data)

132 "<http://knowledgebooks.com/schema/containsPersonDbPediaLink>"

133 (snd pair)

134 | pair <- people

135]

136 let people_triples2 =

137 concat

138 [generate_triple

139 (snd pair)

140 "<http://knowledgebooks.com/schema/aboutPersonName>"

141 (make_literal (fst pair))

142 | pair <- people

143]

144 let company_triples1 =

145 concat

146 [generate_triple

147 (uri meta_data)

148 "<http://knowledgebooks.com/schema/containsCompanyDbPediaLink>"

149 (snd pair)

150 | pair <- companies

151]

152 let company_triples2 =

153 concat

154 [generate_triple

155 (snd pair)

156 "<http://knowledgebooks.com/schema/aboutCompanyName>"

157 (make_literal (fst pair))

158 | pair <- companies

159]

160 let country_triples1 =

161 concat

162 [generate_triple

163 (uri meta_data)

164 "<http://knowledgebooks.com/schema/containsCountryDbPediaLink>"

165 (snd pair)

166 | pair <- countries

167]

168 let country_triples2 =

169 concat

170 [generate_triple

171 (snd pair)

172 "<http://knowledgebooks.com/schema/aboutCountryName>"

Knowledge Graph Creator 143

173 (make_literal (fst pair))

174 | pair <- countries

175]

176 let city_triples1 =

177 concat

178 [generate_triple

179 (uri meta_data)

180 "<http://knowledgebooks.com/schema/containsCityDbPediaLink>"

181 (snd pair)

182 | pair <- cities

183]

184 let city_triples2 =

185 concat

186 [generate_triple

187 (snd pair)

188 "<http://knowledgebooks.com/schema/aboutCityName>"

189 (make_literal (fst pair))

190 | pair <- cities

191]

192 let bnetworks_triples1 =

193 concat

194 [generate_triple

195 (uri meta_data)

196 "<http://knowledgebooks.com/schema/containsBroadCastDbPediaLink>"

197 (snd pair)

198 | pair <- broadcast_networks

199]

200 let bnetworks_triples2 =

201 concat

202 [generate_triple

203 (snd pair)

204 "<http://knowledgebooks.com/schema/aboutBroadCastName>"

205 (make_literal (fst pair))

206 | pair <- broadcast_networks

207]

208 let pparties_triples1 =

209 concat

210 [generate_triple

211 (uri meta_data)

212 "<http://knowledgebooks.com/schema/containsPoliticalPartyDbPediaLink>"

213 (snd pair)

214 | pair <- political_parties

215]

Knowledge Graph Creator 144

216 let pparties_triples2 =

217 concat

218 [generate_triple

219 (snd pair)

220 "<http://knowledgebooks.com/schema/aboutPoliticalPartyName>"

221 (make_literal (fst pair))

222 | pair <- political_parties

223]

224 let unions_triples1 =

225 concat

226 [generate_triple

227 (uri meta_data)

228 "<http://knowledgebooks.com/schema/containsTradeUnionDbPediaLink>"

229 (snd pair)

230 | pair <- trade_unions

231]

232 let unions_triples2 =

233 concat

234 [generate_triple

235 (snd pair)

236 "<http://knowledgebooks.com/schema/aboutTradeUnionName>"

237 (make_literal (fst pair))

238 | pair <- trade_unions

239]

240 let universities_triples1 =

241 concat

242 [generate_triple

243 (uri meta_data)

244 "<http://knowledgebooks.com/schema/containsUniversityDbPediaLink>"

245 (snd pair)

246 | pair <- universities

247]

248 let universities_triples2 =

249 concat

250 [generate_triple

251 (snd pair)

252 "<http://knowledgebooks.com/schema/aboutTradeUnionName>"

253 (make_literal (fst pair))

254 | pair <- universities

255]

256 return $

257 concat

258 [people_triples1

Knowledge Graph Creator 145

259 , people_triples2

260 , company_triples1

261 , company_triples2

262 , country_triples1

263 , country_triples2

264 , city_triples1

265 , city_triples2

266 , bnetworks_triples1

267 , bnetworks_triples2

268 , pparties_triples1

269 , pparties_triples2

270 , unions_triples1

271 , unions_triples2

272 , universities_triples1

273 , universities_triples2

274 , category_triples

275 , summary_triples

276]

The code in this file could be shortened but having repetitive code for each entity type hopefully
makes it easier for you to understand how it works.

