

Artificial Intelligence Using Swift
CoreML, NLP, Deep Learning, Semantic Web and Linked
Data, Knowledge Graphs, Knowledge Representation

Mark Watson

This book is available at https://leanpub.com/SwiftAI

This version was published on 2025-06-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2020 - 2025 Mark Watson

https://leanpub.com/SwiftAI
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Cover Material, Copyright, and License . 1

Preface . 2
Notes on the new June 2025 Book Edition . 2
Requests from the Author . 2
Notes on the Second Edition . 2
Book Structure . 3
Requests from the Author . 3
Parts of this Book are Specific for macOS and iOS, with Some Support for Linux 4
Code for this Book . 4
Author’s Background . 5
Cover Art . 5
CoreML Libraries Used in this Book . 5
Swift 3rd Party Libraries . 6
Acknowledgements . 6

Part 1: Introduction and Short Examples . 7

Setting Up Swift for Command Line Development . 8
Installing Swift Packages . 8
Creating Swift Packages . 9
Accessing Libraries that You Write in Other Projects . 9

Background Information for Writing Swift Command Line Utilities 13
Using Shell Processes . 13
FileIO Examples . 16
Swift REPL . 18

Web Scraping . 20
Running in the Swift REPL . 24

Part 2: Large Language Models . 26

Using the OpenAI LLM APIs . 27
Core Architecture . 30
Key Features . 30

CONTENTS

Technical Implementation Details . 31
Running Tests . 32

Using APIs for Anthropic Claude LLMs . 34
Running the examples . 34

Using Groq APIs to Open Weight LLM Models . 37
Implementation of a Client Library for the Groq APIs . 37
Running the Tests . 41

Using the xAI Grok LLM . 43
Implementation of a Grok API Client Library . 43

Using Ollama to Run Local LLMs . 48
Running the Ollama Service . 48
Ollama Wrap Up . 50

Using Apple’s MLX Framework to Run Local LLMs . 51
MLX Framework History . 51
MLX Resources on GitHub . 51
Example Application for MLX Swift Examples Repository . 52
Analysis of Swift and SwiftUI Code in the LLMEval Application 55

Part 3: Apple’s CoreML and NLP Libraries . 62

Deep Learning Introduction . 63
Simple Multi-layer Perceptron Neural Networks . 64
Deep Learning . 66

Natural Language Processing Using Apple’s Natural Language Framework 67
Using Apple’s NaturalLanguage Swift Library . 67
A simple Wrapper Library for Apple’s NLP Models . 67

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings
Vector Database . 71
Extending the String Class . 71
Implementing a Local Vector Database for Document Embeddings 72
Create Local Embeddings Vectors From Local Text Files With OpenAI GPT APIs 74
Using Local Embeddings Vector Database With OpenAI GPT APIs 76
Wrap Up for Using Local Embeddings Vector Database to Enhance the Use of GPT3 APIs

With Local Documents . 79

Part 4: Knowledge Representation and Data Acquisition . 80

Linked Data and the Semantic Web . 81
Understanding the Resource Description Framework (RDF) 84

CONTENTS

Frequently Used Resource Namespaces . 84
Understanding the SPARQL Query Language . 86
Semantic Web and Linked Data Wrap Up . 86

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 87
Screen Shots of macOS Application . 87
Application Code Listings . 90

Part 5: Apple Intelligence . 108
Developers Can Now Weave Apple Intelligence Directly Into Their Apps 108
Key Advantages for Developers: . 108

Using Apple Intelligence’s Default System Model To Build a Chat Command Line Tool . . 109

Using Apple Intelligence’s Default SystemModel To Build a Coding Assistant Command
Line Tool . 113

Book Wrap Up . 117

Cover Material, Copyright, and
License
Copyright 2022-2025 Mark Watson. All rights reserved. This book may be shared using the Creative
Commons “share and share alike, no modifications, no commercial reuse” license.

This eBook will be updated occasionally so please periodically check the leanpub.com web page for
this book¹ for updates.

The first edition was released spring of 2022. The second edition was released December 2024. The
third edition was released June 2025.

If you would like to support my work please consider purchasing my books on Leanpub² and star
my git repositories that you find useful on GitHub³. You can also interact with me on social media
on Mastodon⁴ and Twitter⁵.

¹https://leanpub.com/SwiftAI
²https://leanpub.com/u/markwatson
³https://github.com/mark-watson?tab=repositories&q=&type=public
⁴https://mastodon.social/@mark_watson
⁵https://twitter.com/mark_l_watson

https://leanpub.com/SwiftAI
https://leanpub.com/SwiftAI
https://leanpub.com/u/markwatson
https://github.com/mark-watson?tab=repositories&q=&type=public
https://mastodon.social/@mark_watson
https://twitter.com/mark_l_watson
https://leanpub.com/SwiftAI
https://leanpub.com/u/markwatson
https://github.com/mark-watson?tab=repositories&q=&type=public
https://mastodon.social/@mark_watson
https://twitter.com/mark_l_watson

Preface
Why use Swift for hacking AI? Common Lisp has been my go-to language for artificial intelligence
development and research since 1982. The transition to using Swift was a transition motivated by
practical aspects of Swift and the Swift ecosystem.

Notes on the new June 2025 Book Edition

With the release of new Apple Intelligence tooling available for macOS26, iPadOS26, and iOS26 I
have added a new Part 5 at the end of this book covering several practical AI use cases with new
examples.

Requests from the Author

This book will always be available to read free online at https://leanpub.com/SwiftAI/read⁶.

That said, I appreciate it when readers purchase my books because the income enables me to spend
more time writing.

Hire the Author as a Consultant

I am available for short consulting projects. Please see https://markwatson.com⁷.

You can also interact with me on social media on Mastodon⁸ and Twitter⁹.

Notes on the Second Edition

The second edition of this book deletes some of the old material and adds two new themes:

• A new Part II of the book that covers Large Language Models (LLMS). We will use both
commercial LLM APIs and running local LLMs using Ollama and Apple’s MLX framework.

• Several examples from the first edition are augmented using LLMs.
• As much as possible, I support some of the book examples as Swift Playgrounds, usable on
iPads and Macs.

⁶https://leanpub.com/SwiftAI/read
⁷https://markwatson.com
⁸https://mastodon.social/@mark_watson
⁹https://twitter.com/mark_l_watson

https://leanpub.com/SwiftAI/read
https://markwatson.com/
https://mastodon.social/@mark_watson
https://twitter.com/mark_l_watson
https://leanpub.com/SwiftAI/read
https://markwatson.com/
https://mastodon.social/@mark_watson
https://twitter.com/mark_l_watson

Preface 3

Book Structure

This book starts out slowly in Part I with simple examples which I wrote showing how to access the
Swift library packages on GitHub, tips on writing Swift command line apps.

Part II will show you how to effectively integrate LLMs into your own applications.

Part III starts with a simple example using web scraping and commercial web search APIs. We then
work through examples integrating web search with LLMs and then show how we can modify web
scraping applications to specifically process topics and have better control of outputing structured
data.

We then proceed to using Apple’s CoreML for Natural Language Processing (NLP), training
and using your own CoreML models, using OpenAI’s GPT-4 APIs, and finally several semantic
web/linked data examples. The book ends with the example macOS application Knowledge Graph
Navigator. It is not my intention to cover in detail the use of SwiftUI for building iOS/iPadOS/macOS
applications but I thought my readers might enjoy seeing several of the techniques covered in the
book integrated into an example app.

I have used Common Lisp for AI research projects and for AI product development and delivery
since 1982. There is something special about using a language for almost forty years. I now find
Swift a compelling choice for several reasons:

• Flexible language with many features I rely on like supporting closures and an interactive
functional programming style.

• Built-in support for deep learning neural network models for natural language processing,
predictive models, etc.

• First class support for iOS and macOS development.
• Good support for server side applications hosted on Linux.

Swift is a programmer-efficient language: code is concise and easy to read, and high quality libraries
from Apple and third parties mean that often there is less code to write. I will share with you
my Swift development work flow that combines interactive development of code in playgrounds,
development of higher level libraries in text only or command line applications, and my general
strategy for writing iOS and macOS applications after low level and intermediate code is written
and debugged.

Requests from the Author

This book will always be available to read free online at https://leanpub.com/SwiftAI/read¹⁰.

That said, I appreciate it when readers purchase my books because the income enables me to spend
more time writing.

¹⁰https://leanpub.com/SwiftAI/read

https://leanpub.com/SwiftAI/read
https://leanpub.com/SwiftAI/read

Preface 4

Hire the Author as a Consultant

I am available for short consulting projects. Please see https://markwatson.com¹¹.

Parts of this Book are Specific for macOS and iOS, with
Some Support for Linux

Swift is a general purpose language that is well supported in macOS, iOS, and Linux, with some
support in Windows. Here, we cover the use of Swift on macOS and iOS. Some of the examples in
this book rely on libraries that are specifically available on macOS and iOS like CoreML and the
NLP libraries. Several book examples also work on Linux, such as the examples using SQLite, the
Microsoft Azure search APIs, web scraping, and semantic web/linked data.

Code for this Book

Because of the way the Swift Package Manager works, I organized all book examples that build
libraries as separate GitHub repos so the libraries can be easily used in other book examples as well
as your own software projects. The separate library GitHub repositories are:

• https://github.com/mark-watson/SparqlQuery_swift¹² - SPARQL Swift library for my Swift AI
book.

• https://github.com/mark-watson/QuestionAnswering_BERT_swift¹³ - modification of Apple’s
question answering demo to use DBPedia.

• https://github.com/mark-watson/swift-coreml-wisconsin_data_create_model¹⁴ - create CoreML
models from training data files of Wisconsin Caner data.

• https://github.com/mark-watson/swift-coreml-wisconsin_data_predict_with_model¹⁵ - use the
pretrained Wisconsin Cancer data model.

• https://github.com/mark-watson/ShellProcess_swift¹⁶ - library for spawning shell processes
and capturing output to stdout.

• https://github.com/mark-watson/WebScraping_swift¹⁷ - library for scrapping web sites.
• https://github.com/mark-watson/OpenAI_swift¹⁸ - library for using OpenAI’s GPT3 APIs.
• https://github.com/mark-watson/Nlp_swift¹⁹ - library that uses pretrained CoreML NLP mod-
els.

¹¹https://markwatson.com
¹²https://github.com/mark-watson/SparqlQuery_swift
¹³https://github.com/mark-watson/QuestionAnswering_BERT_swift
¹⁴https://github.com/mark-watson/swift-coreml-wisconsin_data_create_model
¹⁵https://github.com/mark-watson/swift-coreml-wisconsin_data_predict_with_model
¹⁶https://github.com/mark-watson/ShellProcess_swift
¹⁷https://github.com/mark-watson/WebScraping_swift
¹⁸https://github.com/mark-watson/OpenAI_swift
¹⁹https://github.com/mark-watson/Nlp_swift

https://markwatson.com/
https://github.com/mark-watson/SparqlQuery_swift
https://github.com/mark-watson/QuestionAnswering_BERT_swift
https://github.com/mark-watson/swift-coreml-wisconsin_data_create_model
https://github.com/mark-watson/swift-coreml-wisconsin_data_predict_with_model
https://github.com/mark-watson/ShellProcess_swift
https://github.com/mark-watson/WebScraping_swift
https://github.com/mark-watson/OpenAI_swift
https://github.com/mark-watson/Nlp_swift
https://markwatson.com/
https://github.com/mark-watson/SparqlQuery_swift
https://github.com/mark-watson/QuestionAnswering_BERT_swift
https://github.com/mark-watson/swift-coreml-wisconsin_data_create_model
https://github.com/mark-watson/swift-coreml-wisconsin_data_predict_with_model
https://github.com/mark-watson/ShellProcess_swift
https://github.com/mark-watson/WebScraping_swift
https://github.com/mark-watson/OpenAI_swift
https://github.com/mark-watson/Nlp_swift

Preface 5

• https://github.com/mark-watson/KGN²⁰ - SwiftUI based application supporting macOS, iPa-
dOS, and iOS. The macOS version is in Apple’s app store.

I suggest cloning all of these GitHub repositories right now so you can have the example source code
at hand while reading this book.

All of the code examples are licensed using the Apache 2 license. You are free to reuse the book
example code in your own projects (open source, commercial), with attribution of my copyright and
the Apache 2 license.

Except for the last SwiftUI example application, all sample programs are written as command line
utilities. I considered using Swift playgrounds for some of the examples but decided that packaging
as a combination of libraries and command line utilities would tend to make the example code more
useful for your own projects.

http://www.knowledgegraphnavigator.com/

Author’s Background

I have written 20+ books, mostly about artificial intelligence. I have over 50 US patents.

I write about technologies that I have used throughout my career: knowledge representation using
semantic web and linked data, machine learning and deep learning, and natural language processing.
I am grateful for the companies where I have worked (SAIC, Google, Capital One, Olive AI, Babylist,
etc.) that have supported this work since 1982.

As an author, I hope that the material in this book entertains you and will be useful in your work.

Cover Art

The cover picture was taken by WikiMedia Commons user Keta²¹ and is available for use under the
Creative Commons License CC BY-SA 2.5.

CoreML Libraries Used in this Book

• CoreML general overview: https://developer.apple.com/documentation/coreml
• MLClassifier https://developer.apple.com/documentation/createml/mlclassifier
• MLTextClassifier https://developer.apple.com/documentation/createml/mltextclassifier
• NLModel https://developer.apple.com/documentation/naturallanguage/nlmodel
• Natural Language Framework https://developer.apple.com/documentation/naturallanguage
• MLCustomLayer https://developer.apple.com/documentation/coreml/mlcustomlayer
²⁰https://github.com/mark-watson/KGN
²¹https://commons.wikimedia.org/wiki/User:Keta

https://github.com/mark-watson/KGN
https://commons.wikimedia.org/wiki/User:Keta
https://github.com/mark-watson/KGN
https://commons.wikimedia.org/wiki/User:Keta

Preface 6

Swift 3rd Party Libraries

We use the following 3rd party libraries:

• https://github.com/SwiftyJSON/SwiftyJSON²²

Acknowledgements

I thank my wife Carol for editing this manuscript, finding typos, and suggesting improvements.

²²https://github.com/SwiftyJSON/SwiftyJSON

https://github.com/SwiftyJSON/SwiftyJSON
https://github.com/SwiftyJSON/SwiftyJSON

Part 1: Introduction and Short
Examples
We begin with a sufficient introduction for Swift to understand the programming examples. After
introducing the language we will look at a few short examples that provide code and techniques we
use later in the book:

• Creating Swift projects
• Writing command line utilities
• Web scraping

Setting Up Swift for Command Line
Development
Except for the last chapter in this book that uses Xcode for developing a completemacOS/iOS/iPadOS
example application, I assume that you will work through the book examples using the command
line and your favorite editor. If you want to use Xcode for the command line examples, you can
open the Swift package file on the command line and open Xcode using, for example:

cd SparqlQuery_swift

open Package.swift

You notice that most of the examples are command line apps or libraries with command line test
programs and the README.md files in the example directories provide instructions for building
and running on the command line.

You can also run Xcode and from the File Menu open an example Package.swift file. You can then
use the Product / Test menu to run the test code for the example. You might need to use the View /
Debug Area / Active Console menu to show the output area.

I assume that you are familiar with the Swift programming language and Xcode.

Swift is a general purpose language that is well supported in macOS and iOS, with good support for
Linux, and with some support in Windows. For the purposes of this book, we are only considering
the use of Swift on macOS and iOS. Most of the examples in this book rely on libraries that are
specifically available on macOS and iOS like CoreML and the NLP libraries.

There are great free resources for the Swift language on the web, in other commercial books, and
Apple’s free Swift books. Here I provide just enough material on the Swift language for you to
understand and work with the book examples. After working through this book’s material you will
be able to add machine learning, natural language processing, and knowledge representation to your
applications. There will be parts of the Swift language that we don’t need for the material here, and
we won’t cover.

Installing Swift Packages

We will use the Swift Package Manager²³. You should pause reading now and install the Swift
Package Manager if you have not already done so.

²³https://swift.org/package-manager/

https://swift.org/package-manager/
https://swift.org/package-manager/

Setting Up Swift for Command Line Development 9

I occasionally use https://vapor.codes web framework²⁴ library (although not in this book). We use
this 3rd party library as an example for building a library locally from source code. Start by cloning
the git repository https://github.com/vapor/vapor²⁵. Then:

git clone https://github.com/vapor/vapor.git

cd vapor

swift build

I don’t usually install libraries locally from source code unless I am curious about the implementation
and want to read through the source code. Later we will see how to reference Swift libraries hosted
on GitHub in a project’s Package.swift file.

Creating Swift Packages

Wewill cover using the Swift PackageManager to create new packages using the command line here.
Later we will create projects using Apple’s XCode IDE when we develop the example application
Knowledge Graph Navigator.

You will want to use the Swift Package Manager documentation²⁶ for reference.

We will be generating executable projects and library (with a sample main program) projects. The
commands for generating the stub for an executable application project are:

mkdir BingSearch

cd BingSearch

swift package init --type executable

and build the stub of a library with a demo main program:

mkdir SparqlQuery

cd SparqlQuery

swift package init --type library

Accessing Libraries that You Write in Other Projects

You can reference Swift libraries using the Swift.package file for each of your projects. We will
look at parts of two Swift.package files here. The first is for my SPARQL query client library
that we will develop in a later chapter. This library SparqlQuery_swift is used in both book
examples Knowledge Graph Navigator (KGN) macOS/iOS/iPadOS example application as well as a
text version KnowledgeGraphNavigator_swift.

²⁴https://vapor.codes
²⁵https://github.com/vapor/vapor
²⁶https://github.com/apple/swift-package-manager/blob/main/Documentation/Usage.md

https://vapor.codes/
https://github.com/vapor/vapor
https://github.com/apple/swift-package-manager/blob/main/Documentation/Usage.md
https://vapor.codes/
https://github.com/vapor/vapor
https://github.com/apple/swift-package-manager/blob/main/Documentation/Usage.md

Setting Up Swift for Command Line Development 10

1 import PackageDescription

2

3 let package = Package(

4 name: "SparqlQuery_swift",

5 products: [

6 .library(

7 name: "SparqlQuery_swift",

8 targets: ["SparqlQuery_swift"]),

9],

10 dependencies: [

11 .package(url: "https://github.com/SwiftyJSON/SwiftyJSON.git",

12 .branch("master")),

13],

14 targets: [

15 .target(

16 name: "SparqlQuery_swift",

17 dependencies: ["SwiftyJSON"]),

18 .testTarget(

19 name: "SparqlQuery_swiftTests",

20 dependencies: ["SparqlQuery_swift", "SwiftyJSON"]),

21]

22)

This Swift package file is used to declare a Swift package named “SparqlQuery_swift”. The package
contains one library target named “SparqlQuery_swift” and one test target named “SparqlQuery_-
swiftTests”. The library target depends on the “SwiftyJSON” package, which is specified as a
dependency in the “dependencies” section of the package.

The “products” section defines the products that this package provides. In this case, the package
provides a library product named “SparqlQuery_swift”. The library is built from the source code in
the “SparqlQuery_swift” target.

The “dependencies” section lists the packages that this package depends on. In this case, it depends
on the “SwiftyJSON” package, which is specified as a Git repository URL.

The “targets” section lists the targets that are part of the package. In this case, there are two targets:
“SparqlQuery_swift” and “SparqlQuery_swiftTests”. The “SparqlQuery_swift” target depends on
“SwiftyJSON”. The “SparqlQuery_swiftTests” target depends on both “SparqlQuery_swift” and
“SwiftyJSON”.

The Swift.package file for text version KnowledgeGraphNavigator_swift is shown here:

Setting Up Swift for Command Line Development 11

1 import PackageDescription

2

3 let package = Package(

4 name: "KnowledgeGraphNavigator_swift",

5 platforms: [

6 .macOS(.v10_15),

7],

8 dependencies: [

9 .package(url: "https://github.com/SwiftyJSON/SwiftyJSON.git",

10 .branch("master")),

11 .package(url: "https://github.com/scinfu/SwiftSoup.git", from: "1.7.4"),

12 .package(url: "git@github.com:mark-watson/SparqlQuery_swift.git",

13 .branch("main")),

14 .package(url: "git@github.com:mark-watson/Nlp_swift.git", .branch("main")),

15],

16 targets: [

17 // Targets are the basic building blocks of a package.

18 // A target can define a module or a test suite.

19 // Targets can depend on other targets in this package,

20 // and on products in packages this package depends on.

21 .target(

22 name: "KnowledgeGraphNavigator_swift",

23 dependencies: ["SparqlQuery_swift", "Nlp_swift",

24 "SwiftyJSON", "SwiftSoup"]),

25]

26)

This Swift package file is used to declare a Swift package named “KnowledgeGraphNavigator_swift”.
The package contains one target named “KnowledgeGraphNavigator_swift”. The target depends on
the “SparqlQuery_swift”, “Nlp_swift”, “SwiftyJSON”, and “SwiftSoup” packages, which are specified
as dependencies in the “dependencies” section of the package.