Utility Code for Generating Cypher Input Data for
Neo4J

Nowwe will generate Neo4J Cypher data. In order to keep the implementation simple, both the RDF
and Cypher generation code starts with raw text and performs the NLP analysis to find entities. This
example could be refactored to perform the NLP analysis just one time but in practice you will likely
be working with either RDF or NEO4J and so you will probably extract just the code you need from
this example (i.e., either the RDF or Cypher generation code).

Before we look at the code, let’s start with a few lines of generated Neo4J Cypher import data:

Knowledge Graph Creator 146

CREATE (newsshop_com_june_z902_html_news)-[:ContainsCompanyDbPediaLink]->(Wall_Stree\

t_Journal)

CREATE (Canada:Entity {name:"Canada", uri:"<http://dbpedia.org/resource/Canada>"})

CREATE (newsshop_com_june_z902_html_news)-[:ContainsCountryDbPediaLink]->(Canada)

CREATE (summary_of_abcnews_go_com_US_violent_long_lasting_tornadoes_threaten_oklahom\

a_texas_storyid63146361:Summary {name:"summary_of_abcnews_go_com_US_violent_long_las\

ting_tornadoes_threaten_oklahoma_texas_storyid63146361", uri:"<https://abcnews.go.co\

m/US/violent-long-lasting-tornadoes-threaten-oklahoma-texas/story?id=63146361>", sum\

mary:"Part of the system that delivered severe weather to the central U.S. over the \

weekend is moving into the Northeast today, producing strong to severe storms -- dam\

aging winds, hail or isolated tornadoes can't be ruled out. Severe weather is foreca\

st to continue on Tuesday, with the western storm moving east into the Midwest and p\

arts of the mid-Mississippi Valley."})

The following listing shows the file src/sw/GenNeo4jCypher.hs. This code is very similar to the
code for generating RDF in the last section. The same notes for adding your own new entity notes
in the last section are also relevant here.

Notice that we import in line 29 the map category_to_uri_map that was defined in the last section.
The function neo4j_category_node_defs defined in lines 35 to 43 creates category graph nodes
for each category in the map category_to_uri_map. These nodes will be referenced by graph
nodes created in the functions create_neo4j_node, create_neo4j_lin, create_summary_node,
and create_entity_node. The top level function is textToCypher that is similar to the function
textToTriples in the last section.

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module GenNeo4jCypher

4 (textToCypher

5 , neo4j_category_node_defs

6) where

7

8 import Categorize (bestCategories)

9 import Data.List (isInfixOf)

10 import Data.Char (toLower)

11 import Data.String.Utils (replace)

12 import Entities

13 (broadcastNetworkNames

14 , cityNames

15 , companyNames

16 , countryNames

17 , peopleNames

18 , politicalPartyNames

Knowledge Graph Creator 147

19 , tradeUnionNames

20 , universityNames

21)

22 import FileUtils

23 (MyMeta

24 , filePathToString

25 , filePathToWordTokens

26 , readMetaFile

27 , uri

28)

29 import GenTriples (category_to_uri_map)

30 import Summarize (summarize, summarizeS)

31

32 import qualified Data.Map as M

33 import Data.Maybe (fromMaybe)

34 import Database.SQLite.Simple

35

36 -- for debug:

37 import Data.Typeable (typeOf)

38

39 neo4j_category_node_defs :: [Char]

40 neo4j_category_node_defs =

41 replace

42 "/"

43 "_"

44 $ concat

45 ["CREATE (" ++ c ++ ":CategoryType {name:\"" ++ c ++ "\"})\n"

46 | c <- M.keys category_to_uri_map

47]

48

49 uri_from_category :: p -> p

50 uri_from_category s = s -- might want the full version from GenTriples

51

52 repl :: Char -> Char

53 repl '-' = '_'

54 repl '/' = '_'

55 repl '.' = '_'

56 repl c = c

57

58 filterChars :: [Char] -> [Char]

59 filterChars = filter (\c -> c /= '?' && c /= '=' && c /= '<' && c /= '>')

60

61 create_neo4j_node :: [Char] -> ([Char], [Char])

Knowledge Graph Creator 148

62 create_neo4j_node uri =

63 let name =

64 (map repl (filterChars

65 (replace "https://" "" (replace "http://" "" uri)))) ++

66 "_" ++

67 (map toLower node_type)

68 node_type =

69 if isInfixOf "dbpedia" uri

70 then "DbPedia"

71 else "News"

72 new_node =

73 "CREATE (" ++

74 name ++ ":" ++

75 node_type ++ " {name:\"" ++ (replace " " "_" name) ++

76 "\", uri:\"" ++ uri ++ "\"})\n"

77 in (name, new_node)

78

79 create_neo4j_link :: [Char] -> [Char] -> [Char] -> [Char]

80 create_neo4j_link node1 linkName node2 =

81 "CREATE (" ++ node1 ++ ")-[:" ++ linkName ++ "]->(" ++ node2 ++ ")\n"

82

83 create_summary_node :: [Char] -> [Char] -> [Char]

84 create_summary_node uri summary =

85 let name =

86 "summary_of_" ++

87 (map repl $

88 filterChars (replace "https://" "" (replace "http://" "" uri)))

89 s1 = "CREATE (" ++ name ++ ":Summary {name:\"" ++ name ++ "\", uri:\""

90 s2 = uri ++ "\", summary:\"" ++ summary ++ "\"})\n"

91 in s1 ++ s2

92

93 create_entity_node :: ([Char], [Char]) -> [Char]

94 create_entity_node entity_pair =

95 "CREATE (" ++ (replace " " "_" (fst entity_pair)) ++

96 ":Entity {name:\"" ++ (fst entity_pair) ++ "\", uri:\"" ++

97 (snd entity_pair) ++ "\"})\n"

98

99 create_contains_entity :: [Char] -> [Char] -> ([Char], [Char]) -> [Char]

100 create_contains_entity relation_name source_uri entity_pair =

101 let new_person_node = create_entity_node entity_pair

102 new_link = create_neo4j_link source_uri

103 relation_name

104 (replace " " "_" (fst entity_pair))

Knowledge Graph Creator 149

105 in

106 (new_person_node ++ new_link)

107

108 entity_node_helper :: [Char] -> [Char] -> [([Char], [Char])] -> [Char]

109 entity_node_helper relation_name node_name entity_list =

110 concat [create_contains_entity

111 relation_name node_name entity | entity <- entity_list]

112

113 textToCypher :: FilePath -> [Char] -> IO [Char]

114 textToCypher file_path meta_file_path = do

115 let prelude_nodes = neo4j_category_node_defs

116 putStrLn "+++++++++++++++++ prelude node defs:"

117 print prelude_nodes

118 word_tokens <- filePathToWordTokens file_path

119 contents <- filePathToString file_path

120 putStrLn $ "** contents:\n" ++ contents ++ "\n"

121 meta_data <- readMetaFile meta_file_path

122 putStrLn "++ meta_data:"

123 print meta_data

124 let people = peopleNames word_tokens

125 let companies = companyNames word_tokens

126 putStrLn "^^^^ companies:"

127 print companies

128 let countries = countryNames word_tokens

129 let cities = cityNames word_tokens

130 let broadcast_networks = broadcastNetworkNames word_tokens

131 let political_parties = politicalPartyNames word_tokens

132 let trade_unions = tradeUnionNames word_tokens

133 let universities = universityNames word_tokens

134 let a_summary = summarizeS contents

135 let the_categories = bestCategories word_tokens

136 let filtered_categories =

137 map (uri_from_category . fst) $

138 filter (\(name, value) -> value > 0.3) the_categories

139 putStrLn "\nfiltered_categories:"

140 print filtered_categories

141 let (node1_name, node1) = create_neo4j_node (uri meta_data)

142 let summary1 = create_summary_node (uri meta_data) a_summary

143 let category1 =

144 concat

145 [create_neo4j_link node1_name "Category" cat

146 | cat <- filtered_categories

147]

Knowledge Graph Creator 150

148 let pp = entity_node_helper "ContainsPersonDbPediaLink" node1_name people

149 let cmpny = entity_node_helper "ContainsCompanyDbPediaLink" node1_name companies

150 let cntry = entity_node_helper "ContainsCountryDbPediaLink" node1_name countries

151 let citys = entity_node_helper "ContainsCityDbPediaLink" node1_name cities

152 let bnet = entity_node_helper "ContainsBroadcastNetworkDbPediaLink"

153 node1_name broadcast_networks

154 let ppart = entity_node_helper "ContainsPoliticalPartyDbPediaLink"

155 node1_name political_parties

156 let tunion = entity_node_helper "ContainsTradeUnionDbPediaLink"

157 node1_name trade_unions

158 let uni = entity_node_helper "ContainsUniversityDbPediaLink"

159 node1_name universities

160 return $ concat [node1, summary1, category1, pp, cmpny, cntry, citys, bnet,

161 ppart, tunion, uni]

Because the top level function is textToCypher returns a string wrapped in a monad, it is possible to
add “debug”” print statements in textToCypher. I left many such debug statements in the example
code to help you understand the data that is being operated on. I leave it as an exercise to remove
these print statements if you use this code in your own projects and no longer need to see the debug
output.