The “platforms” section specifies the minimum platform version that the package supports. In this
case, the package supports macOS version 10.15 and later.

The “dependencies” section lists the packages that this package depends on. In this case, it depends
on four packages:

• SwiftyJSON: a Swift library for working with JSON data.
• SwiftSoup: a Swift library for parsing HTML and XML documents.
• SparqlQuery_swift: a Swift library for querying RDF data using the SPARQL query language.
• Nlp_swift: a Swift library for natural language processing.

Setting Up Swift for Command Line Development 12

The “targets” section lists the targets that are part of the package. In this case, there is one
target named KnowledgeGraphNavigator_swift. The target depends on “SparqlQuery_swift,
Nlp_swift, SwiftyJSON, and SwiftSoup.

Hopefully you have cloned the git repositories for each book example and understand how I have
configured the examples for your use.

For the rest of this book, you can read chapters in any order. In some cases, earlier chapters will
contain implementations of libraries used in later chapters.

Background Information for Writing
Swift Command Line Utilities
This short chapter contains example code and utilities for writing command line programs, using
external shell processes, and using the FileIO library.

Using Shell Processes

The library for using shell processes is one of my GitHub projects so you can include it in other
projects using:

1 dependencies: [

2 .package(url: "git@github.com:mark-watson/ShellProcess_swift.git",

3 .branch("main")),

4],

You can clone this repository if you want to have the source code at hand:

1 git clone https://github.com/mark-watson/ShellProcess_swift.git

The following listing shows the library implementation. In line 5 we use the constructor Process
from the Apple Foundation library to get a new process object that we set fields executableURL
and argList. In lines 8 and 9 we create a new Unix style pipe to capture the output from the shell
process we are starting and attach it to the process. After we run the task, we capture the output
and return it as the value of function run_in_shell.

1 import Foundation

2

3 @available(OSX 10.13, *)

4 public func run_in_shell(commandPath: String, argList: [String] = []) -> String {

5 let task = Process()

6 task.executableURL = URL(fileURLWithPath: commandPath)

7 task.arguments = argList

8 let pipe = Pipe()

9 task.standardOutput = pipe

10 do {

Background Information for Writing Swift Command Line Utilities 14

11 try! task.run()

12 let data = pipe.fileHandleForReading.readDataToEndOfFile()

13 let output: String? = String(data: data, encoding: String.Encoding.utf8)

14 if let output = output {

15 if !output.isEmpty {

16 return output.trimmingCharacters(in: .whitespacesAndNewlines)

17 }

18 }

19 }

20 return ""

21 }

The function named run_in_shell takes two parameters: commandPath (a string representing
the path to the executable command to be run) and argList (an array of strings representing the
arguments to be passed to the command). The function returns a string that represents the output
of the command.

Function run_in_shell first creates an instance of the Process class, which is used to run the
command. It sets the executableURL property of the task instance to the commandPath value and
sets the arguments property to the argList value. This function then creates a Pipe instance, which is
used to capture the output of the command. It sets the standardOutput property of the task instance
to the Pipe instance.

The function then runs the command using the run() method of the task instance. If the command
runs successfully, the function reads the output of the command from the Pipe instance using the
readDataToEndOfFile()method of the fileHandleForReading property. It then converts the output
data to a string using the String(data:encoding:) initializer.

If the output string is not empty, this function trims leading and trailing whitespace and returns the
resulting string. Otherwise, the function returns an empty string.

Overall, this function provides a simple way to run a shell command and capture its output in a
Swift program.

As in most examples in this book we use the Swift testing framework to run the example code at the
command line using swift test. Running swift test does an implicit swift build.

Background Information for Writing Swift Command Line Utilities 15

1 import XCTest

2 @testable import ShellProcess_swift

3

4 final class ShellProcessTests: XCTestCase {

5 func testExample() {

6 // This is an example of a functional test case.

7 // Use XCTAssert and related functions to verify your tests produce the

8 // correct results.

9 print("** s1:")

10 let s1 = run_in_shell(commandPath: "/bin/ps", argList: ["a"])

11 print(s1)

12 let s2 = run_in_shell(commandPath: "/bin/ls", argList: ["."])

13 print("** s2:")

14 print(s2)

15 let s3 = run_in_shell(commandPath: "/bin/sleep", argList: ["2"])

16 print("** s3:")

17 print(s3)

18

19 }

20

21 static var allTests = [

22 ("testExample", testExample),

23]

24 }

This Swift unit test function is part of a test suite for the ShellProcess_swift package. The function
is named testExample and is decorated with the@testable import statement to indicate that it tests
an internal implementation detail of the ShellProcess_swift package.

The function uses the run_in_shell function to run three shell commands: ps a, ls ., and sleep 2. It
prints the output of each command to the console.

This test function is an example of a functional test case. It doesn’t actually verify that the functions
being tested produce the correct results. Instead, it’s a simple way to visually inspect the output of
the commands and ensure that they are working as expected.

The allTests variable is an array of tuples that map the test function names to the corresponding
function references. This variable is used by the XCTest framework to discover and run the test
functions.

The test output (with some text removed for brevity) is:

Background Information for Writing Swift Command Line Utilities 16

1 $ swift test

2 Test Suite 'All tests' started at 2021-08-06 16:36:21.447

3 ** s1:

4 PID TT STAT TIME COMMAND

5 3898 s000 Ss 0:00.01 login -pf markw8

6 3899 s000 S+ 0:00.18 -zsh

7 3999 s001 Ss 0:00.02 login -pfl markw8 /bin/bash -c exec -la zsh /bin/zsh

8 4000 s001 S+ 0:00.38 -zsh

9 5760 s002 Ss 0:00.02 login -pfl markw8 /bin/bash -c exec -la zsh /bin/zsh

10 5761 s002 S 0:00.14 -zsh

11 8654 s002 S+ 0:00.06 /Applications/Xcode.app/Contents/Developer/Toolchains/Xco\

12 deDefault.xctoolchain/usr/bin/swift-test

13 8665 s002 S 0:00.03 /Applications/Xcode.app/Contents/Developer/usr/bin/xctest\

14 /Users/markw_1/GIT_swift_book/ShellProcess_swift/.build/arm64-apple-macosx/debug/Sh\

15 ellProcess_swiftPackageTests.xctest

16 8666 s002 R 0:00.00 /bin/ps a

17 ** s2:

18 Package.swift

19 README.md

20 Sources

21 Tests

22 ** s3:

23

24 Test Suite 'All tests' passed at 2021-08-06 16:36:23.468.

25 Executed 1 test, with 0 failures (0 unexpected) in 2.019 (2.021) seconds

FileIO Examples

This file I/O example uses the ShellProcess_swift library we saw in the last section so if you were to
create your own Swift project with the following code listing, youwould have to add this dependency
in the Project.swift file.

When writing command line Swift programs you will often need to do simple file IO so let’s look at
some examples here:

Background Information for Writing Swift Command Line Utilities 17

1 import Foundation

2 import ShellProcess_swift // my library

3

4 @available(OSX 10.13, *)

5 func test_files_demo() -> Void {

6 // In order to append to an existing file, you need to get a file handle

7 // and seek to the end of a file. The following will not work:

8 let s = "the dog chased the cat\n"

9 try! s.write(toFile: "out.txt", atomically: true,

10 encoding: String.Encoding.ascii)

11 let s2 = "a second string\n"

12 try! s2.write(toFile: "out.txt", atomically: true,

13 encoding: String.Encoding.ascii)

14 let aString = try! String(contentsOfFile: "out.txt")

15 print(aString)

16

17 // For simple use cases, simply appending strings, then writing

18 // the result atomically works fine:

19 var s3 = "the dog chased the cat\n"

20 s3 += "a second string\n"

21 try! s3.write(toFile: "out2.txt", atomically: true,

22 encoding: String.Encoding.ascii)

23 let aString2 = try! String(contentsOfFile: "out2.txt")

24 print(aString2)

25

26 // list files in current directory:

27 let ls = run_in_shell(commandPath: "/bin/ls", argList: ["."])

28 print(ls)

29

30 // remove two temnporary files:

31 let shellOutput = run_in_shell(commandPath: "/bin/rm",

32 argList: ["out.txt", "out2.txt"])

33 print(shellOutput)

34 }

35

36 if #available(OSX 10.13, *) {

37 test_files_demo()

38 }

The OS version checks in this Swift code use the #available conditional compilation block.

The #available block is used to conditionally compile code based on the availability of APIs or
features in the operating system version. In this case, the code inside the #available(OSX 10.13, *)
block will only be executed if the running operating system is macOS 10.13 or later.

Background Information for Writing Swift Command Line Utilities 18

If the running operating system version is earlier than 10.13, the code inside the #available block
will be skipped and the program will exit without running the test_files_demo() function.

These operating system version checks are done to ensure that the program is only executed on
operating systems that support the APIs and features used by the code. This helps to prevent runtime
errors and crashes on older operating system versions that may not support the required features.

This function demonstrates how towrite to and read from files using thewrite(toFile:atomically:encoding:)
and String(contentsOfFile:) methods, how to list files in the current directory using the ls shell
command, and how to remove files using the rm shell command.

I created a temporary Swift project with the previous code listing and a Project.swift file. I built
and ran this example using the swift command line tool.

Unlike the example in the last section where we built a reusable library with a test program, here
we have a standalone program contained in a single file so we will use swift run to build and run
this example:

1 $ swift run

2 Fetching git@github.com:mark-watson/ShellProcess_swift.git from cache

3 Cloning git@github.com:mark-watson/ShellProcess_swift.git

4 Resolving git@github.com:mark-watson/ShellProcess_swift.git at main

5 [5/5] Build complete!

6 a second string

7

8 the dog chased the cat

9 a second string

10

11 Package.resolved

12 Package.swift

13 README.md

14 Sources

15 out.txt

16 out2.txt

Swift REPL

There is an example of using the Swift REPL at the end of the next chapter on web scraping. For
reference, you can start a REPL with:

Background Information for Writing Swift Command Line Utilities 19

1 $ swift run --repl

2 Type :help for assistance.

3 1> import WebScraping_swift

4 2> webPageText(uri: "https://markwatson.com")

5 $R0: String = "Mark Watson: AI Practitioner and Polyglot Programmer"...

6 3> public func foo(s: String) -> String { return s }

7 4> foo(s: "cat")

8 $R1: String = "cat"

9 5>

You can import packages and interactively enter Swift expressions, including defining functions.

In the next chapter we will look at a longer example that scrapes web sites.

In the next chapter we will look at one more simple example, building a web scraping library, before
getting to the machine learning and NLP part of the book.

Web Scraping
It is important to respect the property rights of web site owners and abide by their terms and
conditions for use. This Wikipedia article on Fair Use²⁷ provides a good overview of using copyright
material.

The web scraping code we develop here uses the Swift library SwiftSoup that is loosely based on
the BeautifulSoup libraries available in other programming languages.

For my work and research, I have been most interested in using web scraping to collect text data for
natural language processing but other common applications include writing AI news collection and
summarization assistants, trying to predict stock prices based on comments in social media which
is what we did at Webmind Corporation in 2000 and 2001, etc.

I wrote a simple web scraping library that is available at https://github.com/mark-watson/Web-
Scraping_swift²⁸ that you can use in your projects by putting the following dependency in your
Project.swift file:

1 dependencies: [

2 .package(url: "git@github.com:mark-watson/WebScraping_swift.git",

3 .branch("main")),

4],

Here is the main implementation file for the library:

1 import Foundation

2 import SwiftSoup

3

4 public func webPageText(uri: String) -> String {

5 guard let myURL = URL(string: uri) else {

6 print("Error: \(uri) doesn't seem to be a valid URL")

7 fatalError("invalid URI")

8 }

9 let html = try! String(contentsOf: myURL, encoding: .ascii)

10 let doc: Document = try! SwiftSoup.parse(html)

11 let plain_text = try! doc.text()

12 return plain_text

13 }

14

²⁷https://en.wikipedia.org/wiki/Fair_use
²⁸https://github.com/mark-watson/WebScraping_swift

https://en.wikipedia.org/wiki/Fair_use
https://github.com/mark-watson/WebScraping_swift
https://github.com/mark-watson/WebScraping_swift
https://en.wikipedia.org/wiki/Fair_use
https://github.com/mark-watson/WebScraping_swift

Web Scraping 21

15 func webPageHeadersHelper(uri: String, headerName: String) -> [String] {

16 var ret: [String] = []

17 guard let myURL = URL(string: uri) else {

18 print("Error: \(uri) doesn't seem to be a valid URL")

19 fatalError("invalid URI")

20 }

21 do {

22 let html = try String(contentsOf: myURL, encoding: .ascii)

23 let doc: Document = try SwiftSoup.parse(html)

24 let h1_headers = try doc.select(headerName)

25 for el in h1_headers {

26 let h1 = try el.text()

27 ret.append(h1)

28 }

29 } catch {

30 print("Error")

31 }

32 return ret

33 }

34

35 public func webPageH1Headers(uri: String) -> [String] {

36 return webPageHeadersHelper(uri: uri, headerName: "h1")

37 }

38

39 public func webPageH2Headers(uri: String) -> [String] {

40 return webPageHeadersHelper(uri: uri, headerName: "h2")

41 }

42

43 public func webPageAnchors(uri: String) -> [[String]] {

44 var ret: [[String]] = []

45 guard let myURL = URL(string: uri) else {

46 print("Error: \(uri) doesn't seem to be a valid URL")

47 fatalError("invalid URI")

48 }

49 do {

50 let html = try String(contentsOf: myURL, encoding: .ascii)

51 let doc: Document = try SwiftSoup.parse(html)

52 let anchors = try doc.select("a")

53 for a in anchors {

54 let text = try a.text()

55 let a_uri = try a.attr("href")

56 if a_uri.hasPrefix("#") {

57 ret.append([text, uri + a_uri])

Web Scraping 22

58 } else {

59 ret.append([text, a_uri])

60 }

61 }

62 } catch {

63 print("Error")

64 }

65 return ret

66 }

This Swift code defines several functions that can be used to scrape information from a web page
located at a given URI.

The webPageText function takes a URI as input and returns the plain text content of the web page
located at that URI. It first checks if the URI is valid and then reads the content of the web page using
the contentsOf method of the String class. It then uses the parse method of the SwiftSoup library to
parse the HTML content of the page and extract the plain text.

The webPageH1Headers and webPageH2Headers functions use the webPageHeadersHelper
function to extract the H1 and H2 header texts respectively from the web page located at a given
URI. The webPageHeadersHelper function uses the same technique as the webPageText function
to read and parse the HTML content of the page. It then selects the headers using the specified
headerName parameter and extracts the text of the headers.

ThewebPageAnchors function extracts all the anchor tags <a> from the web page located at a given
URI, along with their corresponding text and URI. It also uses thewebPageHeadersHelper function
to read and parse the HTML content of the page, selects the anchor tags using the “a” selector, and
extracts their text and href attributes.

Overall, these functions provide a simple way to scrape information from a web page and extract
specific information such as plain text, header texts, and anchor tags.

I wrote these utility functions to get the plain text from a web site, HTML header text, and anchors.
You can clone this library and extend it for other types of HTML elements you may need to process.

The test program shows how to call the APIs in the library:

1 import XCTest

2 import Foundation

3 import SwiftSoup

4

5 @testable import WebScraping_swift

6

7 final class WebScrapingTests: XCTestCase {

8 func testGetWebPage() {

9 let text = webPageText(uri: "https://markwatson.com")

Web Scraping 23

10 print("\n\n\tTEXT FROM MARK's WEB SITE:\n\n", text)

11 }

12

13 func testToShowSwiftSoupExamples() {

14 let myURLString = "https://markwatson.com"

15 let h1_headers = webPageH1Headers(uri: myURLString)

16 print("\n\n++ h1_headers:", h1_headers)

17 let h2_headers = webPageH2Headers(uri: myURLString)

18 print("\n\n++ h2_headers:", h2_headers)

19 let anchors = webPageAnchors(uri: myURLString)

20 print("\n\n++ anchors:", anchors)

21 }

22

23 static var allTests = [("testGetWebPage", testGetWebPage),

24 ("testToShowSwiftSoupExamples",

25 testToShowSwiftSoupExamples)]

26 }

This Swift test program tests the functionality of theWebScraping_swift library. It defines two test
functions: testGetWebPage and testToShowSwiftSoupExamples.

The testGetWebPage function uses the webPageText function to retrieve the plain text content of
my website located at “https://markwatson.com”. It then prints the retrieved text to the console.

The testToShowSwiftSoupExamples function demonstrates the use of webPageH1Headers, web-
PageH2Headers, and webPageAnchors functions on the same website. It extracts and prints the
H1 and H2 header texts and anchor tags of the same website.

The allTests variable is an array of tuples that map the test function names to the corresponding
function references. This variable is used by the XCTest framework to discover and run the test
functions.

Overall, this Swift test program demonstrates how to use the functions defined in theWebScraping_-
swift library to extract specific information from a web page.

Here we run the unit tests (with much of the output not shown for brevity):

Web Scraping 24

1 $ swift test

2

3 TEXT FROM MARK's WEB SITE:

4

5 Mark Watson: AI Practitioner and Polyglot Programmer | Mark Watson Read my Blog \

6 Fun stuff My Books My Open Source Projects Hire Me Free Mentoring \

7 Privacy Policy Mark Watson: AI Practitioner and Polyglot Programmer I am the author \

8 of 20+ books on Artificial Intelligence, Common Lisp, Deep Learning, Haskell, Clojur\

9 e, Java, Ruby, Hy language, and the Semantic Web. I have 55 US Patents. My customer \

10 list includes: Google, Capital One, Olive AI, CompassLabs, Disney, SAIC, Americast, \

11 PacBell, CastTV, Lutris Technology, Arctan Group, Sitescout.com, Embed.ly, and Webmi\

12 nd Corporation.

13

14 ++ h1_headers: ["Mark Watson: AI Practitioner and Polyglot Programmer", "The books t\

15 hat I have written", "Fun stuff", "Open Source", "Hire Me", "Free Mentoring", "Priva\

16 cy Policy"]

17

18 ++ h2_headers: ["I am the author of 20+ books on Artificial Intelligence, Common Lis\

19 p, Deep Learning, Haskell, Clojure, Java, Ruby, Hy language, and the Semantic Web. I\

20 have 55 US Patents.", "Other published books:"]

21

22 ++ anchors: [["Read my Blog", "https://mark-watson.blogspot.com"], ["Fun stuff", "ht\

23 tps://markwatson.com#fun"], ["My Books", "https://markwatson.com#books"], ["My Open \

24 Source Projects", "https://markwatson.com#opensource"], ["Hire Me", "https://markwat\

25 son.com#consulting"], ["Free Mentoring", "https://markwatson.com#mentoring"], ["Priv\

26 acy Policy", "https://markwatson.com/privacy.html"], ["leanpub", "https://leanpub.co\

27 m/u/markwatson"], ["GitHub", "https://github.com/mark-watson"], ["LinkedIn", "https:\

28 //www.linkedin.com/in/marklwatson/"], ["Twitter", "https://twitter.com/mark_l_watson\

29 "], ["leanpub", "https://leanpub.com/lovinglisp"], ["leanpub", "https://leanpub.com/\

30 haskell-cookbook/"], ["leanpub", "https://leanpub.com/javaai"],

31]

32 Test Suite 'All tests' passed at 2021-08-06 17:37:11.062.

33 Executed 2 tests, with 0 failures (0 unexpected) in 0.471 (0.472) seconds

Running in the Swift REPL

Web Scraping 25

1 $ swift run --repl

2 [1/1] Build complete!

3 Launching Swift REPL with arguments: -I/Users/markw_1/GIT_swift_book/WebScraping_swi\

4 ft/.build/arm64-apple-macosx/debug -L/Users/markw_1/GIT_swift_book/WebScraping_swift\

5 /.build/arm64-apple-macosx/debug -lWebScraping_swift__REPL

6 Welcome to Apple Swift version 5.5 (swiftlang-1300.0.29.102 clang-1300.0.28.1).

7 Type :help for assistance.

8 1> import WebScraping_swift

9 2> webPageText(uri: "https://markwatson.com")

10 $R0: String = "Mark Watson: AI Practitioner and Polyglot Programmer | Mark Watson \

11 Read my Blog Fun stuff My Books My Open Source Projects Privacy Policy \

12 Mark Watson: AI Practitioner and Polyglot Programmer I am the author of 20+ books on\

13 Artificial Intelligence, Common Lisp, Deep Learning, Haskell, Clojure, Java, Ruby, \

14 Hy language, and the Semantic Web. I have 55 US Patents. My customer list includes: \

15 Google, Capital One, Babylist, Olive AI, CompassLabs, Disney, SAIC, Americast, PacBe\

16 ll, CastTV, Lutris Technology, Arctan Group, Sitescout.com, Embed.ly, and Webmind Co\

17 rporation"...

18 3>

This chapter finishes a quick introduction to using Swift and Swift packages for command line
utilities. The remainder of this book comprises machine learning, natural language processing, and
semantic web/linked data examples.