Top Level API Code for Handling Knowledge Graph
Data Generation

So far we have looked at processing command line arguments and processing individual input
files. Now we look at higher level utility APIs for processing an entire directory of input files. The
following listing shows the file API.hs that contains the two top level helper functions we saw in
app/Main.hs.

The functions processFilesToRdf and processFilesToNeo4j both have the function type signature
FilePath->FilePath->IO() and are very similar except for calling different helper functions to
generate RDF triples or Cypher input graph data:

Knowledge Graph Creator 151

1 module Apis

2 (processFilesToRdf

3 , processFilesToNeo4j

4) where

5

6 import FileUtils

7 import GenNeo4jCypher

8 import GenTriples (textToTriples)

9

10 import qualified Database.SQLite.Simple as SQL

11

12 import Control.Monad (mapM)

13 import Data.String.Utils (replace)

14 import System.Directory (getDirectoryContents)

15

16 import Data.Typeable (typeOf)

17

18 processFilesToRdf :: FilePath -> FilePath -> IO ()

19 processFilesToRdf dirPath outputRdfFilePath = do

20 files <- getDirectoryContents dirPath :: IO [FilePath]

21 let filtered_files = filter isTextFile files

22 let full_paths = [dirPath ++ "/" ++ fn | fn <- filtered_files]

23 putStrLn "full_paths:"

24 print full_paths

25 let r =

26 [textToTriples fp1 (replace ".txt" ".meta" fp1)

27 |

28 fp1 <- full_paths] :: [IO [Char]]

29 tripleL <-

30 mapM (\fp -> textToTriples fp (replace ".txt" ".meta" fp)) full_paths

31 let tripleS = concat tripleL

32 putStrLn tripleS

33 writeFile outputRdfFilePath tripleS

34

35 processFilesToNeo4j :: FilePath -> FilePath -> IO ()

36 processFilesToNeo4j dirPath outputRdfFilePath = do

37 files <- getDirectoryContents dirPath :: IO [FilePath]

38 let filtered_files = filter isTextFile files

39 let full_paths = [dirPath ++ "/" ++ fn | fn <- filtered_files]

40 putStrLn "full_paths:"

41 print full_paths

42 let prelude_node_defs = neo4j_category_node_defs

43 putStrLn

Knowledge Graph Creator 152

44 ("+++++ type of prelude_node_defs is: " ++

45 (show (typeOf prelude_node_defs)))

46 print prelude_node_defs

47 cypher_dataL <-

48 mapM (\fp -> textToCypher fp (replace ".txt" ".meta" fp)) full_paths

49 let cypher_dataS = concat cypher_dataL

50 putStrLn cypher_dataS

51 writeFile outputRdfFilePath $ prelude_node_defs ++ cypher_dataS

Since both of these functions return IO monads, I could add “debug” print statements that should be
helpful in understanding the data being operated on.

Wrapup for Automating the Creation of Knowledge
Graphs

The code in this chapter will provide you with a good start for creating both test knowledge graphs
and for generating data for production. In practice, generated data should be reviewed before use
and additional data manually generated as needed. It is good practice to document required manual
changes because this documentation can be used in the requirements for updating the code in this
chapter to more closely match your knowledge graph requirements.

Hybrid Haskell and Python Natural
Language Processing
Here we will write a Haskell client for using a Natural Language Processing (NLP) server written
in Python. There is some common material in this chapter and the next chapter Hybrid Haskell and
Python For Coreference Resolution because I wanted both chapters to be self contained.

Example Use of the Haskell NLP Client

Before learning how to use the Python NLP server code and understand the code for the Haskell
client code, let’s look at an example of running the client code so you understand the type of
processing that we are performing:

1 $ stack build --fast --exec HybridHaskellPythonNlp-exe

2 Enter text (all on one line)

3 John Smith went to Mexico to see the Pepsi plant

4 response from NLP server:

5 NlpResponse {entities = ["John Smith/PERSON","Mexico/GPE","Pepsi/ORG"],

6 tokens = ["John","Smith","went","to","Mexico","to","see","the","Pepsi",\

7 "plant"]}

8 Enter text (all on one line)

Notice on line 5 that each of the three entities is tagged with the entity type. GPE is the tag for a
country and the tag ORG can refer to an entity that is a company or a non-profit organization.

There is some overlap in functionality between the Python SpaCy NLP library and my pure Haskell
code in the NLP Tools chapter. SpaCy has the advantage of using state of the art deep learning
models.

Setting up the Python NLP Server

I assume that you have some familiaritywith using Python. If not, youwill still be able to follow these
directions assuming that you have the utilities pip, and python installed. I recommend installing
Python and Pip using Anaconda⁴¹.

⁴¹https://anaconda.org/anaconda/conda

https://anaconda.org/anaconda/conda
https://anaconda.org/anaconda/conda

Hybrid Haskell and Python Natural Language Processing 154

The server code is in the subdirectoryHybridHaskellPythonNlp/python_spacy_nlp_serverwhere
you will work when performing a one time initialization. After the server is installed you can then
run it from the command line from any directory on your laptop.

I recommend that you use virtual Python environments when using Python applications to separate
the dependencies required for each application or development project. Here I assume that you are
running in a Python version 3.6 (or higher) version environment. First install the dependencies:

1 pip install -U spacy

2 python -m spacy download en

3 pip install falcon

Then change directory to the subdirectory HybridHaskellPythonNlp/python_spacy_nlp_server
and install the NLP server:

1 cd HybridHaskellPythonNlp/python_spacy_nlp_server

2 python setup.py install

Once you install the server, you can run it from any directory on your laptop or server using:

1 spacynlpserver

I use deep learning models written in Python using TensorFlow or PyTorch in applications I write
in Haskell or Common Lisp. While it is possible to directly embed models in Haskell and Common
Lisp, I find it much easier and developer friendly to wrap deep learning models I use a REST services
as I have done here. Often deep learning models only require about a gigabyte of memory and
using pre-trained models has lightweight CPU resource needs so while I am developing on my
laptop I might have two or three models running and available as wrapped REST services. For
production, I configure both the Python services and my Haskell and Common Lisp applications
to start automatically on system startup.

This is not a Python programming book and I will not discuss the simple Python wrapping code but
if you are also a Python developer you can easily read and understand the code.

Understanding the Haskell NLP Client Code

The Python server returns JSON file. We saw earlier the use of the Haskell aeson library for parsing
JSON data stored as a string into Haskell native data. We also used thewreq library to access remote
web services. We use both of these libraries here:

Hybrid Haskell and Python Natural Language Processing 155

1 {-# LANGUAGE OverloadedStrings #-}

2 {-# LANGUAGE DeriveDataTypeable #-}

3

4 -- reference: http://www.serpentine.com/wreq/tutorial.html

5 module NlpWebClient

6 (nlpClient, NlpResponse

7) where

8

9 import Control.Lens

10 import Data.ByteString.Lazy.Char8 (unpack)

11 import Data.Maybe (fromJust)

12 import Network.URI.Encode as E -- encode is also in Data.Aeson

13 import Network.Wreq

14

15 import Text.JSON.Generic

16

17 data NlpResponse = NlpResponse {entities::[String], tokens::[String]} deriving (Show\

18 , Data, Typeable)

19

20 base_url = "http://127.0.0.1:8008?text="

21

22 nlpClient :: [Char] -> IO NlpResponse

23 nlpClient query = do

24 putStrLn $ "\n\n*** Processing " ++ query

25 r <- get $ base_url ++ (E.encode query) ++ "&no_detail=1"

26 let ret = (decodeJSON (unpack (fromJust (r ^? responseBody)))) :: NlpResponse

27 return ret

The main command line program for using the client library:

module Main where

import NlpWebClient

main :: IO ()

main = do

putStrLn "Enter text (all on one line)"

s <- getLine

response <- (nlpClient s) :: IO NlpResponse

putStr "response from NLP server:\n"

putStrLn $ show response

main

Hybrid Haskell and Python Natural Language Processing 156

Wrapup for Using the Python SpaCy NLP Service

The example in this chapter shows a technique that I often use for using libraries and frameworks
that are not written in Haskell: wrap the service implemented in another programming language
is a REST web service. While it is possible to use a foreign function interface (FFI) to call out to
code written in other languages I find for my own work that I prefer calling out to a separate
service especially when I run other services on remote servers so I do not need to run them on
my development laptop. For production it is also useful to be able to easily scale horizontally across
servers.