Part 2: Large Language Models
In this part we cover:

• Commercial OpenAI LLM APIs
• Commercial Anthropic LLM APIs
• Accessing open weight models using the commercial Groq service
• Accesiing xAIs Grok model via an API
• Accessing local LLMs using Ollama
• Using Local LLMs with Apple’s MLX Framework

Using the OpenAI LLM APIs
I have been working as an artificial intelligence practitioner since 1982 and the capability of Large
Language Models (LLMs) is unlike anything I have seen before. I managed a deep learning team at
Capital One in 2017-2019 and we used precursors of TransFormer models like OpenAI’s ChatGPT,
and Anthropic’s Claude.

You will need to apply to OpenAI for an access key at:

https://platform.openai.com/signup

The GitHub repository for this example is:

https://github.com/mark-watson/OpenAI_swift

I recommend reading the online documentation for the online documentation for the APIs²⁹ to see
all the capabilities of the beta OpenAI APIs. Let’s start by jumping into the example code that
is a GitHub repository https://github.com/mark-watson/OpenAI_swift³⁰ that you can use in your
projects.

The library that I wrote for this chapter supports four functions: for completing text, summarizing
text, answering general questions, and getting embeddings for text. The get-4o-mini that we will
use here is very inexpensive and capable.

You need to request an API key (I had to wait a few weeks to receive my key) and set the value of
the environment variable OPENAI_KEY to your key. You can add a statement like:

export OPENAI_KEY=sa-hdedds7&dhdhsdffd...

to your .profile or other shell resource file that contains your key value (the above key value is
made-up and invalid).

The file Sources/OpenAI_swift/OpenAI_swift.swift contains the source code (code description
follows the listing):

²⁹https://openai.com/docs/
³⁰https://github.com/mark-watson/OpenAI_swift

https://openai.com/docs/
https://github.com/mark-watson/OpenAI_swift
https://openai.com/docs/
https://github.com/mark-watson/OpenAI_swift

Using the OpenAI LLM APIs 28

import Foundation

struct OpenAI {

private static let key = ProcessInfo.processInfo.environment["OPENAI_KEY"]!

private static let baseURL = "https://api.openai.com/v1"

private struct ChatRequest: Encodable {

let model: String

let messages: [[String: String]]

let max_tokens: Int

let temperature: Double

}

private struct EmbeddingRequest: Encodable {

let model: String

let input: String

}

private static func makeRequest<T: Encodable>(endpoint: String, body: T)

-> String {

var responseString = ""

let url = URL(string: baseURL + endpoint)!

var request = URLRequest(url: url)

request.httpMethod = "POST"

request.setValue("application/json", forHTTPHeaderField: "Content-Type")

request.setValue("Bearer \(key)", forHTTPHeaderField: "Authorization")

request.httpBody = try? JSONEncoder().encode(body)

let semaphore = DispatchSemaphore(value: 0)

URLSession.shared.dataTask(with: request) { data, response, error in

if let error = error {

print("Error: \(error)")

}

if let data = data {

responseString = String(data: data, encoding: .utf8) ?? "{}"

}

semaphore.signal()

}.resume()

semaphore.wait()

return responseString

}

Using the OpenAI LLM APIs 29

static func chat(messages: [[String: String]], maxTokens: Int = 25,

temperature: Double = 0.3) -> String {

let chatRequest = ChatRequest(

model: "gpt-4o-mini",

messages: messages,

max_tokens: maxTokens,

temperature: temperature

)

let response = makeRequest(endpoint: "/chat/completions", body: chatRequest)

guard let data = response.data(using: .utf8),

let json = try? JSONSerialization.jsonObject(with: data)

as? [String: Any],

let choices = json["choices"] as? [[String: Any]],

let firstChoice = choices.first,

let message = firstChoice["message"] as? [String: Any],

let content = message["content"] as? String else {

return ""

}

return content

}

static func embeddings(text: String) -> [Float] {

let embeddingRequest = EmbeddingRequest(

model: "text-embedding-ada-002",

input: text

)

let response = makeRequest(endpoint: "/embeddings", body: embeddingRequest)

guard let data = response.data(using: .utf8),

let json = try? JSONSerialization.jsonObject(with: data)

as? [String: Any],

let dataArray = json["data"] as? [[String: Any]],

let embedding = dataArray.first?["embedding"] as? [NSNumber] else {

return [1.23]

}

return embedding.map { number in Float(truncating: number) }

}

}

// Usage functions:

func summarize(text: String, maxTokens: Int = 40) -> String {

OpenAI.chat(messages: [

Using the OpenAI LLM APIs 30

["role": "system",

"content":

"You are a helpful assistant that summarizes text concisely."],

["role": "user", "content": text]

], maxTokens: maxTokens)

}

func questionAnswering(question: String) -> String {

OpenAI.chat(messages: [

["role": "system",

"content":

"You are a helpful assistant that answers questions directly and concisel\

y."],

["role": "user", "content": question]

], maxTokens: 25)

}

func completions(promptText: String, maxTokens: Int = 25) -> String {

OpenAI.chat(messages: [["role": "user", "content": promptText]],

maxTokens: maxTokens)

}

This Swift implementation provides a streamlined interface to OpenAI’s API services, focusing
primarily on chat completions and text embeddings functionality. The code is structured around a
central OpenAI struct that encapsulates all API interactions and provides a clean, type-safe interface
for making requests.

Core Architecture

The implementation follows a modular design pattern, separating concerns between network
communication, request/response handling, and utility functions. It utilizes Swift’s strong type
system through dedicated request models and leverages environment variables for secure API key
management.

Key Features

Authentication and Configuration

The client automatically retrieves the OpenAI API key from environment variables, providing a
secure way to handle authentication credentials. The base URL is configured as a constant, making
it easy to modify for different environments or API versions.

Using the OpenAI LLM APIs 31

Chat Completions

The chat completion functionality supports the GPT-4 model family, allowing for structured
conversations through an array of messages. Each message contains a role (system, user, or assistant)
and content. The implementation provides fine-grained control over:

• Maximum token output
• Temperature settings for response randomness
• Message context management
• Text embeddings

The embeddings feature implements OpenAI’s text-embedding-ada-002 model, converting text
inputs into high-dimensional vector representations. These embeddings can be used for:

• Semantic search
• Text similarity comparisons
• Document classification
• Other natural language processing tasks

Utility Functions

The implementation includes pre-built utility functions for common use cases:

• Text summarization with customizable length
• Question-answering with concise responses
• General text completions

Technical Implementation Details

Network Communication

The networking layer uses URLSession with a synchronous approach via DispatchSemaphore.
While this ensures straightforward usage, it’s worth noting that this approach should be carefully
considered for production environments where asynchronous communication might be more
appropriate.

Error Handling

The implementation includes basic error handling through Swift’s optional binding and guard
statements, providing graceful fallbacks for common failure scenarios. The embedding function, for
instance, returns a default value rather than throwing an error when processing fails.

Using the OpenAI LLM APIs 32

Data Parsing

JSON parsing is handled through a combination of JSONEncoder for requests and JSONSerialization
for responses, with careful optional chaining to safely handle malformed or unexpected responses.

Running Tests

The file SWIFT_BOOK/OpenAI_swift/Tests/OpenAI_swiftTests/OpenAI_swiftTests.swift con-
tains test code:

1 import XCTest

2 @testable import OpenAI_swift

3

4 final class OpenAI_swiftTests: XCTestCase {

5 func testExample() {

6 print("Starting tests...")

7 let embeds = OpenAI.embeddings(text: "Congress passed tax laws.")

8 print(embeds[..<min(10, embeds.count)])

9 let prompt = "He walked to the river and looked at"

10 let ret = completions(promptText: prompt)

11 print("** ret from OpenAI API call:", ret)

12 let question = "Where was Leonardo da Vinci born?"

13 let answer = questionAnswering(question: question)

14 print("** answer from OpenAI API call:", answer)

15 let text = "Jupiter is the fifth planet from the Sun and the largest in \

16 the Solar System. It is a gas giant with a mass one-thousandth that of the Sun, but \

17 two-and-a-half times that of all the other planets in the Solar System combined. Jup\

18 iter is one of the brightest objects visible to the naked eye in the night sky, and \

19 has been known to ancient civilizations since before recorded history. It is named a\

20 fter the Roman god Jupiter.[19] When viewed from Earth, Jupiter can be bright enough\

21 for its reflected light to cast visible shadows,[20] and is on average the third-br\

22 ightest natural object in the night sky after the Moon and Venus."

23 let summary = summarize(text: text)

24 print("** generated summary: ", summary)

25 }

26 }

Output from this test code is:

Using the OpenAI LLM APIs 33

$ swift test

Building for debugging...

[4/4] Compiling OpenAI_swift OpenAI_swift.swift

Build complete! (0.59s)

Test Suite 'All tests' started at 2024-11-17 16:42:12.354.

Test Suite 'OpenAI_swiftPackageTests.xctest' started at 2024-11-17 16:42:12.355.

Test Suite 'OpenAI_swiftTests' started at 2024-11-17 16:42:12.355.

Test Case '-[OpenAI_swiftTests.OpenAI_swiftTests testExample]' started.

Test Case '-[OpenAI_swiftTests.OpenAI_swiftTests testExample]' passed (7.429 seconds\

).

Test Suite 'OpenAI_swiftTests' passed at 2024-11-17 16:42:19.784.

Executed 1 test, with 0 failures (0 unexpected) in 7.429 (7.429) seconds

Test Suite 'OpenAI_swiftPackageTests.xctest' passed at 2024-11-17 16:42:19.785.

Executed 1 test, with 0 failures (0 unexpected) in 7.429 (7.430) seconds

Test Suite 'All tests' passed at 2024-11-17 16:42:19.785.

Executed 1 test, with 0 failures (0 unexpected) in 7.429 (7.431) seconds

Starting tests...

[-0.0046315026, -0.0077434415, 0.0005571732, -0.024781546, -0.0031119392, -0.0185893\

25, -0.003362034, -0.020906659, 0.0074585234, -0.019463073]

** ret from OpenAI API call: the shimmering surface of the water, where the sunlight\

danced in tiny sparkles. The gentle flow of the river whispered secrets as

** answer from OpenAI API call: Leonardo da Vinci was born in Vinci, Italy, on April\

15, 1452.

** generated summary: Jupiter is the fifth planet from the Sun and the largest in t\

he Solar System, being a gas giant with a mass one-thousandth that of the Sun and tw\

o-and-a-half times that of

* Test run started.

* Testing Library Version: 102 (arm64e-apple-macos13.0)

* Test run with 0 tests passed after 0.001 seconds.

Using APIs for Anthropic Claude LLMs
Here, I decided to not write a new client library for the Anthropic APIs since there are several
existing high quality libraries for accessing the Anthropic Claude APIs.

This is not a strong recommendation of one Anthropic client library over another, but I very much
enjoy using the following project because of the simplicity of its API:

https://github.com/fumito-ito/AnthropicSwiftSDK

My examples using this library to access the Anthropic Claude APIs can be found here:

https://github.com/mark-watson/Anthropic_swift_examples

You need to set the following environment variable for your person Anthropic API key: Anthropic
API key:

ANTHROPIC_API_KEY

that you can get by creating an account:

https://console.anthropic.com

Note that there is no library implemented in this chapter.

Running the examples

All of the examples are packaged as Swift tests so git clonemy examples repository https://github.com/mark-
watson/Anthropic_swift_examples³¹ and run:

swift test

The test Swift source file defines a test class (just the first few lines shown here):

³¹https://github.com/mark-watson/Anthropic_swift_examples

https://github.com/mark-watson/Anthropic_swift_examples
https://github.com/mark-watson/Anthropic_swift_examples
https://github.com/mark-watson/Anthropic_swift_examples

Using APIs for Anthropic Claude LLMs 35

final class Anthropic_swift_examplesTests: XCTestCase {

let text1 = "If Mary is 42, Bill is 27, and Sam is 51, what are their pairwise age\

differences. Please be concise."

func testExample() async throws {

let key =

ProcessInfo.processInfo.environment["ANTHROPIC_API_KEY"]!

let anthropic = Anthropic(apiKey: key)

let message = Message(role: .user,

content: [.text(text1)])

let response =

try await

anthropic.messages.createMessage([message],

maxTokens: 400)

If you print the value of response you see:

MessagesResponse(id: "msg_02RvimFjHFFmaV4n994J9wck", type: AnthropicSwiftSDK.Message\

sResponseType.message, role: AnthropicSwiftSDK.Role.assistant, content: [AnthropicSw\

iftSDK.Content.text("The pairwise age differences are:\n\nMary and Bill: 15 years\nM\

ary and Sam: 9 years\nBill and Sam: 24 years", cacheControl: nil)], model: Optional(\

AnthropicSwiftSDK.Model.claude_3_Opus), stopReason: Optional(AnthropicSwiftSDK.StopR\

eason.endTurn), stopSequence: nil, usage: AnthropicSwiftSDK.TokenUsage(inputTokens: \

Optional(38), outputTokens: Optional(38)))

If you print the value of response.content you see:

[AnthropicSwiftSDK.Content.text("The pairwise age differences are:\n\nMary and Bill:\

15 years\nMary and Sam: 9 years\nBill and Sam: 24 years", cacheControl: nil)]

For normal use you want just the string contents of the model’s response to your prompt, so use:

for content in response.content {

if case let .text(text, _) = content {

print("Assistant's response: \(text)")

}

}

That outputs:

Using APIs for Anthropic Claude LLMs 36

Assistant's response: The pairwise age differences are:

Mary and Bill: 15 years

Mary and Sam: 9 years

Bill and Sam: 24 years

In the general case of the Claude model returning images, tools used, and tool results, use code like
this:

for content in response.content {

switch content {

case .text(let text, _):

print("Assistant's response: \(text)")

case .image(let imageContent, _):

print("imageContent: \(imageContent)")

break

case .document(let documentContent, _):

print("documentContent: \(documentContent)")

break

case .toolResult(let toolResult):

print("toolResult: \(toolResult)")

break

case .toolUse(let toolUse):

print("toolUse: \(toolUse)")

break

}

}

}

Using Groq APIs to Open Weight LLM
Models
Groq develops custom silicon for fast LLM inference.

Groq’s API service supports a variety of openly available models, including:

• Llama 3.1 Series: Models like llama-3.1-70b-versatile, llama-3.1-8b-instant, and others, offering
up to 128K context windows.

• Llama 3.2 Vision Series: Multimodal models such as llama-3.2-90b-vision-preview and llama-
3.2-11b-vision-preview, capable of processing both text and image inputs.

• Llama 3 Groq Tool Use Models: Specialized for function calling, including llama3-Groq-70b-
8192-tool-use-preview and llama3-Groq-8b-8192-tool-use-preview.

• Mixtral 8x7b: A model with a 32,768-token context window, suitable for extensive context
applications.

• Gemma Series: Models like gemma2-9b-it and gemma-7b-it, each with an 8,192-token context
window.

• Whisper Series: Models such as whisper-large-v3 and whisper-large-v3-turbo, designed for
audio transcription and translation tasks.

To obtain an API key, visit Groq’s API keys management page:

https://console.groq.com/keys

The code for this chapter can be found here:

https://github.com/mark-watson/Groq_swift

Implementation of a Client Library for the Groq APIs

Groq supports the OpenAI APIs so the following client library for Groq is similar to what I wrote
previously for OpenAI:

Using Groq APIs to Open Weight LLM Models 38

import Foundation

struct Groq {

private static let key = ProcessInfo.processInfo.environment["GROQ_API_KEY"]!

private static let baseURL = "https://api.groq.com/openai/v1/"

private static let MODEL = "llama3-8b-8192"

private struct ChatRequest: Encodable {

let model: String

let messages: [[String: String]]

let max_tokens: Int

let temperature: Double

}

private static func makeRequest<T: Encodable>(endpoint: String, body: T)

-> String {

var responseString = ""

let url = URL(string: baseURL + endpoint)!

var request = URLRequest(url: url)

request.httpMethod = "POST"

request.setValue("application/json", forHTTPHeaderField: "Content-Type")

request.setValue("Bearer \(key)", forHTTPHeaderField: "Authorization")

request.httpBody = try? JSONEncoder().encode(body)

let semaphore = DispatchSemaphore(value: 0)

URLSession.shared.dataTask(with: request) { data, response, error in

if let error = error {

print("Error: \(error)")

}

if let data = data {

responseString = String(data: data, encoding: .utf8) ?? "{}"

}

semaphore.signal()

}.resume()

semaphore.wait()

return responseString

}

static func chat(messages: [[String: String]],

maxTokens: Int = 25,

temperature: Double = 0.3)

Using Groq APIs to Open Weight LLM Models 39

-> String {

let chatRequest = ChatRequest(

model: MODEL,

messages: messages,

max_tokens: maxTokens,

temperature: temperature

)

let response = makeRequest(endpoint: "/chat/completions", body: chatRequest)

guard let data = response.data(using: .utf8),

let json = try? JSONSerialization.jsonObject(with: data)

as? [String: Any],

let choices = json["choices"] as? [[String: Any]],

let firstChoice = choices.first,

let message = firstChoice["message"]

as? [String: Any],

let content = message["content"] as? String else {

return ""

}

return content

}

}

// Usage functions:

func summarize(text: String, maxTokens: Int = 40) -> String {

Groq.chat(messages: [

["role": "system",

"content":

"You are a helpful assistant that summarizes text concisely"],

["role": "user", "content": text]

], maxTokens: maxTokens)

}

func questionAnswering(question: String) -> String {

Groq.chat(messages: [

["role": "system",

"content":

"You are a helpful assistant that answers questions directly and concisely."],

["role": "user", "content": question]

], maxTokens: 25)

}

Using Groq APIs to Open Weight LLM Models 40

func completions(promptText: String, maxTokens: Int = 25) -> String {

Groq.chat(messages: [

["role": "system", "content": "You complete text"],

["role": "user", "content": promptText]],

maxTokens: maxTokens)

}

Explanation of the Swift Groq API Code

1. Setting Up the API

• The Groq struct is designed to interact with the Groq API, mimicking OpenAI’s API.
• API Key: Retrieved from the environment variable GROQ_API_KEY.
• Base URL: The API’s base endpoint is https://api.groq.com/openai/v1/.
• Model: The model being used is predefined as llama3-8b-8192.

2. Structure of a Chat Request

• A private struct, ChatRequest, defines the JSON payload for requests:
– model: The model name.
– messages: A history of the conversation.
– max_tokens: Limits the number of tokens in the response.
– temperature: Controls randomness in the responses.

3. Making an HTTP POST Request

• The makeRequest function handles API communication:
– Constructs the full URL by appending the endpoint to the base URL.
– Sets up a POST request with:

* JSON content type.
* Authorization header using the API key.

– Encodes the request body into JSON using JSONEncoder.
– Sends the request asynchronously but waits for the response using a semaphore.
– Parses the response data into a string.

Using Groq APIs to Open Weight LLM Models 41

4. Chat Functionality

• The chat function simplifies sending messages to the API:
– Constructs a ChatRequest object with the given parameters.
– Sends the request to the /chat/completions endpoint.
– Processes the JSON response to extract the model’s reply from the choices array.

5. Usage Functions

summarize - Summarizes a text. - Sends a conversation history where the system is described as “a
helpful assistant that summarizes text concisely.”

1 summarize(text: String, maxTokens: Int = 40)

questionAnswering - Answers a user-provided question directly. - Sends a conversation history
where the system is described as “a helpful assistant that answers questions directly and concisely.”

completions - Generates continuations for a given user prompt.

Running the Tests

Here is the test/example code for this library:

import XCTest

@testable import Groq_swift

final class Groq_swiftTests: XCTestCase {

func testExample() {

print("Starting tests...")

let prompt = "He walked to the river and looked at"

let ret = completions(promptText: prompt, maxTokens: 200)

print("** ret from Groq API call:", ret)

let question = "Where was Leonardo da Vinci born?"

let answer = questionAnswering(question: question)

print("** answer from Groq API call:", answer)

let text = "Jupiter is the fifth planet from the Sun and the largest in the Sola\

r System. It is a gas giant with a mass one-thousandth that of the Sun, but two-and-\

a-half times that of all the other planets in the Solar System combined. Jupiter is \

one of the brightest objects visible to the naked eye in the night sky, and has been\

known to ancient civilizations since before recorded history. It is named after the\

Using Groq APIs to Open Weight LLM Models 42

Roman god Jupiter.[19] When viewed from Earth, Jupiter can be bright enough for its\

reflected light to cast visible shadows,[20] and is on average the third-brightest \

natural object in the night sky after the Moon and Venus."

let summary = summarize(text: text)

print("** generated summary: ", summary)

}

}

Here is sample output from this example use of the library:

Starting tests...

** ret from Groq API call: the calm water, feeling the warm sun on his face and the \

gentle breeze rustling his hair. The sound of the water lapping against the shore wa\

s soothing, and he closed his eyes, taking a deep breath to clear his mind.

** answer from Groq API call: Leonardo da Vinci was born on April 15, 1452, in Vinci\

, Italy.