Hybrid Haskell and Python For
Coreference Resolution
Here we will write a Haskell client for using a server written in Python that performs coreference
resolution (more on this later). There is some common material in this chapter and the last chapter
Hybrid Haskell and Python Natural Language Processing because I wanted both chapters to be self
contained. The code for this chapter can be found in the subdirectory HybridHaskellPythonCore-
fAnaphoraResolution.

Coreference resolution is also called anaphora resolution and is the process for replacing pronouns
in text with the original nouns, proper nouns, or noun phrases that the pronouns refer to.

Before discussing setting up the Python library for performing coreference analysis and the Haskell
client, let’s run the client so you can see and understand anaphora resolution:

1 $ stack build --fast --exec HybridHaskellPythonCorefAnaphoraResolution-exe

2 Enter text (all on one line)

3 John Smith drove a car. He liked it.

4

5

6 *** Processing John%20Smith%20drove%20a%20car.%20He%20liked%20it.

7 status code: 200

8 content type: Just "application/text"

9 response body: John Smith drove a car. John Smith liked a car.

10 response from coreference server: "John Smith drove a car. John Smith liked a car."

11 Enter text (all on one line)

In this example notice that the words “He” and “it” in the second sentence are replaced by “John
Smith” and “a car” which makes it easier to write information extraction applications.

Installing the Python Coreference Server

I recommend that you use virtual Python environments when using Python applications to separate
the dependencies required for each application or development project. Here I assume that you
are running in a Python version 3.6 (or higher) version environment. If you want to install
the neuralcoref library using pip you must use and older version of spaCy. First install the
dependencies:

Hybrid Haskell and Python For Coreference Resolution 158

1 pip install spacy==2.1.0

2 pip install neuralcoref

3 pip install falcon

As I write this chapter the neuralcoref model and library require a slightly older version of spaCy
(the current latest version is 2.3.0).

If you want to instead use the latest version of spaCy then install neuralcoref from source:

1 pip install spacy

2 git clone https://github.com/huggingface/neuralcoref.git

3 cd neuralcoref

4 python setup.py install

5 pip install falcon

After installing all dependencies, then change directory to the subdirectory python_coreference_-
anaphora_resolution_server and install the coref server:

1 cd python_coreference_anaphora_resolution_server

2 python setup.py install

Once you install the server, you can run it from any directory on your laptop or server using:

1 corefserver

I use deep learning models written in Python using TensorFlow or PyTorch in applications I write
in Haskell or Common Lisp. While it is possible to directly embed models in Haskell and Common
Lisp, I find it much easier and developer friendly to wrap deep learning models I use a REST services
as I have done here. Often deep learning models only require about a gigabyte of memory and
using pre-trained models has lightweight CPU resource needs so while I am developing on my
laptop I might have two or three models running and available as wrapped REST services. For
production, I configure both the Python services and my Haskell and Common Lisp applications
to start automatically on system startup.

This is not a Python programming book and I will not discuss the simple Python wrapping code but
if you are also a Python developer you can easily read and understand the code.

Understanding the Haskell Coreference Client Code

The code for the library for fetching data from the Python service is in the subdirectory src in the
file CorefWebClient.hs.

We will use techniques for accessing remote web services using the wreq library and using the
lens library for accessing the response from the Python server. Here the response is plain text with
pronouns replaced by the nouns that they represent. We don’t use the aeson library to parse JSON
data as we did in the previous chapter.

Hybrid Haskell and Python For Coreference Resolution 159

1 {-# LANGUAGE OverloadedStrings #-}

2

3 -- reference: http://www.serpentine.com/wreq/tutorial.html

4 module CorefWebClient

5 (corefClient

6) where

7

8 import Control.Lens

9 import Data.ByteString.Lazy.Char8 (unpack)

10 import Data.Maybe (fromJust)

11 import Network.URI.Encode (encode)

12 import Network.Wreq

13

14 base_url = "http://127.0.0.1:8000?text="

15

16 corefClient :: [Char] -> IO [Char]

17 corefClient query = do

18 putStrLn $ "\n\n*** Processing " ++ (encode query)

19 r <- get $ base_url ++ (encode query) ++ "&no_detail=1"

20 putStrLn $ "status code: " ++ (show (r ^. responseStatus . statusCode))

21 putStrLn $ "content type: " ++ (show (r ^? responseHeader "Content-Type"))

22 putStrLn $ "response body: " ++ (unpack (fromJust (r ^? responseBody)))

23 return $ unpack (fromJust (r ^? responseBody))

The code for the main application is in the subdirectory app in the fileMain.hs.

1 module Main where

2

3 import CorefWebClient

4

5 main :: IO ()

6 main = do

7 putStrLn "Enter text (all on one line)"

8 s <- getLine

9 response <- corefClient s

10 putStr "response from coreference server:\t"

11 putStrLn $ show response

12 main

Hybrid Haskell and Python For Coreference Resolution 160

Wrapup for Using the Python Coreference NLP Service

The example in this chapter is fairly simple but shows a technique that I often use for using
libraries and frameworks that are not written in Haskell: wrap the service implemented in another
programming language is a REST web service. While it is possible to use a foreign function interface
(FFI) to call out to code written in other languages I find for my own work that I prefer calling out
to a separate service, especially when I run other services on remote servers so I do not need to run
them onmy development laptop. For production it is also useful to be able to easily scale horizontally
across servers.

Book Wrap Up
As I mentioned in the Preface, I had a slow start learning Haskell because I tried to learn too much
at one time. In this book I have attempted to show you a subset of Haskell that is sufficient to write
interesting programs - a gentle introduction.

Haskell beginners often dislike the large error listings from the compiler. The correct attitude is to
recognize that these error messages are there to help you. That is easier said than done, but try to be
happy when the compiler points out an error - in the long run I find using Haskell’s fussy compiler
saves me time and lets me refactor code knowing that if I miss something in my refactoring the
compiler will immediately let me know what needs to be fixed.

The other thing that I hope you learned working through this book is how effective repl based
programming is. Most code I write, unless it is very trivial, starts its life in a GHCi repl. When you
are working with somene else’s Haskell code it is similarly useful to have their code loaded in a repl
as you read.

I have been programming professionally for forty years and I use many programming languages.
Once I worked my way through early difficulties using Haskell it has become a favorite program-
ming language. I hope that you enjoy Haskell development as much as I do.

Appendix A - Haskell Tools Setup
I recommend that if you are new to Haskell that you at least do a minimal installation of stack and
work through the first chapter using an interactive REPL. After experimenting with the REPL then
do please come back to Appendix A and install support for the editor of your choice (or an IDE) and
hlint.

stack

I assume that you have the Haskell package manager stack installed. If you have not installed stack
yet please follow these directions⁴².

After installing stack and running it you will have a directory “.stack” in your home directory
where stack will keep compiled libraries and configuration data. You will want to create a file
“∼/.stack/config.yaml” with contents similar to my stack configuration file:

1 templates:

2 params:

3 author-email: markw@markwatson.com

4 author-name: Mark Watson

5 category: dev

6 copyright: Copyright 2016 Mark Watson. All rights reserved

7 github-username: mark-watson

Replace my name and email address with yours. You might also want to install the package manager
Cabal and the “lint” program hlint:

$ stack install cabal-install

$ stack install hlint

These installs might take a while so go outside for ten minutes and get some fresh air.

You should get in the habit of running hlint on your code and consider trying to remove all or at
least most warnings. You can customize the types of warnings hlint shows: read the documentation
for hlint⁴³.

⁴²http://docs.haskellstack.org/en/stable/README.html
⁴³https://github.com/ndmitchell/hlint#readme

http://docs.haskellstack.org/en/stable/README.html
https://github.com/ndmitchell/hlint#readme
https://github.com/ndmitchell/hlint#readme
http://docs.haskellstack.org/en/stable/README.html
https://github.com/ndmitchell/hlint#readme

Appendix A - Haskell Tools Setup 163

Creating a New Stack Project

I have already created stack projects for the examples in this book. When you have worked through
them, then please refer to the stack documentation for creating projects⁴⁴.

Emacs Setup

There are several good alternatives to using the Emacs editor:

• GEdit on Linux
• TextMate on OS X
• IntelliJ with the Haskell plugin (all platforms)

I use all three of these alternatives on occasion, but Emacs with haskell-mode is my favorite
environment. There are instructions for adding haskell-mode to Emacs on the project home page on
github⁴⁵. If you follow these instructions you will have syntax hiliting and Emacs will understand
Haskell indentation rules.

Do you want more of an IDE-like Development
Environment?

I recommend and use the Intero Emacs package⁴⁶ to get auto completions and real time syntax error
warnings. Intero is designed to work with stack.