** generated summary: Here's a concise summary:

Jupiter is the largest planet in our Solar System, a gas giant with a mass 2.5 times\

that of all other planets combined. It's the fifth planet

Using the xAI Grok LLM
xAI’s Grok is a large language model (LLM) developed by Elon Musk’s AI startup, xAI, to compete
with leading AI systems like OpenAI’s GPT-4. Launched in 2023, Grok is designed to handle a variety
of tasks, including answering questions, assisting with writing, and solving coding problems. It
is integrated with the social media platform X (formerly Twitter), providing users with real-time
information and a conversational AI experience.

Grok has undergone several iterations, with Grok-2 being released in August 2024. This version
introduced image generation capabilities, enhancing its versatility. xAI has also made Grok-1
open-source, allowing developers to access its weights and architecture for further research and
application development.

To support Grok’s development, xAI has invested in substantial computational resources, including
the Colossus supercomputer, which utilizes 100,000 Nvidia H100 GPUs, positioning it as one of the
most powerful AI training systems globally.

Implementation of a Grok API Client Library

The code for my xAI Grok client code can be found here:

https://github.com/mark-watson/X_GROK_swift

The Grok is similar to the OpenAI APIs so I copied the code we saw earlier that I wrote for OpenAI
and made the simple modifications required to access Grok APIs (code discussion appears after this
listing):

import Foundation

// xAI Grog LLM client library

struct X_GROK {

private static let key = ProcessInfo.processInfo.environment["X_GROK_API_KEY"]!

private static let baseURL = "https://api.x.ai/v1"

private static let MODEL = "grok-beta"

private struct ChatRequest: Encodable {

let model: String

Using the xAI Grok LLM 44

let messages: [[String: String]]

let max_tokens: Int

let temperature: Double

}

private static func makeRequest<T: Encodable>(endpoint: String, body: T)

-> String {

var responseString = ""

let url = URL(string: baseURL + endpoint)!

var request = URLRequest(url: url)

request.httpMethod = "POST"

request.setValue("application/json", forHTTPHeaderField: "Content-Type")

request.setValue("Bearer \(key)", forHTTPHeaderField: "Authorization")

request.httpBody = try? JSONEncoder().encode(body)

let semaphore = DispatchSemaphore(value: 0)

URLSession.shared.dataTask(with: request) { data, response, error in

if let error = error {

print("Error: \(error)")

}

if let data = data {

responseString = String(data: data, encoding: .utf8) ?? "{}"

}

semaphore.signal()

}.resume()

semaphore.wait()

return responseString

}

static func chat(messages: [[String: String]], maxTokens: Int = 25,

temperature: Double = 0.3) -> String {

let chatRequest = ChatRequest(

model: MODEL,

messages: messages,

max_tokens: maxTokens,

temperature: temperature

)

let response = makeRequest(endpoint: "/chat/completions",

body: chatRequest)

guard let data = response.data(using: .utf8),

let json = try? JSONSerialization.jsonObject(with: data) as? [String: \

Using the xAI Grok LLM 45

Any],

let choices = json["choices"] as? [[String: Any]],

let firstChoice = choices.first,

let message = firstChoice["message"]

as? [String: Any],

let content = message["content"] as? String else {

return ""

}

return content

}

}

// Usage functions:

func summarize(text: String, maxTokens: Int = 40) -> String {

X_GROK.chat(messages: [

["role": "system",

"content":

"You are a helpful assistant that summarizes text concisely."],

["role": "user", "content": text]

], maxTokens: maxTokens)

}

func questionAnswering(question: String) -> String {

X_GROK.chat(messages: [

["role": "system",

"content":

"You are a helpful assistant who answers questions directly and concisely."],

["role": "user", "content": question]

], maxTokens: 25)

}

func completions(promptText: String, maxTokens: Int = 25) -> String {

X_GROK.chat(messages: [["role": "user", "content": promptText]],

maxTokens: maxTokens)

}

This Swift code defines a client library, X_GROK, to interact with the xAI Grok Large Language
Model (LLM) API. It leverages Swift’s Foundation framework to handle HTTP requests and JSON
encoding/decoding. The library retrieves the API key from the environment variable X_GROK_-
API_KEY and sets the base URL for the API. It specifies a default model, grok-beta, for generating
responses.

The core functionality is encapsulated in the makeRequest function, which constructs and sends
HTTP POST requests to the API. It accepts an endpoint and a request body conforming to the

Using the xAI Grok LLM 46

Encodable protocol. The function sets the necessary HTTP headers, including Content-Type and
Authorization, and encodes the request body into JSON. To handle the asynchronous nature of
network calls synchronously, it employs a semaphore, ensuring the function waits for the response
before proceeding. The response is then returned as a string.

The chat function utilizes makeRequest to send chat messages to the API. It constructs a ChatRequest
struct with parameters like the model, messages, maximum tokens, and temperature. After receiving
the response, it parses the JSON to extract the generated content. Additionally, the code provides
utility functions summarize, questionAnswering, and completions which use the chat function
to perform specific tasks such as text summarization, question answering, and text completion,
respectively.

Here is the test/example code for this library:

import XCTest

@testable import X_GROK_swift

final class X_GROK_swiftTests: XCTestCase {

func testExample() {

print("Starting tests...")

let prompt = "He walked to the river and looked at"

let ret = completions(promptText: prompt, maxTokens: 200)

print("** ret from X_GROK API call:", ret)

let question = "Where was Leonardo da Vinci born?"

let answer = questionAnswering(question: question)

print("** answer from X_GROK API call:", answer)

let text = "Jupiter is the fifth planet from the Sun and the largest in the Sola\

r System. It is a gas giant with a mass one-thousandth that of the Sun, but two-and-\

a-half times that of all the other planets in the Solar System combined. Jupiter is \

one of the brightest objects visible to the naked eye in the night sky, and has been\

known to ancient civilizations since before recorded history. It is named after the\

Roman god Jupiter.[19] When viewed from Earth, Jupiter can be bright enough for its\

reflected light to cast visible shadows,[20] and is on average the third-brightest \

natural object in the night sky after the Moon and Venus."

let summary = summarize(text: text)

print("** generated summary: ", summary)

}

}

Here is the example code output:

Using the xAI Grok LLM 47

Starting tests...

** ret from X_GROK API call: He walked to the river and looked at the water flowing \

gently by. The serene scene provided a moment of peace, as he watched the ripples da\

nce in the sunlight. The sound of the water was soothing, almost like a lullaby, cal\

ming his thoughts and grounding him in the present. He felt a deep connection to nat\

ure, the river's timeless flow reminding him of life's continuous journey.

** answer from X_GROK API call: Leonardo da Vinci was born in the town of Vinci, in \

the region of Tuscany, Italy.

** generated summary: Jupiter, the fifth planet from the Sun, is the largest in our\

Solar System, classified as a gas giant with a mass significantly greater than all \

other planets combined. It's one of the brightest objects

Using Ollama to Run Local LLMs
Ollama is a program and framework written in Go that allows you to download, run models on the
command line, and call using a REST style interface. You need to downnload the Ollama executable
for your operation system at https://ollama.com³².

Similarly to our use of a third party for accessing the Anthropic Clause models, here we will not
write a wrapper libary. The example code for ths chapter is in the test code for the Swift project in
the GitHub repository https://github.com/mark-watson/Ollama_swift_examples³³.

We use the library in the GitHub repository https://github.com/mattt/ollama-swift³⁴.

Running the Ollama Service

Assuming you have Ollama installed, download the following model that required two gigabytes of
disk space:

ollama pull llama3.2:latest

When the model is downloaded it is also cached for future use on your laptop.

Here is the test/example code we will run:

import XCTest

import Ollama

final class Ollama_swift_examplesTests: XCTestCase {

let text1 = "If Mary is 42, Bill is 27, and Sam is 51, what are their pairwise a\

ge differences."

let client = Ollama.Client.default // http://localhost:11434 endpoint

func testExample() async throws {

let response = try await client.chat(

model: "llama3.2:latest",

messages: [

.system("You are a helpful assistant who completes text and also answers\

questions. You are always concise."),

.user(text1),

³²https://ollama.com
³³https://github.com/mark-watson/Ollama_swift_examples
³⁴https://github.com/mattt/ollama-swift

https://ollama.com/
https://github.com/mark-watson/Ollama_swift_examples
https://github.com/mattt/ollama-swift
https://ollama.com/
https://github.com/mark-watson/Ollama_swift_examples
https://github.com/mattt/ollama-swift

Using Ollama to Run Local LLMs 49

.user("what if Sam is 52?")

])

print(response.message.content)

}

}

The output looks like:

Pairwise age differences:

- Mary - Bill: |42 - 27| = 15

- Mary - Sam: |42 - 51| = 9

- Bill - Sam: |27 - 51| = 24

If Sam is 52:

- Mary - Bill: |42 - 27| = 15

- Mary - Sam: |42 - 52| = 10

- Bill - Sam: |27 - 52| = 25

The ollama_swift library also supports text generation. You can also do single shot text generation
using the code in the previous example, but only using one user call, for example:

final class Ollama_swift_examplesTests: XCTestCase {

let text1 = "What is the capital of Germany?"

let client = Ollama.Client.default

func testExample() async throws {

let response = try await client.chat(

model: "llama3.2:latest",

messages: [

.system("You are a helpful assistant who completes text and also answers\

questions. You are always concise."),

.user(text1),

])

print(response.message.content)

}

}

The output looks like:

The capital of Germany is Berlin.

Using Ollama to Run Local LLMs 50

Ollama Wrap Up

This is a short chapter but an important one. I do over half my work with LLMs running locally on
my laptop using Ollama, with the rest of my work using OpenAI, Anthropic, and Groq commercial
APIs.

Using Apple’s MLX Framework to Run
Local LLMs
Apple’s MLX framework is an efficient way to use LLMs embedded in applications written in Swift
using the SwiftUI user interface library for macOS, iOS, and iPadOS.

It is difficult to create simple command line Swift apps using MLX but there are several complete
MLX, Swift, and SwiftUI demo applications that you can use to start your own projects. Here we
will use the LLMEval application from the GitHub repository https://github.com/ml-explore/mlx-
swift-examples³⁵.

MLX Framework History

Apple’s MLX framework, introduced in December 2023, is a key part of Apple’s strategy to support
AI on its hardware platforms by leveraging the unique capabilities of Apple Silicon, including theM1,
M2, M3, and M4 series. Designed as an open-source, NumPy-like array framework, MLX optimizes
machine learning workloads, particularly large language models (LLMs), by utilizing Apple Silicon’s
unified architecture that integrates CPU, GPU, Neural Engine, and sharedmemory. This architecture
eliminates data transfer bottlenecks, enabling faster andmore efficientML tasks, such as training and
deploying LLMs directly on devices like MacBooks and iPhones. MLX aligns with Apple’s privacy-
focused approach by supporting on-device processing, enhancing performance for applications like
natural language processing, speech recognition, and content generation while offering a seamless
transition for Python or Swift ML engineers familiar with frameworks like NumPy and PyTorch.
MLX stands out by leveraging Apple’s unified memory architecture, allowing shared memory access
between CPU and GPU, which eliminates data transfer overhead and accelerates machine learning
tasks, especially with large datasets.

MLX Resources on GitHub

In this chapter we will look at an example application that is part of the Swift MLX Examples project.
After working through this example, the following resources on GitHub are worth looking at:

• https://github.com/ml-explore/mlx-swift: The Swift API for MLX, enabling integration with
Swift-based projects.

³⁵https://github.com/ml-explore/mlx-swift-examples

https://github.com/ml-explore/mlx-swift-examples
https://github.com/ml-explore/mlx-swift-examples
https://github.com/ml-explore/mlx-swift-examples

Using Apple’s MLX Framework to Run Local LLMs 52

• https://github.com/ml-explore/mlx-swift-examples: Examples showcasing the use of MLX
with Swift.

You can find the documentation here:

https://swiftpackageindex.com/ml-explore/mlx-swift/0.18.0/documentation/mlx³⁶.

These repositories provide a comprehensive set of tools and examples to effectively utilize MLX for
machine learning tasks on Apple silicon. There are many other repositories for MLX and Python
and if you need to perform tasks like fine tuning a MLX model, that task should probably be done
using Python.

Example Application for MLX Swift Examples
Repository

You will want to download the complete MLX Swift examples repository:

git clone https://github.com/ml-explore/mlx-swift-examples.git

Open the top level XCode project by:

cd mlx-swift-examples

open mlx-swift-examples.xcodeproj

Here is the file browser view of this project:

³⁶https://swiftpackageindex.com/ml-explore/mlx-swift/0.18.0/documentation/mlx

https://swiftpackageindex.com/ml-explore/mlx-swift/0.18.0/documentation/mlx
https://swiftpackageindex.com/ml-explore/mlx-swift/0.18.0/documentation/mlx

Using Apple’s MLX Framework to Run Local LLMs 53

XCode View of projects

Running the LLMEval project:

Using Apple’s MLX Framework to Run Local LLMs 54

LLMEval app downloading model file

Initially the model is downloaded and cached on your laptop for future use. Here is the app used to
solve a simple word problem:

LLMEval app answering user’s question

Using Apple’s MLX Framework to Run Local LLMs 55

Analysis of Swift and SwiftUI Code in the LLMEval
Application

This example is part of the Swift MLX Examples project that currently has twenty contributors and
a thousand stars on GitHub https://github.com/ml-explore/mlx-swift-examples³⁷.

Unfortunately the SwiftUI user interface code is mixed in with the code that uses MLX. Let’s walk
through the code:

Here is a walk through a Swift-based program using Apple’s frameworks for Machine Learning and
Language Models with the code interspersed with explanations.

Imports

import LLM

import MLX

import MLXRandom

import MarkdownUI

import Metal

import SwiftUI

import Tokenizers

These imports bring in essential libraries:

• LLM and MLX for working with language models.
• MarkdownUI for rendering Markdown content.
• SwiftUI for creating the user interface.
• Tokenizers for tokenizing text.

The ContentView Struct

The ContentView struct defines the main interface of the app.

State Variables

struct ContentView: View {

@State var prompt = ""

@State var llm = LLMEvaluator()

@Environment(DeviceStat.self) private var deviceStat

³⁷https://github.com/ml-explore/mlx-swift-examples

https://github.com/ml-explore/mlx-swift-examples
https://github.com/ml-explore/mlx-swift-examples

Using Apple’s MLX Framework to Run Local LLMs 56

In this code snippet:

• @State allows the view to track changes in the prompt and llm instances.
• @Environment fetches device statistics, such as GPU memory usage.

Display Style Enum

enum displayStyle: String, CaseIterable, Identifiable {

case plain, markdown

var id: Self { self }

}

@State private var selectedDisplayStyle = displayStyle.markdown

In this code snippet:

• displayStyle defines whether the output is plain text or Markdown.
• A segmented picker toggles between the two styles.

UI Layout

Input Section

var body: some View {

VStack(alignment: .leading) {

VStack {

HStack {

Text(llm.modelInfo).textFieldStyle(.roundedBorder)

Spacer()

Text(llm.stat)

}

HStack {

Spacer()

if llm.running {

ProgressView().frame(maxHeight: 20)

Spacer()

}

Picker("", selection: $selectedDisplayStyle) {

ForEach(displayStyle.allCases, id: \.self) {

option in

Text(option.rawValue.capitalized)

Using Apple’s MLX Framework to Run Local LLMs 57

.tag(option)

}

}.pickerStyle(.segmented)

}

}

This code displays model information and statistics.

Output Section

ScrollView(.vertical) {

ScrollViewReader { sp in

Group {

if selectedDisplayStyle == .plain {

Text(llm.output)

.textSelection(.enabled)

} else {

Markdown(llm.output)

.textSelection(.enabled)

}

}

.onChange(of: llm.output) { _, _ in

sp.scrollTo("bottom")

}

}

}

HStack {

TextField("prompt", text: $prompt)

.onSubmit(generate)

.disabled(llm.running)

Button("generate", action: generate)

.disabled(llm.running)

}

}

The ScrollView shows the model’s output, which updates dynamically as the model generates text.

Toolbar

Using Apple’s MLX Framework to Run Local LLMs 58

.toolbar {

ToolbarItem {

Label(

"Memory Usage: \(deviceStat.gpuUsage.activeMemory.formatted(.byteCount(s\

tyle: .memory)))",

systemImage: "info.circle.fill"

)

}

ToolbarItem(placement: .primaryAction) {

Button {

Task {

copyToClipboard(llm.output)

}

} label: {

Label("Copy Output", systemImage: "doc.on.doc.fill")

}

}

}

The toolbar includes:

• GPU memory usage information.
• A “Copy Output” button to copy the generated text.

The LLMEvaluator Class

This class handles the logic for loading and generating text with the language model.

Core Properties

@Observable

@MainActor

class LLMEvaluator {

var running = false

var output = ""

var modelInfo = ""

var stat = ""

let modelConfiguration = ModelConfiguration.phi3_5_4bit

/// parameters controlling the output

let generateParameters = GenerateParameters(temperature: 0.6)

let maxTokens = 240

/// update the display every N tokens -- 4 looks like it updates continuously

Using Apple’s MLX Framework to Run Local LLMs 59

/// and is low overhead. observed ~15% reduction in tokens/s when updating

/// on every token

let displayEveryNTokens = 4

enum LoadState {

case idle

case loaded(ModelContainer)

}

var loadState = LoadState.idle

This code snippet:

• Tracks the model state and output.
• Configures the model (phi3_5_4bit).

Loading the Model (if required)

/// load and return the model -- can be called

/// multiple times, subsequent calls will

/// just return the loaded model

func load() async throws -> ModelContainer {

switch loadState {

case .idle:

MLX.GPU.set(cacheLimit: 20 * 1024 * 1024)

let modelContainer =

try await LLM.loadModelContainer(configuration: modelConfiguration) {

[modelConfiguration] progress in

Task { @MainActor in

self.modelInfo = "Downloading \(modelConfiguration.name): \(Int(prog\

ress.fractionCompleted * 100))%"

}

}

self.modelInfo = "Loaded \(modelConfiguration.id). Weights: \(numParams / (1\

024*1024))M"

loadState = .loaded(modelContainer)

return modelContainer

case .loaded(let modelContainer):

return modelContainer

}

}

Using Apple’s MLX Framework to Run Local LLMs 60

This code snippet:

• Downloads and caches the model.
• Updates modelInfo during the download.

Generating Output

func generate(prompt: String) async {

guard !running else { return }

running = true

self.output = ""

do {

let modelContainer = try await load()

let messages = [["role": "user", "content": prompt]]

let promptTokens = try await modelContainer.perform { _, tokenizer in

try tokenizer.applyChatTemplate(messages: messages)

}

let result = await modelContainer.perform { model, tokenizer in

LLM.generate(

promptTokens: promptTokens,

parameters: generateParameters, model: model,

tokenizer: tokenizer,

extraEOSTokens: modelConfiguration.extraEOSTokens

) { tokens in

if tokens.count % displayEveryNTokens == 0 {

let text = tokenizer.decode(tokens: tokens)

Task { @MainActor in

self.output = text

}

}

if tokens.count >= maxTokens {

return .stop

} else {

return .more

}

}

}

} catch {

output = "Failed: \(error)"

}

Using Apple’s MLX Framework to Run Local LLMs 61

running = false

}

}

This code snippet:

• Prepares the prompt for the model.
• Generates tokens and dynamically updates the view.

This program demonstrates how to integrate ML and UI components for interactive LLM-based
applications in Swift.

This code example uses the MIT License so you can modify the example code if you need to write
a combined SwiftUI GUI app that uses LLM-based text generation.

Part 3: Apple’s CoreML and NLP
Libraries
In this part we cover:

• Short introduction to the ideas behind Deep Learning
• Introduction of CoreML
• Examples using CoreML
• Introduction of NLP
• Examples using NLP libraries

This section used to contain Apple CoreML examples to train a back-propagation model from the
University of Wisconsin cancer data set. As of April 2022, these example do not work because of a
problem with latest CreateML library so this material has been removed from this book.

Deep Learning Introduction
Apple’s work in smoothly integrating deep learning into their developer tools for macOS, iOS, and
iPadOS applications is in my opinion nothing short of brilliant. We will finish this book with an
application that uses two deep learning models that provide almost all of the functionality of the
application.

Before diving into Apple’s CoreML libraries in later chapters we will take a shallow dive into the
principles of deep learning and take a lay-of-the-land look at the type of most commonly used
models. This chapter has no example programs and is intended as background material.

Most of my professional career since 2014 has involved Deep Learning, mostly with TensorFlow
using the Keras APIs. In the late 1980s I was on a DARPA neural network technology advisory
panel for a year, I wrote the first prototype of the SAIC ANSim neural network library commercial
product, and I wrote the neural network prediction code for a bomb detector my company designed
and built for the FAA for deployment in airports. More recently I have used GAN (generative
adversarial networks) models for synthesizing numeric spreadsheet data and LSTM (long short term
memory) models to synthesize highly structured text data like nested JSON and for NLP (natural
language processing). I have also written a product recommendation model for an online store using
TensorFlow Recommenders. I have several USA and European patents using neural network and
Deep Learning technology.

Here we will learn a vocabulary for discussing Deep Learning neural network models and look at
possible architectures.

If you want to use Deep Learning professionally, there are two specific online resources that I
recommend: Andrew Ng leads the efforts at deeplearning.ai³⁸ and Jeremy Howard leads the efforts
at fast.ai³⁹.

There are many Deep Learning neural architectures in current practical use; a few types that I use
are:

• Multi-layer perceptron networks with many fully connected layers. An input layer contains
placeholders for input data. Each element in the input layer is connected by a two-dimensional
weight matrix to each element in the first hidden layer. We can use any number of fully
connected hidden layers, with the last hidden layer connected to an output layer.

• Convolutional networks for image processing and text classification. Convolutions, or filters,
are small windows that can process input images (filters are two-dimensional) or sequences like
text (filters are one-dimensional). Each filter uses a single set of learned weights independent
of where the filter is applied in an input image or input sequence.

³⁸https://www.deeplearning.ai/
³⁹https://www.fast.ai/

https://www.deeplearning.ai/
https://www.fast.ai/
https://www.deeplearning.ai/
https://www.fast.ai/

Deep Learning Introduction 64

• Autoencoders have the same number of input layer and output layer elements with one or
more hidden fully connected layers. Autoencoders are trained to produce the same output as
training input values using a relatively small number of hidden layer elements. Autoencoders
are capable of removing noise in input data.

• LSTM (long short term memory) process elements in a sequence in order and are capable of
remembering patterns that they have seen earlier in the sequence.

• GAN (generative adversarial networks) models comprise two different and competing neural
models, the generator and the discriminator. GANs are often trained on input images (although
in mywork I have applied GANs to two-dimensional numeric spreadsheet data). The generator
model takes as input a “latent input vector” (this is just a vector of specific size with random
values) and generates a random output image. The weights of the generator model are trained
to produce random images that are similar to how training images look. The discriminator
model is trained to recognize if an arbitrary output image is original training data or an image
created by the generator model. The generator and discriminator models are trained together.

The core functionality of libraries like TensorFlow are written in C++ and take advantage of special
hardware like GPUs, custom ASICs, and devices like Google’s TPUs. Most people who work with
Deep Learning models don’t need to even be aware of the low level optimizations used to make
training and using Deep Learning models more efficient. That said, in the following section I am
going to show you how simple neural networks are trained and used.

Simple Multi-layer Perceptron Neural Networks

I use the terms Multi-layer perceptron neural networks, backpropagation neural networks and delta-
rule networks interchangeably. Backpropagation refers to the model training process of calculating
the output errors when training inputs are passed in the forward direction from input layer, to
hidden layers, and then to the output layer. There will be an error which is the difference between
the calculated outputs and the training outputs. This error can be used to adjust the weights from the
last hidden layer to the output layer to reduce the error. The error is then backprogated backwards
through the hidden layers, updating all weights in the model. I have detailed example code in several
of my older artificial intelligence books. Here I am satisfied to give you an intuition of how simple
neural networks are trained.

The basic idea is that we start with a network initialized with random weights and for each training
case we propagate the inputs through the network towards the output neurons, calculate the output
errors, and back-up the errors from the output neurons back towards the input neurons in order to
make small changes to the weights to lower the error for the current training example. We repeat
this process by cycling through the training examples many times.

The following figure shows a simple backpropagation network with one hidden layer. Neurons in
adjacent layers are connected by floating point connection strength weights. These weights start
out as small random values that change as the network is trained. Weights are represented in the

Deep Learning Introduction 65

following figure by arrows; in the code the weights connecting the input to the output neurons are
represented as a two-dimensional array.

Example Backpropagation network with One Hidden Layer

Each non-input neuron has an activation value that is calculated from the activation values of
connected neurons feeding into it, gated (adjusted) by the connection weights. For example, in
the above figure, the value of Output 1 neuron is calculated by summing the activation of Input
1 times weight W1,1 and Input 2 activation times weight W2,1 and applying a “squashing function”
like Sigmoid or Relu (see figures below) to this sum to get the final value for Output 1’s activation
value. We want to flatten activation values to a relatively small range but still maintain relative
values. To do this flattening we use the Sigmoid function that is seen in the next figure, along with
the derivative of the Sigmoid function which we will use in the code for training a network by
adjusting the weights.

Sigmoid Function and Derivative of Sigmoid Function (SigmoidP)

Deep Learning Introduction 66

Simple neural network architectures with just one or two hidden layers are easy to train using
backpropagation and I have from scratch code (using no libraries) for this several of my previous
books. However, here we are using Hy to write models using the TensorFlow framework which
has the huge advantage that small models you experiment with on your laptop can be scaled to
more parameters (usually this means more neurons in hidden layers which increases the number of
weights in a model) and run in the cloud using multiple GPUs.

Except for pedantic purposes, I now never write neural network code from scratch. I take instead
advantage of the many person-years of engineering work put into the development of frameworks
like TensorFlow, PyTorch, mxnet, etc. We now move on to two examples built with TensorFlow.

Deep Learning

Deep Learningmodels are generally understood to havemanymore hidden layers than simple multi-
layer perceptron neural networks and often comprise multiple simple models combined together in
series or in parallel. Complex architectures can be iteratively developed by manually adjusting the
size of model components, changing the components, etc. Alternatively, model architecture search
can be automated. At Capital One I used Google’s AdaNet project⁴⁰ that efficiently searches for
effective model architectures inside a single TensorFlow session. Now all major cloud compute
provides support some form of AutoML. You need to make a decision for yourself how much effort
youwant to put into deeply understanding the technology, or simply learning how to use pre-trained
models.

⁴⁰https://github.com/tensorflow/adanet

https://github.com/tensorflow/adanet
https://github.com/tensorflow/adanet

Natural Language Processing Using
Apple’s Natural Language Framework
I have been working in the field of Natural Language Processing (NLP) since 1985 so I ‘lived through’
the revolutionary change in NLP that has occurred since 2014: Deep Learning results out-classed
results from previous symbolic methods.

https://developer.apple.com/documentation/naturallanguage

I will not cover older symbolic methods of NLP here, rather I refer you tomy previous books Practical
Artificial Intelligence Programming With Java⁴¹, Loving Common Lisp, or the Savvy Programmer’s
Secret Weapon⁴², and Haskell Tutorial and Cookbook⁴³ for examples. We get better results using
Deep Learning (DL) for NLP and the libraries that Apple provides.

You will learn how to apply both DL and NLP by using the state-of-the-art full-feature libraries that
Apple provides in their iOS and macOS development tools.

Using Apple’s NaturalLanguage Swift Library

Wewill use one of Apple’s NLP libraries consisting of pre-built models in the last chapter of this book.
In order to fully understand the example in the last chapter you will need to read Apple’s high-level
discussion of using CoreML https://developer.apple.com/documentation/coreml⁴⁴ and their specific
support for NLP https://developer.apple.com/documentation/naturallanguage/⁴⁵.

There are many pre-trained CoreML compatible models on the web, both from Apple and also from
third party (e.g., https://github.com/likedan/Awesome-CoreML-Models⁴⁶).

Apple also provides tools for converting TensorFlow and PyTorch models to be compatible with
CoreML https://coremltools.readme.io/docs⁴⁷.

A simple Wrapper Library for Apple’s NLP Models

I will not go into too much detail here but I created a small wrapper library for Apple’s NLP
models that will make it easier for you to jump in and have fun experimenting with them:
https://github.com/mark-watson/Nlp_swift⁴⁸.

⁴¹https://leanpub.com/javaai
⁴²https://leanpub.com/lovinglisp
⁴³https://leanpub.com/haskell-cookbook
⁴⁴https://developer.apple.com/documentation/coreml
⁴⁵https://developer.apple.com/documentation/naturallanguage/
⁴⁶https://github.com/likedan/Awesome-CoreML-Models
⁴⁷https://coremltools.readme.io/docs
⁴⁸https://github.com/mark-watson/Nlp_swift

https://leanpub.com/javaai
https://leanpub.com/javaai
https://leanpub.com/lovinglisp
https://leanpub.com/lovinglisp
https://leanpub.com/haskell-cookbook
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/naturallanguage/
https://github.com/likedan/Awesome-CoreML-Models
https://coremltools.readme.io/docs
https://github.com/mark-watson/Nlp_swift
https://leanpub.com/javaai
https://leanpub.com/lovinglisp
https://leanpub.com/haskell-cookbook
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/naturallanguage/
https://github.com/likedan/Awesome-CoreML-Models
https://coremltools.readme.io/docs
https://github.com/mark-watson/Nlp_swift

Natural Language Processing Using Apple’s Natural Language Framework 68

The main library implementation file uses the@available(OSX 10.13, *) attribute to indicate that
the following function is available on macOS 10.13 and later versions.

1 import Foundation

2 import NaturalLanguage

3

4 let tagger = NSLinguisticTagger(tagSchemes:[.tokenType, .language, .lexicalClass,

5 .nameType, .lemma], options: 0)

6 let options: NSLinguisticTagger.Options = [.omitPunctuation, .omitWhitespace,

7 .joinNames]

8

9 @available(OSX 10.13, *)

10 public func getEntities(for text: String) -> [(String, String)] {

11 var words: [(String, String)] = []

12 tagger.string = text

13 let range = NSRange(location: 0, length: text.utf16.count)

14 tagger.enumerateTags(in: range, unit: .word, scheme: .nameType,

15 options: options) { tag, tokenRange, stop in

16 let word = (text as NSString).substring(with: tokenRange)

17 words.append((word, tag?.rawValue ?? "unkown"))

18 }

19 return words

20 }

21

22 @available(OSX 10.13, *)

23 public func getLemmas(for text: String) -> [(String, String)] {

24 var words: [(String, String)] = []

25 tagger.string = text

26 let range = NSRange(location: 0, length: text.utf16.count)

27 tagger.enumerateTags(in: range, unit: .word, scheme: .lemma,

28 options: options) { tag, tokenRange, stop in

29 let word = (text as NSString).substring(with: tokenRange)

30 words.append((word, tag?.rawValue ?? "unkown"))

31 }

32 return words

33 }

The public function getEntities takes a String parameter called text and returns an array of tuples
containing (String, String). Here’s a breakdown of what this function does:

• The function initializes an empty array called words to store the extracted entities.
• The line tagger.string = text sets the input text for a tagger object. The tagger is an instance
of NSLinguisticTagger, which is a natural language processing class provided by Apple’s
Foundation framework.

Natural Language Processing Using Apple’s Natural Language Framework 69

• The next line creates an NSRange object called range that represents the entire length of the
input text.

• The tagger.enumerateTags(in:range, unit:.word, scheme:.nameType, options:options)method
is called to iterate over the words in the input text and extract their associated tags. The in:
parameter specifies the range of the text to process. The unit: parameter specifies that the
enumeration should be done on a word-by-word basis. The scheme: parameter specifies the
linguistic scheme to use, in this case, the .nameType scheme, which is used to identify named
entities. The options: parameter specifies additional options or settings for the tagger.

• Inside the enumeration block, the code retrieves the current word and its associated tag using
the tokenRange and tag parameters.

• The line let word = (text as NSString).substring(with: tokenRange) extracts the substring
corresponding to the current word using tokenRange.

• The line words.append((word, tag?.rawValue ?? “unknown”)) appends a tuple containing
the extracted word and its associated tag to the words array. If the tag is nil, it uses the default
value of “unknown”.

• Finally, the words array is returned, which contains all the extracted entities (words and their
associated tags) from the input text.

The public function called getLemmas that takes a String parameter called text and returns an array
of tuples containing (String, String). Here’s a breakdown of what the function getLemmas is very
similar to the last function getEntities. The function getLemmas does the following:

• The function initializes an empty array called words to store the extracted lemmas.
• The line tagger.string = text sets the input text for a tagger object.
• The next line creates an NSRange object called range that represents the entire length of the
input text.

• The tagger.enumerateTags(in:range, unit:.word, scheme:.lemma, options: options)method
is called to iterate over the words in the input text and extract their corresponding lemmas.

• Inside the enumeration block, the code retrieves the current word and its associated lemma
using the tokenRange and tag parameters.

• The line let word = (text as NSString).substring(with: tokenRange) extracts the substring
corresponding to the current word using tokenRange.

• Finally, the words array is returned, which contains all the extracted lemmas (words and their
associated base forms) from the input text.

In summary, function getLemmas uses the NSLinguisticTagger to perform linguistic analysis on a
given text and extract the base forms (lemmas) of words. The lemmas are then stored in an array of
tuples and returned as the result of the function.

Here is some test code:

Natural Language Processing Using Apple’s Natural Language Framework 70

1 let quote = "President George Bush went to Mexico with IBM representatives. Here's t\

2 o the crazy ones. The misfits. The rebels. The troublemakers. The round pegs in the \

3 square holes. The ones who see things differently. They're not fond of rules. And th\

4 ey have no respect for the status quo. You can quote them, disagree with them, glori\

5 fy or vilify them. About the only thing you can't do is ignore them. Because they ch\

6 ange things. They push the human race forward. And while some may see them as the cr\

7 azy ones, we see genius. Because the people who are crazy enough to think they can c\

8 hange the world, are the ones who do. - Steve Jobs (Founder of Apple Inc.)"

9 if #available(OSX 10.13, *) {

10 print("\nEntities:\n")

11 print(getEntities(for: quote))

12 print("\nLemmas:\n")

13 print(getLemmas(for: quote))

14 }

Here is an edited listing of the output with most of the output removed for brevity:

1 Entities:

2

3 [("President", "OtherWord"), ("George Bush", "PersonalName"), ("went", "OtherWord"),\

4 ("to", "OtherWord"), ("Mexico", "PlaceName"), ("with", "OtherWord"), ("IBM", "Organ\

5 izationName"),

6 ...]

7

8 Lemmas:

9

10 [("President", "President"), ("George Bush", "George"), ("went", "go"), ("to", "to")\

11 , ("Mexico", "Mexico"),

12 ...]

Documents Question Answering
Using OpenAI GPT4 APIs and a Local
Embeddings Vector Database
The examples in this chapter are inspired by the Python LangChain and LlamaIndex projects, with
just the parts I need for my projects written from scratch in Common Lisp. I wrote a Python
book “LangChain and LlamaIndex Projects Lab Book: Hooking Large Language Models Up to the
Real World Using GPT-3, ChatGPT, and Hugging Face Models in Applications” in March 2023:
https://leanpub.com/langchain that you might also be interested in.

The GitHub repository for this example can be found here: https://github.com/mark-watson/Docs_-
QA_Swift⁴⁹.

The entire example is in one Swift source filemain.swift. All of the program listings in this chapter
can be found in this single source file.

We use two models in this example: a vector embedding model and a gpt-4o-mini conversation
model (see bottom of this file). The vector embedding model is used to generate a vector embedding.
The gpt-4o-mini model is used to generate a response to a prompt. The vector embedding model is
used to compare the similarity of two prompts.

Extending the String Class

1 import Foundation

2 import NaturalLanguage

3

4 // String utilities:

5

6 extension String {

7 func removeCharacters(from forbiddenChars: CharacterSet) -> String {

8 let passed = self.unicodeScalars.filter { !forbiddenChars.contains($0) }

9 return String(String.UnicodeScalarView(passed))

10 }

11

12 func removeCharacters(from: String) -> String {

13 return removeCharacters(from: CharacterSet(charactersIn: from))

⁴⁹https://github.com/mark-watson/Docs_QA_Swift

https://github.com/mark-watson/Docs_QA_Swift
https://github.com/mark-watson/Docs_QA_Swift
https://github.com/mark-watson/Docs_QA_Swift

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 72

14 }

15 func plainText() -> String {

16 return self.removeCharacters(from:

17 "\"`()%$#@[]{}<>").replacingOccurrences(of: "\n\

18 ",

19 with: " ")

20 }

21 }

Implementing a Local Vector Database for Document
Embeddings

1 let openai_key = ProcessInfo.processInfo.environment["OPENAI_KEY"]!

2

3 let openAiHost = "https://api.openai.com/v1/embeddings"

4

5 func openAiHelper(body: String) -> String {

6 var ret = ""

7 var content = "{}"

8 let requestUrl = URL(string: openAiHost)!

9 var request = URLRequest(url: requestUrl)

10 request.httpMethod = "POST"

11 request.httpBody = body.data(using: String.Encoding.utf8);

12 request.setValue("application/json", forHTTPHeaderField: "Content-Type")

13 request.setValue("Bearer " + openai_key, forHTTPHeaderField: "Authorization")

14 let task = URLSession.shared.dataTask(with: request) { (data, response, error) in

15 if let error = error {

16 print("-->> Error accessing OpenAI servers: \(error)")

17 return

18 }

19 if let data = data, let s = String(data: data, encoding: .utf8) {

20 content = s

21 //print("** s=", s)

22 CFRunLoopStop(CFRunLoopGetMain())

23 }

24 }

25 task.resume()

26 CFRunLoopRun()

27 let c = String(content)

28 let i1 = c.range(of: "\"embedding\":")

29 if let r1 = i1 {

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 73

30 let i2 = c.range(of: "]")

31 if let r2 = i2 {

32 ret = String(String(String(c[r1.lowerBound..<r2.lowerBound]).dropFirst(1\

33 5)).dropLast(2))

34 }

35 }

36 return ret

37 }

38

39 public func embeddings(someText: String) -> [Float] {

40 let body: String = "{\"input\": \"" + someText + "\", \"model\": \"text-embeddin\

41 g-ada-002\" }"

42 return readList(openAiHelper(body: body))

43 }

44

45 func dotProduct(_ list1: [Float], _ list2: [Float]) -> Float {

46 if list1.count != list2.count {

47 //fatalError("Lists must have the same length.")

48 print("WARNING: Lists must have the same length: \(list1.count) != \(list2.c\

49 ount)")

50 return 0.0

51 }

52

53 var result: Float = 0

54

55 for i in 0..<list1.count {

56 result += list1[i] * list2[i]

57 }

58

59 return result

60 }

The source file contains example code for creating embeddings and using dot product work to find
semantic similarity:

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 74

1 let emb1 = embeddings(someText: "John bought a new car")

2 let emb2 = embeddings(someText: "Sally drove to the store")

3 let emb3 = embeddings(someText: "The dog saw a cat")

4 let dotProductResult1 = dotProduct(emb1, emb2)

5 print(dotProductResult1)

6 let dotProductResult2 = dotProduct(emb1, emb3)

7 print(dotProductResult2)

The output is:

1 0.8416926

2 0.79411536

For this example, we use an in-memory store of embedding vectors and chunk text. A text document
is broken into smaller chunks of text. Each chunk is embedded and stored in the embeddingsStore.
The chunk text is stored in the chunks array. The embeddingsStore and chunks array are used to
find the most similar chunk to a prompt. The most similar chunk is used to generate a response to
the prompt.

1 var embeddingsStore: Array<[Float]> = Array()

2 var chunks: Array<String> = Array()

3

4 func addEmbedding(_ embedding: [Float]) {

5 embeddingsStore.append(embedding)

6 //print("Added embedding: count=\(embeddingsStore.count) \(embedding)")

7 }

8

9 func addChunk(_ chunk: String) {

10 chunks.append(chunk)

11 }

Create Local Embeddings Vectors From Local Text Files
With OpenAI GPT APIs

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 75

1 func readList(_ input: String) -> [Float] {

2 return input.split(separator: ",\n").compactMap {

3 Float($0.trimmingCharacters(in: .whitespaces))

4 }

5 }

6

7 let fileManager = FileManager.default

8 let currentDirectoryURL = URL(fileURLWithPath: fileManager.currentDirectoryPath)

9 let dataDirectoryURL = currentDirectoryURL.appendingPathComponent("data")

10

11 // Top level code expression to process all *.txt files in the data/ directory:

12

13 do {

14 let directoryContents = try fileManager.contentsOfDirectory(at: dataDirectoryURL\

15 , includingPropertiesForKeys: nil)

16 let txtFiles = directoryContents.filter { $0.pathExtension == "txt" }

17 for txtFile in txtFiles {

18 let content = try String(contentsOf: txtFile)

19 let chnks = segmentTextIntoChunks(text: content.plainText(),

20 max_chunk_size: 100)

21 for chunk in chnks {

22 let embedding = embeddings(someText: chunk)

23 if embedding.count > 0 {

24 addEmbedding(embedding)

25 addChunk(chunk)

26 }

27 }

28 }

29 } catch {

30 }

31

32 func segmentTextIntoSentences(text: String) -> [String] {

33 let tokenizer = NLTokenizer(unit: .sentence)

34 tokenizer.string = text

35 let sentences = tokenizer.tokens(for: text.startIndex..<text.endIndex).map {

36 token -> String in

37 return String(text[token.lowerBound..<token.upperBound])

38 }

39 return sentences

40 }

41

42 func segmentTextIntoChunks(text: String, max_chunk_size: Int) -> [String] {

43 let sentences = segmentTextIntoSentences(text: text)

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 76

44 var chunks: Array<String> = Array()

45 var currentChunk = ""

46 var currentChunkSize = 0

47 for sentence in sentences {

48 if currentChunkSize + sentence.count < max_chunk_size {

49 currentChunk += sentence

50 currentChunkSize += sentence.count

51 } else {

52 chunks.append(currentChunk)

53 currentChunk = sentence

54 currentChunkSize = sentence.count

55 }

56 }

57 return chunks

58 }

Using Local Embeddings Vector Database With OpenAI
GPT APIs

We use the OpenAI QA API using gpt-4o-mini model (reformatted to fit the page width):

1 let openAiQaHost = "https://api.openai.com/v1/chat/completions"

2

3 func openAiQaHelper(body: String) -> String {

4 var ret = ""

5 var content = "{}"

6 let requestUrl = URL(string: openAiQaHost)!