I add the following to the bottom of my .emacs file:

(add-hook ‘haskell-mode-hook ‘intero-mode)

and if Intero is too “heavy weight” for my current project, then I comment out the add-hook
expression. Intero can increase the startup time for Emacs for editing Haskell files. That said, I
almost always keep Intero enabled in my Emacs environment.

hlint

hlint is a wonderful tool for refining your knowledge and use of the Haskell language. After writing
new code and checking that it works, then run hlint for suggestions on how to improve your code.

Install hlint using:

⁴⁴https://docs.haskellstack.org/en/stable/README/#start-your-new-project
⁴⁵https://github.com/haskell/haskell-mode
⁴⁶https://commercialhaskell.github.io/intero/

https://docs.haskellstack.org/en/stable/README/#start-your-new-project
https://github.com/haskell/haskell-mode
https://github.com/haskell/haskell-mode
https://commercialhaskell.github.io/intero/
https://docs.haskellstack.org/en/stable/README/#start-your-new-project
https://github.com/haskell/haskell-mode
https://commercialhaskell.github.io/intero/

Appendix A - Haskell Tools Setup 164

1 stack install hlint

	Table of Contents
	Cover Material, Copyright, and License
	Preface
	Additional Material in the Second Edition
	A Request from the Author
	Structure of the Book
	Code Examples
	Functional Programming Requires a Different Mind Set
	eBooks Are Living Documents
	Setting Up Your Development Environment
	Why Haskell?
	Enjoy Yourself
	Acknowledgements

	Section 1 - Tutorial
	Tutorial on Pure Haskell Programming
	Interactive GHCi Shell
	Introduction to Haskell Types
	Functions Are Pure
	Using Parenthesis or the Special $ Character and Operator Precedence
	Lazy Evaluation
	Understanding List Comprehensions
	Haskell Rules for Indenting Code
	Understanding let and where
	Conditional do Expressions and Anonymous Functions
	Maps
	Sets
	More on Functions
	Comments on Dealing With Immutable Data and How to Structure Programs
	Error Handling
	Testing Haskell Code
	Pure Haskell Wrap Up

	Tutorial on Impure Haskell Programming
	Hello IO () Monad
	A Note About >> and >>= Operators
	Console IO Example with Stack Configuration
	File IO
	Error Handling in Impure Code
	Network IO
	A Haskell Game Loop that Maintains State Functionally
	A More Detailed Look at Monads
	Using Applicative Operators <$> and <*>: Finding Common Words in Files
	List Comprehensions Using the do Notation
	Dealing With Time
	Using Debug.Trace
	Wrap Up

	Section 2 - Cookbook
	Text Processing
	CSV Spreadsheet Files
	JSON Data
	Cleaning Natural Language Text

	Natural Language Processing Tools
	Resolve Entities in Text to DBPedia URIs
	Bag of Words Classification Model
	Text Summarization
	Part of Speech Tagging
	Natural Language Processing Wrap Up

	Linked Data and the Semantic Web
	The SPARQL Query Language
	A Haskell HTTP Based SPARQL Client
	Querying Remote SPARQL Endpoints
	Linked Data and Semantic Web Wrap Up

	Web Scraping
	Using the Wreq Library
	Using the HandsomeSoup Library for Parsing HTML
	Web Scraping Wrap Up

	Using Relational Databases
	Database Access for Sqlite
	Database Access for Postgres

	Haskell Program to Play the Blackjack Card Game
	Section 3 - Larger Projects
	Knowledge Graph Creator
	Code Layout For the KGCreator Project and strategies for sharing Haskell code between projects
	The Main Event: Detecting Entities in Text
	Utility Code for Generating RDF
	Utility Code for Generating Cypher Input Data for Neo4J
	Top Level API Code for Handling Knowledge Graph Data Generation
	Wrapup for Automating the Creation of Knowledge Graphs

	Hybrid Haskell and Python Natural Language Processing
	Example Use of the Haskell NLP Client
	Setting up the Python NLP Server
	Understanding the Haskell NLP Client Code
	Wrapup for Using the Python SpaCy NLP Service

	Hybrid Haskell and Python For Coreference Resolution
	Installing the Python Coreference Server
	Understanding the Haskell Coreference Client Code
	Wrapup for Using the Python Coreference NLP Service

	Book Wrap Up
	Appendix A - Haskell Tools Setup
	stack
	Emacs Setup
	Do you want more of an IDE-like Development Environment?
	hlint