7 var request = URLRequest(url: requestUrl)

8 request.httpMethod = "POST"

9 request.httpBody = body.data(using: String.Encoding.utf8);

10 request.setValue("application/json", forHTTPHeaderField: "Content-Type")

11 request.setValue("Bearer " + openai_key, forHTTPHeaderField: "Authorization")

12 let task = URLSession.shared.dataTask(with: request) { (data, response, error) in

13 if let error = error {

14 print("-->> Error accessing OpenAI servers: \(error)")

15 return

16 }

17 if let data = data, let s = String(data: data, encoding: .utf8) {

18 content = s

19 CFRunLoopStop(CFRunLoopGetMain())

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 77

20 }

21 }

22 task.resume()

23 CFRunLoopRun()

24 let c = String(content)

25 //print("DEBUG response c:", c)

26 // pull returned content for string instead of using a

27 // JSON parser:

28 let i1 = c.range(of: "\"content\":")

29 if let r1 = i1 {

30 let i2 = c.range(of: "\"}")

31 if let r2 = i2 {

32 ret = String(

33 String(

34 String(c[r1.lowerBound..<r2.lowerBound])

35 .dropFirst(11)))

36 }

37 }

38 return ret

39 }

40

41 func questionAnswering(context: String, question: String) -> String {

42 let body = "{ \"model\": \"gpt-3.5-turbo\", \"messages\": [{\"role\": \"system\\

43 ", \"content\": \"" +

44 context + "\"}, {\"role\": \"user\", \"content\": \"" + question + "\"}]}"

45

46 //print("DEBUG body:", body)

47

48 let answer = openAiQaHelper(body: body)

49 if let i1 = answer.range(of: "\"content\":") {

50 // variable answer is a string containing JSON. We want to extract the value\

51 of the "content" key and we do so without using a JSON parser.

52 return String(answer[answer.startIndex..<i1.lowerBound])

53 }

54 return answer

55 }

56

57 // Top level query interface:

58

59 func query(_ query: String) -> String {

60 let queryEmbedding = embeddings(someText: query)

61 var contextText = ""

62 for i in 0..<embeddingsStore.count {

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 78

63 let dotProductResult = dotProduct(queryEmbedding, embeddingsStore[i])

64 if dotProductResult > 0.8 {

65 contextText.append(chunks[i])

66 contextText.append(" ")

67 }

68 }

69 //print("\n\n+++++++ contextText = \(contextText)\n\n")

70 let answer = questionAnswering(context: contextText, question: query)

71 //print("* * debug: query: ", query)

72 //print("* * debug: answer:", answer)

73 return answer

74

75 }

76

77 print(query("What is the history of chemistry?"))

78 print(query("What is the definition of sports?"))

79 print(query("What is the microeconomics?"))

The output for these three questions looks like:

1 The history of chemistry dates back to ancient times when people began to manipulate\

2 materials to produce useful products. The ancient Egyptians were skilled in metallu\

3 rgy and used various chemicals to embalm bodies. The Greeks were interested in theor\

4 ies of matter and sought to understand the nature of substances.\n\nDuring the Middl\

5 e Ages, alchemy became popular, with alchemists seeking to transform base metals int\

6 o gold and searching for an elixir of life. While alchemy was considered a pseudosci\

7 ence, it did lead to important discoveries such as the distillation of alcohol and t\

8 he discovery of various acids.\n\nThe Scientific Revolution of the 17th century brou\

9 ght about significant changes in chemistry. The work of Robert Boyle, Antoine Lavois\

10 ier, and others laid the foundation for modern chemistry. Lavoisier is considered th\

11 e father of modern chemistry for his work in establishing the law of conservation of\

12 mass, which states that matter cannot be created or destroyed.\n\nThe 19th century \

13 saw the development of organic chemistry, as scientists sought to understand the che\

14 mistry of carbon-based compounds, which make up many biological molecules. The 20th \

15 century brought about significant advances in analytical chemistry, as well as the d\

16 evelopment of quantum mechanics and the discovery of the structure of DNA, which rev\

17 olutionized the field of biochemistry.\n\nToday, chemistry plays a critical role in \

18 fields such as medicine, agriculture, materials science, and environmental science.

19

20

21 Sports can be defined as activities involving physical athleticism, physical dexteri\

22 ty, and governed by rules to ensure fair competition and consistent adjudication of \

23 the winner. The term \"sport\" originally meant leisure, but it now primarily refers\

Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database 79

24 to physical activities that involve competition at various levels of skill and prof\

25 iciency. Some organizations also include all physical activity and exercise in the d\

26 efinition of sport.

27

28

29 Microeconomics is a branch of economics that focuses on the behavior and decision-ma\

30 king of individual units within an economy, such as households, firms, and industrie\

31 s. It examines how these units interact in various markets to determine the prices o\

32 f goods and services and how resources are allocated efficiently. Microeconomics als\

33 o considers the role of government policies and regulations in influencing these int\

34 eractions and outcomes. Topics studied in microeconomics include supply and demand, \

35 market structures, consumer behavior, production and cost analysis, and welfare anal\

36 ysis.

Wrap Up for Using Local Embeddings Vector Database
to Enhance the Use of GPT3 APIs With Local
Documents

As I write this in early April 2023, I have been working almost exclusively with OpenAI APIs for the
last year and using the Python libraries for LangChain and LlamaIndex for the last three months.

I started writing the examples in this chapter for my own use, implementing a tiny subset of the
LangChain and LlamaIndex libraries in Swift in order to write efficient command line utilities for
creating local embedding vector data stores and for interactive chat using my own data.

By writing about my “scratching my own itch” command line experiments here I hope that I get
pull requests for https://github.com/mark-watson/Docs_QA_Swift from readers who are interested
in helping to extend this code with new functionality.

Part 4: Knowledge Representation
and Data Acquisition
In this part we cover:

• Introduction to the semantic web and linked data
• A general discussion of Knowledge Representation
• Create Knowledge Graphs from text input
• Knowledge Graph Explorer application

Linked Data and the Semantic Web
Tim Berners Lee, James Hendler, and Ora Lassila wrote in 2001 an article for Scientific American
where they introduced the term Semantic Web. Here I do not capitalize semantic web and use the
similar term linked data somewhat interchangeably with semantic web.

In the same way that the web allows links between related web pages, linked data supports linking
associated data on the web together. I view linked data as a relatively simple way to specify
relationships between data sources on the web while the semantic web has a much larger vision:
the semantic web has the potential to be the entirety of human knowledge represented as data on
the web in a form that software agents can work with to answer questions, perform research, and
to infer new data from existing data.

While the “web” describes information for human readers, the semantic web is meant to provide
structured data for ingestion by software agents. This distinction will be clear as we compare
WikiPedia, made for human readers, with DBPedia which uses the info boxes onWikiPedia topics to
automatically extract RDF data describingWikiPedia topics. Let’s look at theWikiPedia topic for the
town I live in Sedona, Arizona, and show how the info box on the English version of the WikiPedia
topic page for Sedona https://en.wikipedia.org/wiki/Sedona,_Arizona⁵⁰ maps to the DBPedia page
http://dbpedia.org/page/Sedona,_Arizona⁵¹. Please open both of these WikiPedia and DBPedia URIs
in two browser tabs and keep them open for reference.

I assume that the format of the WikiPedia page is familiar so let’s look at the DBPedia page for
Sedona that in human readble form shows the RDF statements with Sedona Arizona as the subject.
RDF is used to model and represent data. RDF is defined by three values so an instance of an RDF
statement is called a triple with three parts:

• subject: a URI (also referred to as a “Resource”)
• property: a URI (also referred to as a “Resource”)
• value: a URI (also referred to as a “Resource”) or a literal value (like a string or a number with
optional units)

The subject for each Sedona related triple is the above URI for the DBPedia human readable page.
The subject and property references in an RDF triple will almost always be a URI that can ground
an entity to information on the web. The human readable page for Sedona lists several properties
and the values of these properties. One of the properties is “dbo:areaCode” where “dbo” is a name
space reference (in this case for a DatatypeProperty⁵²).

⁵⁰https://en.wikipedia.org/wiki/Sedona,_Arizona
⁵¹http://dbpedia.org/page/Sedona,_Arizona
⁵²http://www.w3.org/2002/07/owl#DatatypeProperty

https://en.wikipedia.org/wiki/Sedona,_Arizona
https://en.wikipedia.org/wiki/Sedona,_Arizona
http://dbpedia.org/page/Sedona,_Arizona
http://dbpedia.org/page/Sedona,_Arizona
http://www.w3.org/2002/07/owl#DatatypeProperty
https://en.wikipedia.org/wiki/Sedona,_Arizona
http://dbpedia.org/page/Sedona,_Arizona
http://www.w3.org/2002/07/owl#DatatypeProperty

Linked Data and the Semantic Web 82

The following two figures show an abstract representation of linked data and then a sample of linked
data with actual web URIs for resources and properties:

Abstract RDF representation with 2 Resources, 2 literal values, and 3 Properties

Linked Data and the Semantic Web 83

Concrete example using RDF seen in last chapter showing the RDF representation with 2 Resources, 2 literal values,
and 3 Properties

We will use the SPARQL query language (SPARQL for RDF data is similar to SQL for relational
database queries). Let’s look at an example using the RDF in the last figure:

1 "select ?v where { <http://markwatson.com/index.rdf#Sun_ONE>

2 <http://www.ontoweb.org/ontology/1#booktitle>

3 ?v }

This query should return the result “Sun ONE Services - J2EE”. If you wanted to query for all URI
resources that are books with the literal value of their titles, then you can use:

1 "select ?s ?v where { ?s

2 <http://www.ontoweb.org/ontology/1#booktitle>

3 ?v }

Note that ?s and ?v are arbitrary query variable names, here standing for “subject” and “value”. You
can use more descriptive variable names like:

1 "select ?bookURI ?bookTitle where

2 { ?bookURI

3 <http://www.ontoweb.org/ontology/1#booktitle>

4 ?bookTitle }

We will be diving a little deeper into RDF examples in the next chapter when we write a tool for
using RDF data from DBPedia to find information about entities (e.g., people, places, organizations)

Linked Data and the Semantic Web 84

and the relationships between entities. For now I want you to understand the idea of RDF statements
represented as triples, that web URIs represent things, properties, and sometimes values, and that
URIs can be followed manually (often called “dereferencing”) to see what they reference in human
readable form.

Understanding the Resource Description Framework
(RDF)

Text data on the web has some structure in the form of HTML elements like headers, page titles,
anchor links, etc. but this structure is too imprecise for general use by software agents. RDF is a
method for encoding structured data in a more precise way.

RDF specifies graph structures and can be serialized for storage or for service calls in XML,
Turtle, N3, and other formats. I like the Turtle format and suggest that you pause reading this
book for a few minutes and look at this World Wide Web Consortium Turtle RDF primer at
https://www.w3.org/2007/02/turtle/primer/⁵³.

Frequently Used Resource Namespaces

The following standard namespaces are frequently used:

• RDF https://www.w3.org/TR/rdf-syntax-grammar/⁵⁴
• RDFS https://www.w3.org/TR/rdf-schema/⁵⁵
• OWL http://www.w3.org/2002/07/owl#⁵⁶
• XSD http://www.w3.org/2001/XMLSchema#⁵⁷
• FOAF http://xmlns.com/foaf/0.1/⁵⁸
• SKOS http://www.w3.org/2004/02/skos/core#⁵⁹
• DOAP http://usefulinc.com/ns/doap#⁶⁰
• DC http://purl.org/dc/elements/1.1/⁶¹
• DCTERMS http://purl.org/dc/terms/⁶²
• VOID http://rdfs.org/ns/void#⁶³

Let’s look into the Friend of a Friend (FOAF) namespace. Click on the above link for FOAF
http://xmlns.com/foaf/0.1/⁶⁴ and find the definitions for the FOAF Core:

⁵³https://www.w3.org/2007/02/turtle/primer/
⁵⁴https://www.w3.org/TR/rdf-syntax-grammar/
⁵⁵https://www.w3.org/TR/rdf-schema/
⁵⁶http://www.w3.org/2002/07/owl#
⁵⁷http://www.w3.org/2001/XMLSchema#
⁵⁸http://xmlns.com/foaf/0.1/
⁵⁹http://www.w3.org/2004/02/skos/core#
⁶⁰http://usefulinc.com/ns/doap#
⁶¹http://purl.org/dc/elements/1.1/
⁶²http://purl.org/dc/terms/
⁶³http://rdfs.org/ns/void#
⁶⁴http://xmlns.com/foaf/0.1/

https://www.w3.org/2007/02/turtle/primer/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-schema/
http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema
http://xmlns.com/foaf/0.1/
http://www.w3.org/2004/02/skos/core
http://usefulinc.com/ns/doap
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://rdfs.org/ns/void
http://xmlns.com/foaf/0.1/
https://www.w3.org/2007/02/turtle/primer/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-schema/
http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema
http://xmlns.com/foaf/0.1/
http://www.w3.org/2004/02/skos/core
http://usefulinc.com/ns/doap
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://rdfs.org/ns/void
http://xmlns.com/foaf/0.1/

Linked Data and the Semantic Web 85

1 Agent

2 Person

3 name

4 title

5 img

6 depiction (depicts)

7 familyName

8 givenName

9 knows

10 based_near

11 age

12 made (maker)

13 primaryTopic (primaryTopicOf)

14 Project

15 Organization

16 Group

17 member

18 Document

19 Image

and for the Social Web:

1 mbox

2 homepage

3 weblog

4 openid

5 jabberID

6 mbox_sha1sum

7 interest

8 topic_interest

9 topic (page)

10 workplaceHomepage

11 workInfoHomepage

12 schoolHomepage

13 publications

14 currentProject

15 pastProject

16 account

17 OnlineAccount

18 accountName

19 accountServiceHomepage

20 PersonalProfileDocument

21 tipjar

Linked Data and the Semantic Web 86

22 sha1

23 thumbnail

24 logo

You now have seen a few common Schemas for RDF data. Another Schema that is widely used for
annotating web sites that we won’t need for our examples here, is schema.org⁶⁵.

Understanding the SPARQL Query Language

For the purposes of the material in this book, the two sample SPARQL queries here are sufficient for
you to get started using my SPARQL library https://github.com/mark-watson/SparqlQuery_swift⁶⁶
with arbitrary RDF data sources and simple queries.

My Swift SPARQL library open in Xcode

The Apache Foundation has a good introduction to SPARQL⁶⁷ that I refer you to for more
information.

Semantic Web and Linked Data Wrap Up

In the next chapter we will use natural language processing to extract structured information from
raw text from SPARQL queries. Wewill be using my Swift SPARQL library https://github.com/mark-
watson/SparqlQuery_swift⁶⁸ as well as two pre-trained CoreML deep learning models.

⁶⁵https://schema.org
⁶⁶https://github.com/mark-watson/SparqlQuery_swift
⁶⁷https://jena.apache.org/tutorials/sparql.html
⁶⁸https://github.com/mark-watson/SparqlQuery_swift

https://schema.org/
https://github.com/mark-watson/SparqlQuery_swift
https://jena.apache.org/tutorials/sparql.html
https://github.com/mark-watson/SparqlQuery_swift
https://github.com/mark-watson/SparqlQuery_swift
https://schema.org/
https://github.com/mark-watson/SparqlQuery_swift
https://jena.apache.org/tutorials/sparql.html
https://github.com/mark-watson/SparqlQuery_swift

Example Application: iOS and macOS
Versions of my
KnowledgeBookNavigator
I used many of the techniques discussed in this book, the Swift language, and the SwiftUI user
interface framework to develop Swift version of my Knowledge Graph Navigator application for
macOS. I originally wrote this as an example program in Common Lisp for another book project.

The GitHub repository for the KGN example is https://github.com/mark-watson/KGN⁶⁹. I copied the
code from my stand-alone Swift libraries to this example to make it self contained. The easiest way
to browse the source code is to open this project in Xcode.

I submitted the KGN app that we discuss in this chapter to Apple’s store and is available as a macOS
app. If you load this project into Xcode, you can also build and run the iOS and iPadOS targets.

You will need to have read through the last chapter on semantic web and linked data technologies
to understand this example because quite a lot of the code has embedded SPARQL queries to get
information from DBPedia.org⁷⁰.

The other major part of this app is a slightly modified version of Apple’s question answering (QA)
example using the BERT model in CoreML. Apple’s code is in the subdirectory AppleBERT. Please
read the README file for this project and follow the directions for downloading and using Apple’s
model and vocabulary file.

Screen Shots of macOS Application

In the first screenshot seen below, I had entered query text that included “Steve Jobs” and the popup
list selector is used to let the user select which “Steve Jobs” entity from DBPedia that they want to
use.

⁶⁹https://github.com/mark-watson/KGN
⁷⁰https://dbpedia.org

https://github.com/mark-watson/KGN
https://dbpedia.org/
https://github.com/mark-watson/KGN
https://dbpedia.org/

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 88

Entered query and KGN is asking user to disambiguate which “Steve Jobs” they want information for

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 89

Showing results

The previous screenshot shows the results to the query displayed as English text.

Notice the app prompt “Behind the scenes SPARQL queries” near the bottom of the app window. If
you click on this field then the SPARQL queries used to answer the question are shown, as on the
next screenshot:

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 90

Showing SPARQL queries used to gather data

Application Code Listings

I will list some of the code for this example application and I suggest that you, dear reader, also open
this project in Xcode in order to navigate the sample code and more carefully read through it.

SPARQL

I introduced you to the use of SPARQL in the last chapter. This library can be used by adding
a reference to the Project.swift file for this project. You can also clone the GitHub repository
https://github.com/mark-watson/Nlp_swift⁷¹ to have the source code for local viewing and modi-
fication and I have copied the code into the KGN project.

The file SparqlQuery.swift is shown here:

⁷¹https://github.com/mark-watson/Nlp_swift

https://github.com/mark-watson/Nlp_swift
https://github.com/mark-watson/Nlp_swift
https://github.com/mark-watson/Nlp_swift

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 91

1 import Foundation

2

3 public func sparqlDbPedia(query: String) -> Array<Dictionary<String,String>> {

4 return SparqlEndpointHelpter(query: query,

5 endPointUri: "https://dbpedia.org/sparql?query=") }

6

7 public func sparqlWikidata(query: String) -> Array<Dictionary<String,String>> {

8 return SparqlEndpointHelpter(query: query,

9 endPointUri:

10 "https://query.wikidata.org/bigdata/namespace/wdq/sparql?query=") }

11

12 public func SparqlEndpointHelpter(query: String,

13 endPointUri: String) ->

14 Array<Dictionary<String,String>> {

15 var ret = Set<Dictionary<String,String>>();

16 var content = "{}"

17

18 let maybeString = cacheLookupQuery7(key: query)

19 if maybeString?.count ?? 0 > 0 {

20 content = maybeString ?? ""

21 } else {

22 let requestUrl = URL(string: String(endPointUri + query.addingPercentEncodin\

23 g(withAllowedCharacters:

24 .urlHostAllowed)!) + "&format=json")!

25 do { content = try String(contentsOf: requestUrl) }

26 catch let error { print(error) }

27 }

28 let json = try? JSONSerialization.jsonObject(with: Data(content.utf8),

29 options: [])

30 if let json2 = json as! Optional<Dictionary<String, Any?>> {

31 if let head = json2["head"] as? Dictionary<String, Any> {

32 if let xvars = head["vars"] as! NSArray? {

33 if let results = json2["results"] as? Dictionary<String, Any> {

34 if let bindings = results["bindings"] as! NSArray? {

35 if bindings.count > 0 {

36 for i in 0...(bindings.count-1) {

37 if let first_binding =

38 bindings[i] as? Dictionary<String,

39 Dictionary<String,String>> {

40 var ret2 = Dictionary<String,String>();

41 for key in xvars {

42 let key2 : String = key as! String

43 if let vals = (first_binding[key2]) {

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 92

44 let vv : String = vals["value"] ?? "err2"

45 ret2[key2] = vv } }

46 if ret2.count > 0 {

47 ret.insert(ret2)

48 }}}}}}}}}

49 return Array(ret) }

The file QueryCache.swift contains code written by Khoa Pham (MIT License) that can be found
in the GitHub repository https://github.com/onmyway133/EasyStash⁷². This file is used to cache
SPARQL queries and the results. In testing this application I noticed that there were many repeated
queries to DBPedia so I decided to cache results. Here is the simple API I added on top of Khoa
Pham’s code:

1 // Created by khoa on 27/05/2019.

2 // Copyright © 2019 Khoa Pham. All rights reserved. MIT License.

3 // https://github.com/onmyway133/EasyStash

4 //

5

6 import Foundation

7

8 // Mark's simple wrapper:

9

10 var storage: Storage? = nil

11

12 public func cacheStoreQuery(key: String, value: String) {

13 do { try storage?.save(object: value, forKey: key) } catch {}

14 }

15 public func cacheLookupQuery7(key: String) -> String? {

16 // optional DEBUG code: clear cache

17 //do { try storage?.removeAll() } catch { print("ERROR CLEARING CACHE") }

18 do {

19 return try storage?.load(forKey: key, as: String.self)

20 } catch { return "" }

21 }

22

23 // remaining code not shown for brevity.

The code in file GenerateSparql.swift is used to generate queries for DBPedia. The line-wrapping
for embedded SPARQL queries in the next code section is difficult to read so you may want to open
the source file in Xcode. Please note that the KGN application prints out the SPARQL queries used to
fetch information from DBPedia. The embedded SPARQL query templates used here have variable
slots that filled in at runtime to customize the queries.

⁷²https://github.com/onmyway133/EasyStash

https://github.com/onmyway133/EasyStash
https://github.com/onmyway133/EasyStash

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 93

1 //

2 // GenerateSparql.swift

3 // KGNbeta1

4 //

5 // Created by Mark Watson on 2/28/20.

6 // Copyright © 2021 Mark Watson. All rights reserved.

7 //

8

9 import Foundation

10

11 public func uri_to_display_text(uri: String)

12 -> String {

13 return uri.replacingOccurrences(of: "http://dbpedia.org/resource/Category/",

14 with: "").

15 replacingOccurrences(of: "http://dbpedia.org/resource/",

16 with: "").

17 replacingOccurrences(of: "_", with: " ")

18 }

19

20 public func get_SPARQL_for_finding_URIs_for_PERSON_NAME(nameString: String)

21 -> String {

22 return

23 "# SPARQL to find all URIs for name: " +

24 nameString + "\nSELECT DISTINCT ?person_uri ?comment {\n" +

25 " ?person_uri <http://xmlns.com/foaf/0.1/name> \"" +

26 nameString + "\"@en .\n" +

27 " OPTIONAL { ?person_uri <http://www.w3.org/2000/01/rdf-schema#comment>\n" +

28 " ?comment . FILTER (lang(?comment) = 'en') } .\n" +

29 "} LIMIT 10\n"

30 }

31

32 public func get_SPARQL_for_PERSON_URI(aURI: String) -> String {

33 return

34 "# <" + aURI + ">\nSELECT DISTINCT ?comment (GROUP_CONCAT(DISTINCT ?birthpla\

35 ce; SEPARATOR=' | ') AS ?birthplace)\n (GROUP_CONCAT(DISTINCT ?almamater; SEPARATOR\

36 =' | ') AS ?almamater) (GROUP_CONCAT(DISTINCT ?spouse; SEPARATOR=' | ') AS ?spouse) \

37 {\n" +

38 " <" + aURI + "> <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .\

39 FILTER (lang(?comment) = 'en') .\n" +

40 " OPTIONAL { <" + aURI + "> <http://dbpedia.org/ontology/birthPlace> ?birth\

41 place } .\n" +

42 " OPTIONAL { <" + aURI + "> <http://dbpedia.org/ontology/almaMater> ?almama\

43 ter } .\n" +

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 94

44 " OPTIONAL { <" + aURI + "> <http://dbpedia.org/ontology/spouse> ?spouse } \

45 .\n" +

46 "} LIMIT 5\n"

47 }

48

49 public func get_display_text_for_PERSON_URI(personURI: String) -> [String] {

50 var ret: String = "\(uri_to_display_text(uri: personURI))\n\n"

51 let person_details_sparql = get_SPARQL_for_PERSON_URI(aURI: personURI)

52 let person_details = sparqlDbPedia(query: person_details_sparql)

53

54 for pd in person_details {

55 //let comment = pd["comment"]

56 ret.append("\(pd["comment"] ?? "")\n\n")

57 let subject_uris = pd["subject_uris"]

58 let uri_list: [String] = subject_uris?.components(separatedBy: " | ") ?? []

59 //ret.append("\n")

60 for u in uri_list {

61 let subject = uri_to_display_text(uri: u)

62 ret.append("\(subject)\n") }

63 //ret.append("\n")

64 if let spouse = pd["spouse"] {

65 if spouse.count > 0 {

66 ret.append("Spouse: \(uri_to_display_text(uri: spouse))\n") } }

67 if let almamater = pd["almamater"] {

68 if almamater.count > 0 {

69 ret.append("Almamater: \(uri_to_display_text(uri: almamater))\n") } }

70 if let birthplace = pd["birthplace"] {

71 if birthplace.count > 0 {

72 ret.append("Birthplace: \(uri_to_display_text(uri: birthplace))\n") \

73 } }

74 }

75 return ["# SPARQL for a specific person:\n" + person_details_sparql, ret]

76 }

77

78 // " ?place_uri <http://xmlns.com/foaf/0.1/name> \"" + placeString + "\"@en .\n\

79 " +

80

81 public func get_SPARQL_for_finding_URIs_for_PLACE_NAME(placeString: String)

82 -> String {

83 return

84 "# " + placeString + "\nSELECT DISTINCT ?place_uri ?comment {\n" +

85 " ?place_uri rdfs:label \"" + placeString + "\"@en .\n" +

86 " ?place_uri <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://sche\

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 95

87 ma.org/Place> .\n" +

88 " OPTIONAL { ?place_uri <http://www.w3.org/2000/01/rdf-schema#comment>\n" +

89 " ?comment . FILTER (lang(?comment) = 'en') } .\n" +

90 "} LIMIT 10\n"

91 }

92

93 public func get_SPARQL_for_PLACE_URI(aURI: String) -> String {

94 return

95 "# <" + aURI + ">\nSELECT DISTINCT ?comment (GROUP_CONCAT(DISTINCT ?subject_\

96 uris; SEPARATOR=' | ') AS ?subject_uris) {\n" +

97 " <" + aURI + "> <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .\

98 FILTER (lang(?comment) = 'en') .\n" +

99 " OPTIONAL { <" + aURI + "> <http://purl.org/dc/terms/subject> ?subject_uri\

100 s } .\n" +

101 "} LIMIT 5\n"

102 }

103

104 public func get_HTML_for_place_URI(placeURI: String) -> String {

105 var ret: String = "<h2>" + placeURI + "</h2>\n"

106 let place_details_sparql = get_SPARQL_for_PLACE_URI(aURI: placeURI)

107 let place_details = sparqlDbPedia(query: place_details_sparql)

108

109 for pd in place_details {

110 //let comment = pd["comment"]

111 ret.append("<p>\(pd["comment"] ?? "")</p>\n")

112 let subject_uris = pd["subject_uris"]

113 let uri_list: [String] = subject_uris?.components(separatedBy: " | ") ?? []

114 ret.append("\n")

115 for u in uri_list {

116 let subject = u.replacingOccurrences(of: "http://dbpedia.org/resource/Ca\

117 tegory:", with: "").replacingOccurrences(of: "_", with: " ").replacingOccurrences(of\

118 : "-", with: " ")

119 ret.append(" \(subject)\n")

120 }

121 ret.append("\n")

122 }

123 return ret

124 }

125

126 public func get_SPARQL_for_finding_URIs_for_ORGANIZATION_NAME(orgString: String) -> \

127 String {

128 return

129 "# " + orgString + "\nSELECT DISTINCT ?org_uri ?comment {\n" +

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 96

130 " ?org_uri rdfs:label \"" + orgString + "\"@en .\n" +

131 " ?org_uri <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema\

132 .org/Organization> .\n" +

133 " OPTIONAL { ?org_uri <http://www.w3.org/2000/01/rdf-schema#comment>\n" +

134 " ?comment . FILTER (lang(?comment) = 'en') } .\n" +

135 "} LIMIT 2\n"

136 }

The file AppSparql contains more utility functions for getting entity and relationship data from
DBPedia:

1 // AppSparql.swift

2 // Created by ML Watson on 7/18/21.

3

4 import Foundation

5

6 let detailSparql = """

7 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

8 select ?entity ?label ?description ?comment where {

9 ?entity rdfs:label "<name>"@en .

10 ?entity schema:description ?description . filter (lang(?description) = 'en') . f\

11 ilter(!regex(?description,"Wikimedia disambiguation page")) .

12 } limit 5000

13 """

14

15 let personSparql = """

16 select ?uri ?comment {

17 ?uri <http://xmlns.com/foaf/0.1/name> "<name>"@en .

18 ?uri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .

19 FILTER (lang(?comment) = 'en') .

20 }

21 """

22

23

24 let personDetailSparql = """

25 SELECT DISTINCT ?label ?comment

26

27 (GROUP_CONCAT (DISTINCT ?birthplace; SEPARATOR=' | ') AS ?birthplace)

28 (GROUP_CONCAT (DISTINCT ?almamater; SEPARATOR=' | ') AS ?almamater)

29 (GROUP_CONCAT (DISTINCT ?spouse; SEPARATOR=' | ') AS ?spouse) {

30 <name> <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .

31 FILTER (lang(?comment) = 'en') .

32 OPTIONAL { <name> <http://dbpedia.org/ontology/birthPlace> ?birthplace } .

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 97

33 OPTIONAL { <name> <http://dbpedia.org/ontology/almaMater> ?almamater } .

34 OPTIONAL { <name> <http://dbpedia.org/ontology/spouse> ?spouse } .

35 OPTIONAL { <name> <http://www.w3.org/2000/01/rdf-schema#label> ?label .

36 FILTER (lang(?label) = 'en') }

37 } LIMIT 10

38 """

39

40 let placeSparql = """

41 SELECT DISTINCT ?uri ?comment WHERE {

42 ?uri rdfs:label "<name>"@en .

43 ?uri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .

44 FILTER (lang(?comment) = 'en') .

45 ?place <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.org/Place\

46 > .

47 } LIMIT 80

48 """

49

50 let organizationSparql = """

51 SELECT DISTINCT ?uri ?comment WHERE {

52 ?uri rdfs:label "<name>"@en .

53 ?uri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment .

54 FILTER (lang(?comment) = 'en') .

55 ?uri <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.org/Organiz\

56 ation> .

57 } LIMIT 80

58 """

59

60 func entityDetail(name: String) -> [Dictionary<String,String>] {

61 var ret: [Dictionary<String,String>] = []

62 let sparql = detailSparql.replacingOccurrences(of: "<name>", with: name)

63 print(sparql)

64 let r = sparqlDbPedia(query: sparql)

65 r.forEach { result in

66 print(result)

67 ret.append(result)

68 }

69 return ret

70 }

71

72 func personDetail(name: String) -> [Dictionary<String,String>] {

73 var ret: [Dictionary<String,String>] = []

74 let sparql = personSparql.replacingOccurrences(of: "<name>", with: name)

75 print(sparql)

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 98

76 let r = sparqlDbPedia(query: sparql)

77 r.forEach { result in

78 print(result)

79 ret.append(result)

80 }

81 return ret

82 }

83

84 func placeDetail(name: String) -> [Dictionary<String,String>] {

85 var ret: [Dictionary<String,String>] = []

86 let sparql = placeSparql.replacingOccurrences(of: "<name>", with: name)

87 print(sparql)

88 let r = sparqlDbPedia(query: sparql)

89 r.forEach { result in

90 print(result)

91 ret.append(result)

92 }

93 return ret

94 }

95

96 func organizationDetail(name: String) -> [Dictionary<String,String>] {

97 var ret: [Dictionary<String,String>] = []

98 let sparql = organizationSparql.replacingOccurrences(of: "<name>", with: name)

99 print(sparql)

100 let r = sparqlDbPedia(query: sparql)

101 r.forEach { result in

102 print(result)

103 ret.append(result)

104 }

105 return ret

106 }

107

108 public func processEntities(inputString: String) -> [(name: String, type: String, ur\

109 i: String, comment: String)] {

110 let entities = getEntities(text: inputString)

111 var augmentedEntities: [(name: String, type: String, uri: String, comment: Strin\

112 g)] = []

113 for (entityName, entityType) in entities {

114 print("** entityName:", entityName, "entityType:", entityType)

115 if entityType == "PersonalName" {

116 let data = personDetail(name: entityName)

117 for d in data {

118 augmentedEntities.append((name: entityName, type: entityType,

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 99

119 uri: "<" + d["uri"]! + ">", comment: "<" + d["comment"]! + ">"))

120 }

121 }

122 if entityType == "OrganizationName" {

123 let data = organizationDetail(name: entityName)

124 for d in data {

125 augmentedEntities.append((name: entityName, type: entityType,

126 uri: "<" + d["uri"]! + ">", comment: "<" + d["comment"]! + ">"))

127 }

128 }

129 if entityType == "PlaceName" {

130 let data = placeDetail(name: entityName)

131 for d in data {

132 augmentedEntities.append((name: entityName, type: entityType,

133 uri: "<" + d["uri"]! + ">", comment: "<" + d["comment"]! + ">"))

134 }

135 }

136 }

137 return augmentedEntities

138 }

139

140

141 extension Array where Element: Hashable {

142 func uniqueValuesHelper() -> [Element] {

143 var addedDict = [Element: Bool]()

144 return filter { addedDict.updateValue(true, forKey: $0) == nil }

145 }

146 mutating func uniqueValues() {

147 self = self.uniqueValuesHelper()

148 }

149 }

150

151

152 func getAllRelationships(inputString: String) -> [String] {

153 let augmentedEntities = processEntities(inputString: inputString)

154 var relationshipTriples: [String] = []

155 for ae1 in augmentedEntities {

156 for ae2 in augmentedEntities {

157 if ae1 != ae2 {

158 let er1 = dbpediaGetRelationships(entity1Uri: ae1.uri,

159 entity2Uri: ae2.uri)

160 relationshipTriples.append(contentsOf: er1)

161 let er2 = dbpediaGetRelationships(entity1Uri: ae2.uri,

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 100

162 entity2Uri: ae1.uri)

163 relationshipTriples.append(contentsOf: er2)

164 }

165 }

166 }

167 relationshipTriples.uniqueValues()

168 relationshipTriples.sort()

169 return relationshipTriples

170 }

AppleBERT

The files in the directoryAppleBERTwere copied fromApple’s example https://developer.apple.com/documentation/coreml/model_-
integration_samples/finding_answers_to_questions_in_a_text_document⁷³ with a few changes to
get returned results in a convenient format for this application. Apple’s BERT documentation is
excellent and you should review it.

Relationships

The file Relationships.swift fetches relationship data for pairs of DBPedia entities. Note that the
first SPARQL template has variable slots <e1> and <e2> that are replaced at runtime with URIs
representing the entities that we are searching for relationships between these two entities:

1 // relationships between DBPedia entities

2

3 let relSparql = """

4 SELECT DISTINCT ?p {<e1> ?p <e2> .FILTER (!regex(str(?p), 'wikiPage', 'i'))} LIMIT 5

5 """

6

7 public func dbpediaGetRelationships(entity1Uri: String, entity2Uri: String)

8 -> [String] {

9 var ret: [String] = []

10 let sparql1 = relSparql.replacingOccurrences(of: "<e1>",

11 with: entity1Uri).replacingOccurrences(of: "<e2>",

12 with: entity2Uri)

13 let r1 = sparqlDbPedia(query: sparql1)

14 r1.forEach { result in

15 if let relName = result["p"] {

16 let rdfStatement = entity1Uri + " <" + relName + "> " + entity2Uri + " ."

17 print(rdfStatement)

⁷³https://developer.apple.com/documentation/coreml/model_integration_samples/finding_answers_to_questions_in_a_text_document

https://developer.apple.com/documentation/coreml/model_integration_samples/finding_answers_to_questions_in_a_text_document
https://developer.apple.com/documentation/coreml/model_integration_samples/finding_answers_to_questions_in_a_text_document
https://developer.apple.com/documentation/coreml/model_integration_samples/finding_answers_to_questions_in_a_text_document

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 101

18 ret.append(rdfStatement)

19 }

20 }

21 let sparql2 = relSparql.replacingOccurrences(of: "<e1>",

22 with: entity2Uri).replacingOccurrences(of: "<e2>",

23 with: entity1Uri)

24 let r2 = sparqlDbPedia(query: sparql2)

25 r2.forEach { result in

26 if let relName = result["p"] {

27 let rdfStatement = entity2Uri + " <" + relName + "> " + entity1Uri + " ."

28 print(rdfStatement)

29 ret.append(rdfStatement)

30 }

31 }

32 return Array(Set(ret))

33 }

34

35 public func uriToPrintName(_ uri: String) -> String {

36 let slashIndex = uri.lastIndex(of: "/")

37 if slashIndex == nil { return uri }

38 var s = uri[slashIndex!...]

39 s = s.dropFirst()

40 if s.count > 0 { s.removeLast() }

41 return String(s).replacingOccurrences(of: "_", with: " ")

42 }

43

44 public func relationshipsoEnglish(rs: [String]) -> String {

45 var lines: [String] = []

46 for r in rs {

47 let triples = r.split(separator: " ", maxSplits: 3,

48 omittingEmptySubsequences: true)

49 if triples.count > 2 {

50 lines.append(uriToPrintName(String(triples[0])) + " " +

51 uriToPrintName(String(triples[1])) + " " +

52 uriToPrintName(String(triples[2])))

53 } else {

54 lines.append(r)

55 }

56 }

57 let linesNoDuplicates = Set(lines)

58 return linesNoDuplicates.joined(separator: "\n")

59 }

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 102

NLP

The file NlpWhiteboard provides high level NLP utility functions for the application:

1 //

2 // NlpWhiteboard.swift

3 // KGN

4 //

5 // Copyright © 2021 Mark Watson. All rights reserved.

6 //

7

8 public struct NlpWhiteboard {

9

10 var originalText: String = ""

11 var people: [String] = []

12 var places: [String] = []

13 var organizations: [String] = []

14 var sparql: String = ""

15

16 init() { }

17

18 mutating func set_text(originalText: String) {

19 self.originalText = originalText

20 let (people, places, organizations) = getAllEntities(text: originalText)

21 self.people = people; self.places = places; self.organizations = organizatio\

22 ns

23 }

24

25 mutating func query_to_choices(behindTheScenesSparqlText: inout String)

26 -> [[[String]]] { // return inner: [comment, uri]

27 var ret: Set<[[String]]> = []

28 if people.count > 0 {

29 for i in 0...(people.count - 1) {

30 self.sparql =

31 get_SPARQL_for_finding_URIs_for_PERSON_NAME(nameString: people[i])

32 behindTheScenesSparqlText += self.sparql

33 let results = sparqlDbPedia(query: self.sparql)

34 if results.count > 0 {

35 ret.insert(results.map { [($0["comment"]

36 ?? ""),

37 ($0["person_uri"] ?? "")] })

38 }

39 }

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 103

40 }

41 if organizations.count > 0 {

42 for i in 0...(organizations.count - 1) {

43 self.sparql = get_SPARQL_for_finding_URIs_for_ORGANIZATION_NAME(

44 orgString: organizations[i])

45 behindTheScenesSparqlText += self.sparql

46 let results = sparqlDbPedia(query: self.sparql)

47 if results.count > 0 {

48 ret.insert(results.map { [($0["comment"] ??

49 ""), ($0["org_uri"] ?? "")] })

50 }

51 }

52 }

53 if places.count > 0 {

54 for i in 0...(places.count - 1) {

55 self.sparql = get_SPARQL_for_finding_URIs_for_PLACE_NAME(

56 placeString: places[i])

57 behindTheScenesSparqlText += self.sparql

58 let results = sparqlDbPedia(query: self.sparql)

59 if results.count > 0 {

60 ret.insert(results.map { [($0["comment"] ??

61 ""), ($0["place_uri"] ?? "")] })

62 }

63 }

64 }

65 //print("\n\n+++++++ ret:\n", ret, "\n\n")

66 return Array(ret)

67 }

68 }

The file NLPutils.swift provides lower level NLP utilities:

1 // NLPutils.swift

2 // KGN

3 //

4 // Copyright © 2021 Mark Watson. All rights reserved.

5 //

6

7 import Foundation

8 import NaturalLanguage

9

10 public func getPersonDescription(personName: String) -> [String] {

11 let sparql = get_SPARQL_for_finding_URIs_for_PERSON_NAME(nameString: personName)

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 104

12 let results = sparqlDbPedia(query: sparql)

13 return [sparql, results.map {

14 ($0["comment"] ?? $0["abstract"] ?? "") }.joined(separator: " . ")]

15 }

16

17

18 public func getPlaceDescription(placeName: String) -> [String] {

19 let sparql = get_SPARQL_for_finding_URIs_for_PLACE_NAME(placeString: placeName)

20 let results = sparqlDbPedia(query: sparql)

21 return [sparql, results.map { ($0["comment"] ??

22 $0["abstract"] ?? "") }.joined(separator: " . ")]

23 }

24

25 public func getOrganizationDescription(organizationName: String) -> [String] {

26 let sparql = get_SPARQL_for_finding_URIs_for_ORGANIZATION_NAME(

27 orgString: organizationName)

28 let results = sparqlDbPedia(query: sparql)

29 print("=== getOrganizationDescription results =\n", results)

30 return [sparql, results.map { ($0["comment"] ?? $0["abstract"] ?? "") }

31 .joined(separator: " . ")]

32 }

33

34 let tokenizer = NLTokenizer(unit: .word)

35 let tagger = NSLinguisticTagger(tagSchemes:[.tokenType, .language, .lexicalClass,

36 .nameType, .lemma], options: 0)

37 let options: NSLinguisticTagger.Options =

38 [.omitPunctuation, .omitWhitespace, .joinNames]

39

40 let tokenizerOptions: NSLinguisticTagger.Options =

41 [.omitPunctuation, .omitWhitespace, .joinNames]

42

43 public func getEntities(text: String) -> [(String, String)] {

44 var words: [(String, String)] = []

45 tagger.string = text

46 let range = NSRange(location: 0, length: text.utf16.count)

47 tagger.enumerateTags(in: range, unit: .word,

48 scheme: .nameType, options: options) { tag, tokenRange, stop in

49 let word = (text as NSString).substring(with: tokenRange)

50 let tagType = tag?.rawValue ?? "unkown"

51 if tagType != "unkown" && tagType != "OtherWord" {

52 words.append((word, tagType))

53 }

54 }

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 105

55 return words

56 }

57

58 public func tokenizeText(text: String) -> [String] {

59 var tokens: [String] = []

60 tokenizer.string = text

61 tokenizer.enumerateTokens(in: text.startIndex..<text.endIndex) { tokenRange, _ in

62 tokens.append(String(text[tokenRange]))

63 return true

64 }

65 return tokens

66 }

67

68 let entityTagger = NLTagger(tagSchemes: [.nameType])

69 let entityOptions: NLTagger.Options = [.omitPunctuation, .omitWhitespace, .joinNames]

70 let entityTagTypess: [NLTag] = [.personalName, .placeName, .organizationName]

71

72 public func getAllEntities(text: String) -> ([String],[String],[String]) {

73 var words: [(String, String)] = []

74 var people: [String] = []

75 var places: [String] = []

76 var organizations: [String] = []

77 entityTagger.string = text

78 entityTagger.enumerateTags(in: text.startIndex..<text.endIndex, unit: .word,

79 scheme: .nameType, options: entityOptions) { tag, tokenRange in

80 if let tag = tag, entityTagTypess.contains(tag) {

81 let word = String(text[tokenRange])

82 if tag.rawValue == "PersonalName" {

83 people.append(word)

84 } else if tag.rawValue == "PlaceName" {

85 places.append(word)

86 } else if tag.rawValue == "OrganizationName" {

87 organizations.append(word)

88 } else {

89 print("\nERROR: unkown entity type: |\(tag.rawValue)|")

90 }

91 words.append((word, tag.rawValue))

92 }

93 return true

94 }

95 return (people, places, organizations)

96 }

97

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 106

98 func splitLongStrings(_ s: String, limit: Int) -> String {

99 var ret: [String] = []

100 let tokens = s.split(separator: " ")

101 var subLine = ""

102 for token in tokens {

103 if subLine.count > limit {

104 ret.append(subLine)

105 subLine = ""

106 } else {

107 subLine = subLine + " " + token

108 }

109 }

110 if subLine.count > 0 {

111 ret.append(subLine)

112 }

113 return ret.joined(separator: "\n")

114 }

Views

This is not a book about SwiftUI programming, and indeed I expect many of you dear readers know
much more about UI development with SwiftUI than I do. I am not going to list the four view files:

• MainView.swift
• QueryView.swift
• AboutView.swift
• InfoView.swift

Main KGN

The top level app code in the file KGNApp.swift is fairly simple. I hardcoded the window size for
macOS and the window sizes for running this example on iPadOS or iOS are commented out:

Example Application: iOS and macOS Versions of my KnowledgeBookNavigator 107

1 import SwiftUI

2

3 @main

4 struct KGNApp: App {

5 var body: some Scene {

6 WindowGroup {

7 MainView()

8 .frame(width: 1200, height: 770) // << here !!

9 //.frame(width: 660, height: 770) // << here !!

10 //..frame(width: 500, height: 800) // << here !!

11 }

12 }

13 }

I was impressed by the SwiftUI framework. Applications are fairly portable across macOS, iOS, and
iPadOS. I am not a UI developer by profession (as this application shows) but I enjoyed learning just
enough about SwiftUI to write this example application.

Part 5: Apple Intelligence
Developers Can NowWeave Apple Intelligence Directly
Into Their Apps

Dear reader, Apple has opened up its new “Apple Intelligence” system to third-party developers, pro-
viding a suite of tools and APIs to create more personalized and powerful applications. Developers
can primarily leverage this technology through the new FoundationModels framework, which offers
direct access to Apple’s on-device generative models. This allows for the integration of sophisticated
features like text summarization, content creation, and message rewriting directly within an app’s
interface, all while processing user data locally on the device to ensure privacy.

Furthermore, developers can utilize an expanded App Intents framework to make their application’s
content and functionalities accessible to system-wide services like Siri and Shortcuts. This deeper
integration allows users to interact with apps using natural language and create complex, multi-app
workflows. For instance, a user could ask Siri to “find all photos of my dog from last summer and
create a collage in my favorite editing app,” and the system, through App Intents, would understand
and execute this command. The Image Playground API also allows for the seamless inclusion of
image generation capabilities, enabling users to create unique visuals within the context of the app
they are using.

Key Advantages for Developers:

• Enhanced User Experience: By integrating features like personalized content suggestions,
intelligent summarization, and natural language interaction, developers can create more
intuitive and engaging applications that anticipate user needs.

• On-Device Processing for Privacy and Performance: A significant advantage is the on-device
nature of Apple Intelligence. This approach enhances user privacy and security by keeping
personal data on the device. It also improves app performance and responsiveness by reducing
reliance on cloud-based processing.

• Access to Powerful Generative Models: Developers gain access to Apple’s sophisticated
generative models without the need to build and train their own. This allows for the rapid
implementation of advanced AI features that were previously complex and resource-intensive
to develop.

• Deeper System Integration: The enhanced App Intents framework provides a new level of
integration with core iOS, iPadOS, and macOS features. This allows apps to become more
discoverable and useful within the broader Apple ecosystem, extending their functionality
beyond the confines of the app itself.

Using Apple Intelligence’s Default
System Model To Build a Chat
Command Line Tool
Here we create a simple command line chat tool. The LLM specific code can also be used in iOS,
iPadOS, and macOS applications. This chat tool will use the local system LLM for simple queries and
will transparently call a more capable model on Apple’s servers in a secure and privacy preserving
sandbox.

The following Swift packagemanifest defines an executable command-line program named chattool
designed to run on macOS. The tool relies on Apple’s swift-argument-parser package to process
command-line arguments.

Package.swift:

1 // swift-tools-version: 6.2

2 import PackageDescription

3

4 let package = Package(

5 name: "ChatTool",

6 platforms: [.macOS(.v26)], // macOS 15/16 is fine too

7 products: [

8 .executable(name: "chattool", targets: ["ChatTool"])

9],

10 dependencies: [

11 // � Apple’s official argument-parsing package

12 .package(url: "https://github.com/apple/swift-argument-parser.git",

13 from: "1.3.0")

14],

15 targets: [

16 .executableTarget(

17 name: "ChatTool",

18 // expose the ArgumentParser product to the target

19 dependencies: [

20 .product(name: "ArgumentParser", package: "swift-argument-parser")

21 // FoundationModels is an Apple framework, no SPM entry needed

22],

23 path: "Sources/ChatTool" // adjust if your path differs

Using Apple Intelligence’s Default System Model To Build a Chat Command Line Tool 110

24)

25]

26)

ChatTool.swift:

This Swift code implements a command-line chat interface that interacts directly with Apple’s
native FoundationModels framework. Upon launch, it verifies the system’s default language model
is available, initializes a LanguageModelSession with a hard-coded system prompt and temperature,
and then enters a read-evaluate-print loop. The program continuously accepts user input from the
console and sends it to the language model for processing until the user quits.

The core of the implementation leverages modern Swift concurrency (async/await) to handle
the model’s output as an asynchronous stream. For each user prompt, it iterates through the
text fragments as they are generated by session.streamResponse, writing only the new characters
to standard output to create a real-time, typewriter-like effect. To enhance usability, it uses a
DispatchSource to set up a signal handler for SIGINT (Ctrl+C), allowing a user to cancel the current
in-progress stream from the model without terminating the entire chat application.

1 import Foundation

2 import FoundationModels

3 import Dispatch

4

5 @main

6 struct ChatCLI {

7 static func main() async throws {

8 // Hard-coded defaults

9 let temperature = 0.2

10 let sysPrompt = "You are a helpful assistant."

11

12 // Verify model

13 let model = SystemLanguageModel.default

14 guard model.isAvailable else {

15 throw RuntimeError("Model unavailable: \(model.availability)")

16 }

17

18 let session = LanguageModelSession(instructions: sysPrompt)

19 print("Temperature: \(temperature)")

20 print("System Prompt: \(sysPrompt)")

21 let options = GenerationOptions(temperature: temperature)

22

23 print("Apple-Intelligence chat (streaming, T=0.2). Type /quit to exit.\n")

24

25 while true {

Using Apple Intelligence’s Default System Model To Build a Chat Command Line Tool 111

26 print("Enter your message: ", terminator: "")

27 guard let prompt = readLine(strippingNewline: true) else { break }

28 if prompt.isEmpty || prompt == "/quit" { break }

29

30 var previous = "" // text already printed

31

32 let task = Task {

33 for try await part in session.streamResponse(to: prompt, options: op\

34 tions) {

35 let delta = part.dropFirst(previous.count) // new characters only

36 if !delta.isEmpty {

37 FileHandle.standardOutput.write(Data(delta.utf8))

38 fflush(stdout)

39 previous = part

40 }

41 }

42 print() // newline when complete

43 }

44

45 // ^C cancels the streaming task

46 signal(SIGINT, SIG_IGN)

47 let sigSrc = DispatchSource.makeSignalSource(signal: SIGINT, queue: .mai\

48 n)

49 sigSrc.setEventHandler { task.cancel() }

50 sigSrc.resume()

51 defer { sigSrc.cancel() }

52

53 _ = try await task.value

54 }

55 }

56 }

57

58 /// Simple error wrapper

59 struct RuntimeError: Error, CustomStringConvertible {

60 let description: String

61 init(_ msg: String) { description = msg }

62 }

Here are the first few lines of output given the prompt Describe the math for calculating the orbit of
Jupiter, then write a very short design for a Python script:

Using Apple Intelligence’s Default System Model To Build a Chat Command Line Tool 112

1 $ swift run

2 [1/1] Planning build

3 Building for debugging...

4 [1/1] Write swift-version-39B54973F684ADAB.txt

5 Build of product 'chattool' complete! (0.16s)

6 Temperature: 0.2

7 System Prompt: You are a helpful assistant.

8 Apple-Intelligence chat (streaming, T=0.2). Type /quit to exit.

9

10 Enter your message: Describe the math for calculating the orbit of Jupiter, then wri\

11 te a very short design for a Python script

12 Calculating the orbit of Jupiter involves solving Kepler's laws of planetary motion,\

13 which describe the elliptical orbits of planets around the Sun. The key equations i\

14 nvolve gravitational forces and conservation laws. Here's a brief overview of the ma\

15 th involved:

16

17 ### Key Concepts:

18

19 1. **Kepler's Laws:**

20 - **First Law (Law of Ellipses):** Planets move along ellipses with the Sun at on\

21 e focus.

22 - **Second Law (Law of Equal Areas):** A line segment joining a planet and the Su\

23 n sweeps out equal areas during equal intervals of time.

24 - **Third Law (Law of Harmonies):** The square of the orbital period (\(T\)) is p\

25 roportional to the cube of the semi-major axis (\(a\)): \(T^2 = \frac{4\pi^2}{GM}a^3\

26 \).

27

28 2. **Gravitational Force:**

29 - The gravitational force between two masses (\(m_1\) and \(m_2\)) is given by Ne\

30 wton's law: \(F = G \frac{m_1 m_2}{r^2}\), where \(G\) is the gravitational constant\

31 and \(r\) is the distance between centers.

32

33 3. **Centripetal Force:**

34 - For circular orbits, centripetal force equals gravitational force: \(F = \frac{\

35 mv^2}{r}\).

Using Apple Intelligence’s Default
System Model To Build a Coding
Assistant Command Line Tool
This tool looks in the current directory and all subdirectories for source code files and describes
them and then enters a chat loop for talking about the code.

Package.swift:

1 // swift-tools-version: 6.2

2 // The swift-tools-version declares the minimum version of Swift required to build t\

3 his package.

4

5 import PackageDescription

6

7 let package = Package(

8 name: "CodingCLI",

9

10 // 1 Tell SwiftPM we require at least macOS 12 so

11 // `Task.value`, async/await, and FoundationModels are available.

12 platforms: [

13 .macOS(.v26)

14],

15

16 products: [

17 .executable(name: "CodingCLI", targets: ["CodingCLI"])

18],

19

20 targets: [

21 .executableTarget(

22 name: "CodingCLI",

23

24 // 2 Link the system framework that ships with Xcode 17+

25 // (no external dependency required).

26 linkerSettings: [

27 .linkedFramework("FoundationModels")

28]

29)

Using Apple Intelligence’s Default System Model To Build a Coding Assistant Command Line Tool 114

30]

31)

CodingCLI.swift:

1 import Foundation

2 import FoundationModels

3 import Dispatch

4

5 @main

6 struct CodingCLI {

7 static func main() async throws {

8 // ---- 1. Gather candidate source files ----

9 let exts = ["swift", "py", "lisp"]

10 var blobs: [String] = []

11

12 let enumerator = FileManager.default.enumerator(atPath: ".")!

13

14 while let path = enumerator.nextObject() as? String { // avoids @noasync

15 guard let ext = path.split(separator: ".").last,

16 exts.contains(ext.lowercased()) else { continue }

17

18 if let data = FileManager.default.contents(atPath: path),

19 data.count < 8 * 1024 { // keep size filter

20 let text = String(decoding: data, as: UTF8.self) // non-optional

21 blobs.append("### \(path) ###\n\(text)")

22 }

23 }

24

25 let doc = blobs.joined(separator: "\n")

26 let summary = try await Self.summarize(doc)

27 print("\n=== Project Summary ===\n\(summary)\n")

28

29 // ---- 2. Start interactive chat loop ----

30 let session = LanguageModelSession(instructions:

31 "You are a helpful assistant.")

32 let options = GenerationOptions(temperature: 0.2)

33 print("Apple-Intelligence chat (streaming, T=0.2). Type /quit to exit.\n")

34

35 while let prompt = readLine(strippingNewline: true) {

36 if prompt.isEmpty || prompt == "/quit" { break }

37

38 var printed = ""

Using Apple Intelligence’s Default System Model To Build a Coding Assistant Command Line Tool 115

39 let task = Task {

40 for try await part in session.streamResponse(to: prompt,

41 options: options) {

42 let delta = part.dropFirst(printed.count)

43 if !delta.isEmpty {

44 FileHandle.standardOutput.write(Data(delta.utf8))

45 fflush(stdout)

46 printed = part

47 }

48 }

49 print()

50 }

51

52 signal(SIGINT, SIG_IGN)

53 let sig = DispatchSource.makeSignalSource(signal: SIGINT, queue: .main)

54 sig.setEventHandler { task.cancel() }

55 sig.resume()

56 defer { sig.cancel() }

57

58 _ = try await task.value

59 }

60 }

61

62 // ---- 3. Helper: summarize all code ----

63 static func summarize(_ text: String) async throws -> String {

64 let session = LanguageModelSession(

65 instructions: """

66 Summarize the following multi-file project. \

67 For each file give one bullet explaining its role, then \

68 a two-sentence overall description.

69 """

70)

71 let prompt = text.prefix(24 * 1024) // safety window

72 let resp = try await

73 session.respond(to: String(prompt),

74 options: GenerationOptions(temperature: 0))

75 return resp.content // unwrap Response<String>

76 }

77 }

Here is the output for running this tool in its own source directory:

Using Apple Intelligence’s Default System Model To Build a Coding Assistant Command Line Tool 116

1 $ swift run

2 Building for debugging...

3 [8/8] Applying CodingCLI

4 Build of product 'CodingCLI' complete! (3.23s)

5

6 === Project Summary ===

7 ### test.py

8 - **Role:** This script interacts with Groq to perform a chat completion task.

9 - **Description:** It sets up a chat session using Groq's API, sends a specific mess\

10 age, and prints the response, showcasing how to utilize Groq for conversational AI t\

11 asks.

12

13 ### Package.swift

14 - **Role:** Defines the Swift package configuration for the CodingCLI project.

15 - **Description:** This file specifies the project's platform requirements, defines \

16 the executable product, and outlines the executable target with necessary dependenci\

17 es.

18

19 ### Sources/CodingCLI/CodingCLI.swift

20 - **Role:** Serves as the entry point for the CodingCLI application, handling file s\

21 ummarization and chat interaction.

22 - **Description:** It processes source files to generate a summary, and manages an i\

23 nteractive chat loop using a language model, demonstrating integration of summarizat\

24 ion and conversational AI within a Swift package.

25

26 Apple-Intelligence chat (streaming, T=0.2). Type /quit to exit.

Book Wrap Up
I hope that you dear reader enjoyed this short book. While I enjoy programming in Swift and
appreciate how well Apple has integrated machine learning capabilities in their iOS/iPadOS/macOS
ecosystems, I still find myself writing most of my experimental code in Lisp languages and using
Python for deep learning experiments and projects. That said, I am very happy that I have done the
work to add Swift, CoreML, and SwiftUI to my personal programming tool belt.

I usually update my eBooks so if there is some topic or application domain that you would like
added to future versions of this book, then please let me know. My email address is markw <at>
markwatson <dot> com.

	Table of Contents
	Cover Material, Copyright, and License
	Preface
	Notes on the new June 2025 Book Edition
	Requests from the Author
	Notes on the Second Edition
	Book Structure
	Requests from the Author
	Parts of this Book are Specific for macOS and iOS, with Some Support for Linux
	Code for this Book
	Author's Background
	Cover Art
	CoreML Libraries Used in this Book
	Swift 3rd Party Libraries
	Acknowledgements

	Part 1: Introduction and Short Examples
	Setting Up Swift for Command Line Development
	Installing Swift Packages
	Creating Swift Packages
	Accessing Libraries that You Write in Other Projects

	Background Information for Writing Swift Command Line Utilities
	Using Shell Processes
	FileIO Examples
	Swift REPL

	Web Scraping
	Running in the Swift REPL

	Part 2: Large Language Models
	Using the OpenAI LLM APIs
	Core Architecture
	Key Features
	Technical Implementation Details
	Running Tests

	Using APIs for Anthropic Claude LLMs
	Running the examples

	Using Groq APIs to Open Weight LLM Models
	Implementation of a Client Library for the Groq APIs
	Running the Tests

	Using the xAI Grok LLM
	Implementation of a Grok API Client Library

	Using Ollama to Run Local LLMs
	Running the Ollama Service
	Ollama Wrap Up

	Using Apple's MLX Framework to Run Local LLMs
	MLX Framework History
	MLX Resources on GitHub
	Example Application for MLX Swift Examples Repository
	Analysis of Swift and SwiftUI Code in the LLMEval Application

	Part 3: Apple's CoreML and NLP Libraries
	Deep Learning Introduction
	Simple Multi-layer Perceptron Neural Networks
	Deep Learning

	Natural Language Processing Using Apple's Natural Language Framework
	Using Apple's NaturalLanguage Swift Library
	A simple Wrapper Library for Apple's NLP Models

	Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database
	Extending the String Class
	Implementing a Local Vector Database for Document Embeddings
	Create Local Embeddings Vectors From Local Text Files With OpenAI GPT APIs
	Using Local Embeddings Vector Database With OpenAI GPT APIs
	Wrap Up for Using Local Embeddings Vector Database to Enhance the Use of GPT3 APIs With Local Documents

	Part 4: Knowledge Representation and Data Acquisition
	Linked Data and the Semantic Web
	Understanding the Resource Description Framework (RDF)
	Frequently Used Resource Namespaces
	Understanding the SPARQL Query Language
	Semantic Web and Linked Data Wrap Up

	Example Application: iOS and macOS Versions of my KnowledgeBookNavigator
	Screen Shots of macOS Application
	Application Code Listings

	Part 5: Apple Intelligence
	Developers Can Now Weave Apple Intelligence Directly Into Their Apps
	Key Advantages for Developers:

	Using Apple Intelligence's Default System Model To Build a Chat Command Line Tool
	Using Apple Intelligence's Default System Model To Build a Coding Assistant Command Line Tool
	Book Wrap Up

